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Abstract:

• We consider (arc) density of a parameterized interval catch digraph (ICD) family
with random vertices residing on the real line. The ICDs are random digraphs where
randomness lies in the vertices and are defined with two parameters, a centrality pa-
rameter and an expansion parameter, hence they will be referred as central similarity
ICDs (CS-ICDs). We show that arc density of CS-ICDs is a U -statistic for vertices
being from a wide family of distributions with support on the real line, and provide
the asymptotic (normal) distribution for the (interiors of) entire ranges of centrality
and expansion parameters for one dimensional uniform data. We also determine the
optimal parameter values at which the rate of convergence (to normality) is fastest.
We use arc density of CS-ICDs for testing uniformity of one dimensional data, and
compare its performance with arc density of another ICD family and two other tests
in literature (namely, Kolmogorov–Smirnov test and Neyman’s smooth test of uni-
formity) in terms of empirical size and power. We show that tests based on ICDs
have better power performance for certain alternatives (that are symmetric around
the middle of the support of the data).
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1. INTRODUCTION

Intersection graphs have received considerable attention in literature since

their introduction. The main reasons for this attention are their applications in

real life and their “tame” behavior, in the sense that many problems that are

NP-hard for graphs in general are solvable in polynomial time for intersection

graphs ([Prisner, 1994]). Intersection digraphs are introduced by [Beineke and

Zamfirescu, 1982] who called them “connection digraphs”. Let V be an index

set and (Sv, Tv) be ordered pairs of sets associated with the elements v of V ,

where Sv is called the source and Tv is called the target or sink set ([Douglas,

1996]). The intersection digraph associated with this collection of ordered pairs

is D = (V, A) which has vertex set V and arc (i.e., directed edge) set A with

(u, v) ∈ A iff Su ∩ Tv 6= ∅. When the source and sink sets are intervals, we obtain

interval digraphs ([Douglas, 1996]). If the set Tv resides in Sv for each v ∈ V ,

then the ordered pair set is a nest representation for the interval digraph, and if

Tv is just a point residing in Sv, it is called a catch representation. A digraph

is called an interval catch digraph (ICD), if it is an intersection digraph with a

catch representation ([Prisner, 1994]). The set of ordered pairs, {Sv, Tv = {pv}},
in the catch representation for the ICD is also called a “pointed set” where Sv

is a set with base point pv ([Prisner, 1989]). Equivalently, an ICD is the catch

digraph of a family of pointed intervals of T if (T,≤) is a totally ordered set.

Indeed, [Maehara, 1984] provides a simple characterization of ICDs for finite n,

for which one can always take T = R.

The ICDs we consider in this article are defined in a randomized setting.

Our ICDs are vertex random digraphs in which each vertex corresponds to a

random data point from a distribution, and arcs are defined by a bivariate relation

using the regions based on these data points. Our ICDs are a special type of

proximity graphs which were introduced by [Toussaint, 1980], and are closely

related to the class cover problem of [Cannon and Cowen, 2000] and proximity

catch digraphs (PCDs) which were introduced recently and have applications in

spatial data analysis and statistical pattern classification ([Ceyhan and Priebe,

2005]).

In this article, we define central similarity (CS) ICDs for one dimensional

data which may also be viewed as one dimensional version of the PCDs considered

in [Ceyhan et al., 2007]. We derive the asymptotic distribution of the arc density

of CS-ICDs for random data points. For undirected simple graphs, the edge

density (also called graph density) is defined as the ratio of number of edges

in the graph to the total number of edges possible with the same number of

vertices. So the edge density is 2 |E|/
(
n(n−1)

)
for a graph G = (V, E) with

|V | = n. The minimal density is 0, which is attained for empty graphs (i.e.,

for E = ∅) and the maximal density is 1, which is attained for complete graphs
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([Coleman and Moré, 1983]). Based on the graph density concept, ‘dense’ and

‘sparse’ graphs are defined. For a dense graph, graph density is close to 1 and

for sparse graphs it is close to 0. There are other quantities related to graph

density, such as average degree which is defined as 2 |E|/n ([Goldberg, 1984]);

edge density of a graph is also defined as |E|/n in literature (see, e.g., [Grünbaum,

1988]). Notice that both of these quantities are scaled versions of the edge or

graph density, 2 |E|/
(
n(n−1)

)
. On the other hand, density of a digraph is the

ratio of number of arcs in a given digraph with n vertices to the total number

of arcs possible (i.e., to the number of arcs in a complete symmetric digraph of

order n). Hence for a simple digraph D = (V, A) with vertex set |V | = n and arc

set A, digraph density (or arc density) is |A|/
(
n(n−1)

)
, which is the quantity

of interest in this article. Arc density is also referred to as relative density in

literature. Properly scaled, the arc density of the ICDs is a U -statistic, which

yields the asymptotic normality by the general central limit theory of U -statistics

([Lehmann, 2004]). Our ICDs can also be viewed as a generalization of class

cover catch digraphs (CCCDs) which was introduced by [Priebe et al., 2001].

CS-ICDs have two defining parameters, a centrality and an expansion parameter.

Here, we derive the explicit form of the asymptotic normal distribution of the arc

density of the CS-ICDs for the (interiors of) entire ranges of these parameters for

uniform one dimensional data from a class whose support being partitioned by

points from another class. We investigate the arc density of CS-ICDs for uniform

data in one interval (in R) and the analysis is generalized to uniform data in

multiple intervals (see Remark 4.1). We determine the optimal parameters for

the rate of convergence to normality and show that arc density of CS-ICDs has a

faster rate than that of the respective optimal parameter values of another ICD

family called proportional-edge (PE) ICDs which were introduced in [Ceyhan,

2012] (and therein referred to as proportional-edge proximity catch digraphs).

We employ the arc density of CS-ICDs for testing uniformity of one dimensional

data and compare its performance with two prevalent tests in literature (namely,

Kolmogorov–Smirnov test and Neyman’s smooth test) in terms of size and power

as well as arc density of the PE-ICDs. Testing uniformity of one-dimensional data

is of substantial importance in various fields, e.g., for assessing the goodness-of-fit

problems ([Marhuenda et al., 2005]). For this purpose, some graph theoretical

tools are used in literature although not so commonly; e.g., minimum spanning

trees are employed for testing uniformity of two-dimensional data ([Jain et al.,

2002]). However, to the best of author’s knowledge, arc density is not previously

employed for testing uniformity of one-dimensional data. The tests based on the

arc density of the ICD families have been shown to have better power performance

for certain types of alternatives (which are symmetric around the midpoint of the

support of the distribution) against uniformity. CS-ICDs can also be used for

testing spatial patterns between (two or more) classes of data points.

We define the ICDs and describe the random ICDs and CS-ICDs in

Section 2, define their arc density and provide preliminary results in Section 3,
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provide the distribution of the arc density for uniform data in one interval in

Section 4, present the size and power analysis and comparison with other tests as

well as some consistency results in Section 5, and discussion and conclusions in

Section 6. Shorter proofs are given in the main body of the article; while longer

proofs are deferred to the Appendix.

2. RANDOM INTERVAL CATCH DIGRAPHS

Let (Ω,F , Px) be a probability space equipped with a metric d : Ω×Ω →
[0,∞). Our random catch digraphs will be defined in a randomized setting where

vertices are randomly generated in Ω and the associated metric distance will

be taken to be the Euclidean distance. Let Xn = {X1, X2, ..., Xn} and Ym =

{Y1, Y2, ..., Ym} be two sets of Ω-valued random variables from classes X and Y,

respectively, whose joint probability distribution is FX,Y with marginals FX and

FY , respectively. Our random catch digraph will be based on Xn and Ym. More

specifically, we choose X points to be the vertices and put an arc from Xi to

Xj , based on a binary relation which measures the relative allocation of Xi and

Xj with respect to Y points. In particular, in our setting, the Y points will be

used to partition the support set Ω, and the relative position of Xi and Xj with

respect to Y points will be determined by the Euclidean distances between Xi,

Xj , and the Y points. Notice that the randomness is only on the vertices, hence

our catch digraphs are vertex random. Given Ym ⊆ Ω, let P(Ω) represent the

power set of Ω, then proximity map NY : Ω → P(Ω) maps each point x ∈ Ω to

a proximity region NY(x) ⊆ Ω. A vertex random catch digraph has the vertex

set V = Xn and arc set A defined by (Xi, Xj) ∈ A if Xj ∈ NY(Xi) for i 6= j.

Hence the binary relation defining the digraph is based on the proximity region,

NY , which indicates the relative allocation of X points with respect to Y points.

Notice also that arcs of the form (Xi, Xi) (i.e., loops) are not allowed in our catch

digraph definition. If loops were allowed, the corresponding digraph would have

been called a pseudodigraph according to some authors (see, e.g., [Chartrand et

al., 2010]). We also define arc probability, denoted pa(i, j), between two vertices

Xi and Xj as pa(i, j) := P ((Xi, Xj) ∈ A) for all i 6= j, i, j = 1, 2, ..., n. If Xn is

a random sample from FX , then pa(i, j) = pa for all i 6= j, i, j = 1, 2, ..., n. For

calculations leading to the distribution of arc density of ICDs, we also need a

concept which is dual to proximity regions. For a set B ⊆ Ω, the Γ1-region is the

image of the map Γ1(·, NY) : P(Ω) → P(Ω) that assigns the region Γ1(B, NY) :=

{z ∈ Ω: B ⊆ NY(z)} to the set B. For a point x ∈ Ω, we denote Γ1({x}, NY) as

Γ1(x, NY). The concept of Γ1-region is introduced in [Ceyhan and Priebe, 2005]

and is associated with another graph invariant called domination number (which

is denoted as γ). In a proximity graph, if a vertex falls in the Γ1-region, then the

domination number would equal to 1. For brevity, we drop the subscript Y in

the notation, NY , henceforth.
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2.1. Central Similarity ICDs

For one dimensional data, we have Ω = R, then there is a natural partition-

ing of the real line based on Y points. Let Y(i) be the ith order statistic of Ym for

i = 1, 2, ..., m, with the extension that −∞ =: Y(0) and Y(m+1) := ∞ and assume

Y(i) values are distinct (which happens with probability one for continuous dis-

tributions). The Y(i) values partition R into (m + 1) intervals, with
(
−∞, Y(1)

)

and
(
Y(m),∞

)
being the end intervals, and

(
Y(i−1), Y(i)

)
for i = 2, ..., m being the

middle intervals. For one dimensional data sets, Xn and Ym, we define the CS-

ICD with expansion parameter τ > 0 and centrality parameter c ∈ (0, 1) as fol-

lows. For x ∈
(
Y(i−1), Y(i)

)
(i.e., for x in a middle interval) with i ∈ {2, ..., m} and

Mc,i = Y(i−1) + c
(
Y(i) − Y(i−1)

)
∈
(
Y(i−1), Y(i)

)
, that is c×100 % of

(
Y(i) − Y(i−1)

)

is to the left of Mc,i, we define the CS proximity region as follows:

(2.1) N(x, τ, c) =

=





(
x− τ

(
x−Y(i−1)

)
, x+ τ (1−c)

c

(
x−Y(i−1)

))
∩
(
Y(i−1), Y(i)

)
if x∈

(
Y(i−1), Mc,i

)
,

(
x− c τ

1−c

(
Y(i)−x

)
, x+ τ

(
Y(i)−x

))
∩
(
Y(i−1), Y(i)

)
if x∈

(
Mc,i, Y(i)

)
.

Notice that dependence on Y points is explicit in the definition of the CS proxim-

ity region. Furthermore, the Euclidean distance is implicit in the terms
(
x−Y(i−1)

)

and
(
Y(i) − x

)
, where the former is d

(
x, Y(i−1)

)
and the latter is d

(
x, Y(i)

)
. This

definition yields two types of regions for N(x, τ, c), one with τ ∈ (0, 1] and the

other with τ > 1. For τ ∈ (0, 1], we have

(2.2)

N(x, τ, c) =





(
x− τ

(
x−Y(i−1)

)
, x + τ (1−c)

c

(
x−Y(i−1)

))
if x∈

(
Y(i−1), Mc,i

)
,

(
x− c τ

1−c

(
Y(i)−x

)
, x + τ

(
Y(i)−x

))
if x∈

(
Mc,i, Y(i)

)
,

and with τ > 1, we have

(2.3) N(x, τ, c) =

=





(
Y(i−1), x + τ (1−c)

c

(
x−Y(i−1)

))
if x∈

(
Y(i−1),

c Y(i)+τ (1−c) Y(i−1)

c+τ (1−c)

)
,

(
Y(i−1), Y(i)

)
if x∈

(
cY(i)+τ (1−c) Y(i−1)

c+τ (1−c) ,
(1−c) Y(i−1)+c τ Y(i)

1−c+c τ

)
,

(
x − c τ

1−c

(
Y(i)−x

)
, Y(i)

)
if x∈

(
(1−c) Y(i−1)+c τ Y(i)

1−c+c τ , Y(i)

)
.

For an illustration of N(x, τ, c) in the middle interval case, see Figure 1 (left)

where Y2 = {y1, y2} with y1 = 0 and y2 = 1 (hence Mc,2 = c).

Additionally, for x in an end interval, i.e., x∈
(
Y(i−1), Y(i)

)
with i∈ {1, m+1},

the central similarity proximity region depends on the expansion parameter only.
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Figure 1: Plotted in the top two rows are illustrations of the construction
of central similarity proximity regions, N(x, τ, c) with τ ∈ (0, 1],
Y2 = {y1, y2} with y1 = 0 and y2 = 1 (hence Mc,2 = c) and x ∈
(0, c) (first row) and x ∈ (c, 1) (second row); and in the bottom
two rows are the proximity regions associated with CCCD, i.e.,
N(x, τ = 1, c = 1/2) for an x ∈ (0, 1/2) (third row) and x ∈ (1/2, 1)
(fourth row).

So we denote the central similarity proximity region for an x in an end interval

as Ne(x, τ). Then with τ ∈ (0, 1], we have

(2.4) Ne(x, τ) =





(
x − τ

(
Y(1) − x

)
, x + τ

(
Y(1) − x

))
if x < Y(1) ,

(
x − τ

(
x − Y(m)

)
, x + τ

(
x − Y(m)

))
if x > Y(m) ,

and with τ > 1, we have

(2.5) Ne(x, τ) =





(
x − τ

(
Y(1) − x

)
, Y(1)

)
if x < Y(1) ,

(
Y(m) , x + τ

(
x − Y(m)

))
if x > Y(m) .

If x ∈ Ym, then we define N(x, τ, c) = {x} and Ne(x, τ) = {x} for all τ > 0, and

if x = Mc,i, then in Equation (2.1), we arbitrarily assign N(x, τ, c) to be one of
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the two defining intervals. For X from a continuous distribution, these special

cases in the construction of central similarity proximity region — X ∈ Ym and

X = Mc,i — occur with probability zero. Notice that τ > 0 implies x ∈ N(x, τ, c)

for all x ∈
[
Y(i−1), Y(i)

]
with i ∈ {2, ..., m} and x ∈ Ne(x, τ) for all x ∈

[
Y(i−1), Y(i)

]

with i ∈ {1, m + 1}. Furthermore, limτ→∞ N(x, τ, c) =
(
Y(i−1), Y(i)

)
for all x ∈(

Y(i−1), Y(i)

)
with i ∈ {2, ..., m}, so we define N(x,∞, c) =

(
Y(i−1), Y(i)

)
for all

such x. Similarly, limτ→∞ Ne(x, τ) =
(
Y(i−1), Y(i)

)
for all x ∈

(
Y(i−1), Y(i)

)
with

i ∈ {1, m + 1}, so we define Ne(x,∞) =
(
Y(i−1), Y(i)

)
for all such x. In the special

case of c =1/2 and τ =1, central similarity proximity region N(x, τ, c) is identical

to the proportional edge proximity region with centrality parameter 1/2 and

expansion parameter 2 (see [Ceyhan, 2012]).

In a vertex random CS-ICD, the vertex set is Xn and arc set A is defined

by (Xi, Xj) ∈ A ⇐⇒ Xj ∈ N(Xi, τ, c) for Xi, Xj with i 6= j in the middle in-

tervals and (Xi, Xj) ∈ A ⇐⇒ Xj ∈ Ne(Xi, τ) for Xi, Xj with i 6= j in the end

intervals. We denote such digraphs as Dn,m(τ, c). When τ = 1 and c = 1/2(
i.e., Mc,i =

(
Y(i−1) + Y(i)

)
/2
)

we have N(x, 1, 1/2) = B(x, r(x)) for an x in a

middle interval and Ne(x, 1) = B(x, r(x)) for an x in an end interval where

r(x) = d(x,Ym) = miny∈Ym
d(x, y) and the corresponding ICD is the CCCD of

[Priebe et al., 2001] or the proportional-edge PCD (PE-PCD) of [Ceyhan, 2012]

with expansion parameter 2 and centrality parameter 1/2. See also Figure 1

(right).

3. ARC DENSITY OF CS-ICDS

For a digraph Dn = (V,A) with vertex set V and arc set A, the arc density

of Dn which is of order |V| = n ≥ 2, denoted ρ(Dn), is defined as ρ(Dn) = |A|
n(n−1)

([Janson et al., 2000]) where | · | stands for the set cardinality function. So ρ(Dn)

is the ratio of the number of arcs in the digraph Dn to the number of arcs in

the complete symmetric digraph of order n, which is n(n − 1). For n ≤ 1, we set

ρ(Dn) = 0.

Let Iij = I
(
(Xi, Xj) ∈ A

)
= I
(
Xj ∈ N(Xi)

)
. Then for an ICD (hence for a

CS-ICD), we can write the arc density as

ρ(Dn) =
2

n(n − 1)

∑

i<j

hij

where hij := (Iij + Iji)/2 Since the digraph is based on a relation that is not

symmetric, hij is defined as half of the number of arcs between Xi and Xj in order

to produce a symmetric kernel with finite variance ([Lehmann, 2004]). Notice that

E
[
ρ(Dn)

]
= E [h12] = pa
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and

0 ≤ Var
[
ρ(Dn)

]
=

2

n(n − 1)
Var [h12] +

4(n − 2)

n(n − 1)
Cov [h12, h13] ≤ 1/4

where

Var[hij ] = Var [h12] =
1

4
Var

[
I12 + I21

]
= (pa +psa)/2 − (1−pa)

2 ,

where psa = P
({

(Xi, Xj), (Xj , Xi)
}
⊂ A

)
is the symmetric arc probability and

Cov [h12, h13] = E [h12h13] − p2
a ,

with

4E [h12h13] = 4E
[
(I12 + I21)(I13 + I31)

]

= P
(
{X2, X3} ⊂ N(X1)

)
+ 2P

(
X2 ∈ N(X1), X3 ∈ Γ1(X1, N)

)

+ P
(
{X2, X3} ⊂ Γ1(X1, N)

)
.

See [Ceyhan, 2012] for the derivations. Since ρ(Dn), is a one-sample U -statistic

of degree 2 and is an unbiased estimator of the arc probability pa, a CLT for

U -statistics ([Lehmann, 2004]) yields
√

n
[
ρ(Dn) − pa

] L−→ N(0, 4 ν) as n → ∞,

where
L−→ stands for convergence in law and N(µ, σ2) stands for the normal

distribution with mean µ and variance σ2 provided ν = Cov [hij , hik] > 0 for all

i 6= j 6= k, i, j, k ∈ {1, 2, ..., n}.

Since E
[
|hij |3

]
≤ 1, for ν > 0, the sharpest rate of convergence in the

asymptotic normality of ρ(Dn) is

(3.1)
sup
t∈R

∣∣∣∣∣P
(√

n
(
ρ(Dn) − pa

)
√

4 ν
≤ t

)
− Φ(t)

∣∣∣∣∣ ≤ 8 K pa (4ν)−3/2 n−1/2

= K
pa√
n ν3

,

where K is a constant and Φ(t) is the distribution function for the standard

normal distribution ([Callaert and Janssen, 1978]).

3.1. Distribution of the arc density of CS-ICDs

We consider CS-ICDs for which Xn and Ym are random samples from FX

and FY , respectively, so that the joint distribution of X, Y is FX,Y ∈ F(R) where

F(R) :=
{

FX,Y on R with P (X =Y ) = 0

and the marginals, FX and FY , are non-atomic
}

.
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Then the order statistics of Xn and Ym are distinct with probability one.

We denote such digraphs as Dn,m(F, τ, c) and focus on the random variable

ρn,m(F,τ, c) := ρ
(
Dn,m(F,τ, c)

)
. Clearly 0≤ ρn,m(F,τ, c)≤ 1, and ρn,m(F,τ, c) > 0

for nontrivial digraphs.

We first partition the real line based on Y points. Along this line, we let

Y[i] :=
{
Y(i−1), Y(i)

}
, Ii :=

(
Y(i−1), Y(i)

)
, and X[i] :=Xn∩Ii for i = 1, 2, ..., (m +1).

Let D[i](F, τ, c) be the component of the random CS-ICD induced by the vertices

in X[i] (and based on Y[i]). Then we have a disconnected digraph with subdi-

graphs, each might be null or itself disconnected and denoted as D[i](F, τ, c) for

i = 1, 2, ..., (m + 1). Let A[i] be the arc set of D[i](F, τ, c), and ρ
[i]

(F, τ, c) de-

note the arc density of D[i](F, τ, c); ni :=
∣∣X[i]

∣∣, and Fi be the distribution FX

restricted to Ii for i ∈ {1, 2, ..., m+ 1}. Furthermore, let Mc,i ∈ Ii be the point so

that it divides the interval Ii in ratios c and 1 − c. Since we have at most m + 1

subdigraphs D[i](F, τ, c) each of which having at most ni(ni − 1) arcs, it follows

that we can have at most n
T

:=
∑m+1

i=1 ni(ni−1) arcs in the digraph Dn,m(F, τ, c).

We adjust the arc density for the entire digraph as

(3.2) ρ̃n,m(F, τ, c) :=
|A|
n

T

=

∑m+1
i=1 |A[i]|

n
T

=
1

n
T

m+1∑

i=1

(
ni(ni −1)

)
ρ

[i]
(F, τ, c) .

Hence, ρ̃n,m(F, τ, c) is called as the adjusted arc density and is a mixture of the

ρ
[i]

(F, τ, c) values, since ni (ni−1)
n

T

≥ 0 for each i and

m+1∑

i=1

ni (ni − 1)

n
T

= 1. We first

focus on the simpler random variable ρ
[i]

(F, τ, c). The almost sure (a.s.) results

follow from the marginal distributions FX and FY being non-atomic in the rest

of this section.

Lemma 3.1. For i ∈ {1, (m + 1)} (i.e., in the end intervals) if ni ≤ 1,

then ρ
[i]

(F, τ, c) = 0 for all τ > 0. Moreover, if ni > 1, then ρ
[i]

(F, τ, c) ≥ 1/2 a.s.

for all τ > 1.

Proof: By symmetry, distribution of ρ
[i]

(F, τ, c) is same for i = 1, m + 1.

So we only consider i = m + 1 (i.e., the right end interval). If nm+1 ≤ 1, then by

definition ρ
[m+1]

(τ, c) = 0. So, assume nm+1 >1 and let X[m+1] = {Z1,Z2, ...,Znm+1}
with Z(j) being the corresponding order statistics. Then there is an arc from

Z(j) to each Z(k) for k < j, with j, k ∈ {1, 2, ..., nm+1} (and possibly to some

other Zl) for all τ > 1, since Ne

(
Z(j), τ

)
=
(
Y(m), Z(j) + τ

(
Z(j)−Y(m)

))
and so

Z(k) ∈ Ne

(
Z(j), τ

)
. This implies that there are at least 0+1+2+ ···+nm+1−1 =

nm+1(nm+1−1)/2 arcs in D[m+1](τ, c). Then ρ
[m+1]

(τ, c) ≥
(
nm+1(nm+1−1)/2

)
/(

nm+1(nm+1 −1)
)

= 1/2.

Let Dn,m(F, τ, c) be a CS-ICD with n > 0 and m > 0. Then we obtain the

following lower bound for ρn,m(F, τ, c) with τ > 1.
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Theorem 3.1. Let k1 and k2 be two natural numbers defined as k1 :=∑m
i=2

(
ni,ℓ(ni,ℓ −1)/2 + ni,r(ni,r −1)/2

)
and k2 :=

∑
i∈{1,m+1} ni(ni−1)/2, where

ni,ℓ :=
∣∣Xn ∩

(
Y(i−1), Mc,i

)∣∣ and ni,r :=
∣∣Xn ∩

(
Mc,i, Y(i)

)∣∣. Then for τ > 1, we

have (k1 + k2)/n
T
≤ ρn,m(F, τ, c) ≤ 1 a.s.

Proof: We have k2 as in Lemma 3.1 for the end intervals (i.e., for i ∈
{1, (m +1)}). In the middle intervals, i.e., for i ∈ {2, 3, ..., m}, let Xi,ℓ := X[i] ∩(
Y(i−1), Mc,i

)
= {U1, U2, ..., Uni,ℓ

}, and Xi,r :=X[i]∩
(
Mc,i, Y(i)

)
= {V1, V2, ..., Vni,r

}.
Furthermore, let U(j) and V(k) be the corresponding order statistics. For τ > 1,

there is an arc from U(j) to U(k) and possibly to some other Ul for k < j with

j, k, l ∈ {1, 2, ..., ni,ℓ}, and similarly there is an arc from V(j) to V(k) and pos-

sibly to some other Vl for k > j with j, k, l ∈ {1, 2, ..., ni,r}. Therefore, we have

ρn,m(F,τ,c)≥ (k1+k2)/n
T
, since there are at least ni,ℓ(ni,ℓ −1)/2+ni,r(ni,r−1)/2

arcs in D[i](F, τ, c).

Theorem 3.2. When the expansion parameter is infinity (i.e., τ = ∞),

we have ρ
[i]

(τ =∞, c) = I(ni >1) and ρn,m(τ =∞, c) =1 a.s. for i =1, 2, 3, ..., m+1

and ni > 1.

Proof: For τ = ∞, if ni ≤ 1, then ρ
[i]

(τ =∞, c) = 0. So we assume ni > 1

and let i = m + 1. Then Ne(x,∞) =
(
Y(m),∞

)
for all x ∈

(
Y(m),∞

)
. Hence

D[m+1](∞, c) is a complete symmetric digraph of order nm+1, which implies

ρ
[m+1]

(τ =∞, c) = 1. By symmetry, the same holds for i = 1. For i ∈ {2, 3, ..., m}
and ni > 1, we have N(x,∞, c) = Ii for all x ∈ Ii, hence D[i](∞, c) is a complete

symmetric digraph of order ni, which implies ρ
[i]

(∞, c) = 1. Then ρn,m(∞, c) =
∑m+1

i=1

ni(ni−1) ρ
[i]

(∞,c)

n
T

= 1, since when ni ≤ 1, ni has no contribution to n
T
, and

when ni > 1, we have ρ
[i]

(∞, c) = 1.

4. DISTRIBUTION OF THE ARC DENSITY OF CS-ICDS FOR

UNIFORM DATA

Let Xn = {X1, X2, ..., Xn} be a random sample from FX = U(δ1, δ2), the

uniform distribution on the bounded interval (δ1, δ2), and let Ym be a random

sample from non-atomic FY with support S(FY ) ⊆ (δ1, δ2). Then FX,Y ∈ F(R).

Suppose we have a realization of Ym as Ym = {y1, y2, ..., ym} with the order statis-

tics satisfying δ1 < y(1) < y(2) < ··· < y(m) < δ2, with the extension that y(0) := δ1

and y(m+1) := δ2. Then the distribution of Xi restricted to Ii is FX |Ii
= U(Ii).

We provide the distribution of the arc density of Dn,m(τ, c) for the whole range

of the parameters τ and c. The following “scale invariance” for CS-ICDs will
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allow us to consider the special case of the unit interval (0, 1) as the support of

X points, thereby simplifying the computations in our subsequent analysis.

Theorem 4.1 (Scale Invariance Property). Let Ym be a set of m distinct

Y points in a bounded interval (δ1, δ2) and Xn be random sample from U(δ1, δ2).

Then the distribution of ρ
[i]

(τ, c) is independent of Y[i] (and hence independent of

the restricted support interval Ii) for all i ∈ {1, 2, ..., m+1}, τ > 0, and c ∈ (0, 1).

Proof: Let δ1 and δ2 and Ym be as in the hypothesis. Any U(δ1, δ2) random

variable can be transformed into a U(0, 1) random variable by φ(x) = (x − δ1)/

(δ2−δ1), which maps intervals (t1, t2) ⊆ (δ1, δ2) to intervals
(
φ(t1), φ(t2)

)
⊆ (0, 1).

That is, if X ∼ U(δ1, δ2), then we have φ(X) ∼ U(0, 1) and P
(
X ∈ (t1, t2)

)
=

P
(
φ(X) ∈

(
φ(t1), φ(t2)

))
for all (t1, t2) ⊆ (δ1, δ2). The distribution of ρ

[i]
(τ, c) is

obtained by calculating such probabilities. So, without loss of generality, we can

assume X[i] is a set of iid (independent identically distributed) random variables

from the U(0, 1) distribution. That is, the distribution of ρ
[i]

(τ, c) does not depend

on Y[i] and hence does not depend on the restricted support interval Ii.

For τ = ∞, we have ρ
[i]

(τ =∞, c) = 1 a.s. for any non-atomic FX with

support in (δ1, δ2), hence the scale invariance of ρ
[i]

(τ =∞, c) holds for all Xn

from any such FX . Based on Theorem 4.1, we may assume each Ii as the unit

interval (0, 1) for uniform data. If x ∈ Ii for i ∈ {2, ..., m} (i.e., in the middle

intervals), when transformed to (0, 1), the central similarity proximity region for

x ∈ (0, 1) with parameters c ∈ (0, 1) and τ > 0 is

(4.1) N(x, τ, c) =





(
(1− τ)x,

(
1+ (1−c)

c τ
)

x
)
∩ (0, 1) if x ∈ (0, c) ,

(
x− c τ

(1−c) (1− x), x + (1− x)τ
)
∩ (0, 1) if x ∈ (c, 1) .

In particular, for τ ∈ (0, 1], we have

(4.2) N(x, τ, c) =





(
(1− τ)x,

(
1+ (1−c)

c τ
)

x
)

if x ∈ (0, c) ,
(
x− c τ

(1−c) (1− x), x + (1− x)τ
)

if x ∈ (c, 1) ,

and for τ > 1, we have

(4.3) N(x, τ, c) =





(
0,
(
1 + (1−c)

c τ
)

x
)

if x ∈
(
0, c

c+(1−c) τ

)
,

(0, 1) if x ∈
(

c
c+(1−c) τ , c τ

1−c+c τ

)
,

(
x− c τ

(1−c) (1− x), 1
)

if x ∈
(

c τ
1−c+c τ , 1

)
,

and N(x = c, τ, c) is arbitrarily taken to be one of the two defining intervals above.

But the case of “X = c” happens with probability zero for uniform X.
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Furthermore, when transformed to (0, 1), if x is in the left end interval (i.e.,

x ∈ I1), we have Ne(x, τ) =
(
max

(
0, x− τ (1−x)

)
, min

(
1, x+ τ (1−x)

))
; and if x

is in the right end interval (i.e., x ∈ Im+1), we have Ne(x, τ) =
(
max

(
0, (1−τ)x

)
,

min
(
1, (1+ τ)x

))
.

Each subdigraph D[i](τ, c) is itself a random CS-ICD (for brevity of nota-

tion, we suppress the dependence on the uniform distribution). The distribution

of the arc density of D[i](τ, c) is given in the following theorem.

Theorem 4.2. Let ρ
[i]

(τ, c) be the arc density of subdigraph D[i](τ, c) of

the CS-ICD based on U(δ1, δ2) data and Ym be a set of m distinct Y points in

(δ1, δ2). Then, as ni → ∞, for τ ∈ (0,∞) we have,

(i)
√

ni

[
ρ

[i]
(τ, c)−pa(τ, c)

] L−→N(0, 4 ν(τ, c)), where pa(τ, c) =E
[
ρ

[i]
(τ, c)

]

is the arc probability and ν(τ, c) = Cov[h12, h13] in the middle inter-

vals (i.e., for i ∈ {2, ..., m}), and

(ii)
√

ni

[
ρ

[i]
(τ, c)−pe

a(τ, c)
] L−→N(0, 4 νe(τ)), where pe

a(τ, c) = E
[
ρ

[i]
(τ, c)

]

is the arc probability and νe(τ) = Cov[h12, h13] in the end intervals

(i.e., for i ∈ {1, m + 1}).

Proof: By Theorem 1 of [Ceyhan, 2012], arc density of CS-ICDs is a U -

statistic, and hence the proofs follow by the asymptotic normality of U -statistics

provided the asymptotic variance is positive. In particular, in (i) by the scale

invariance for uniform data (see Theorem 4.1), a middle interval can be assumed

to be the unit interval (0, 1). Then

E
[
ρ

[i]
(τ, c)

]
= E[h12] = P

(
X2 ∈ N(X1, τ, c)

)
= pa(τ, c)

which is the arc probability. Similarly in (ii) we have E
[
ρ

[i]
(τ, c)

]
= E[h12] =

P
(
X2 ∈ Ne(X1, τ)

)
= pe

a(τ, c).

Furthermore, in (i), for τ ∈ (0,∞), h12 and h13 tend to be high (resp. low)

together, if the proximity region N(X1, τ, c) is large (resp. small), since 2h12 =

I
(
X2 ∈ N(X1, τ, c)

)
+ I
(
X1 ∈ N(X2, τ, c)

)
is the number of arcs between X1 and

X2 in the ICDs. Hence the asymptotic variance of ρ
[i]

(τ, c), Cov[h12, h13] =

4 ν(τ, c) > 0. The same holds for end intervals in (ii) as well.

For middle intervals, the asymptotic variance in Theorem 4.2 can be written

as

Cov[h12, h13] =
1

4

(
P2N + 2PNG + P2G

)
− pa(τ, c)

2 ,

where

P2N := P
(
{X2, X3} ⊂ N(X1, τ, c)

)
,

PNG := P
(
X2 ∈ N(X1, τ, c), X3 ∈ Γ1(X1, τ, c)

)
,

and
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P2G := P
(
{X2, X3} ⊂ Γ1(X1, τ, c)

)
.

Similarly, for end intervals

Cov[h12, h13] =
1

4

(
P2N,e + 2PNG,e + P2G,e

)
− pe

a(τ, c)
2 ,

where

P2N,e := P
(
{X2, X3} ⊂ Ne(X1, τ)

)
,

PNG,e := P
(
X2 ∈ Ne(X1, τ), X3 ∈ Γ1,e(X1, τ)

)
,

and
P2G,e := P

(
{X2, X3} ⊂ Γ1,e(X1, τ)

)
,

with Γ1,e(x, τ) being the Γ1-region corresponding to Ne(x, τ) in the end in-

tervals. Furthermore, for τ = ∞, E
[
ρ

[i]
(∞, c)

]
= E [h12] = µ(∞, c) = P

(
X2 ∈

N(X1,∞, c)
)

= P (X2 ∈ Ii) = 1 and ν(∞, c) = 0. Thus, ρ
[i]

(τ =∞, c) = 1 a.s. and

the CLT result does not hold for τ = ∞.

4.1. Distribution of the arc density of Dn,2(τ, c)

In this section, we find the distribution of the arc density of Dn,2(τ, c) for

τ > 0 and c ∈ (0, 1). For the special case of m = 2, we have Y2 = {y1, y2} and

δ1 = y1 < y2 = δ2, and only one middle interval and the two end intervals are

empty. By Theorems 4.1 and 4.2, the asymptotic distribution of any ρ
[i]

(τ, c) for

the middle intervals with m > 2 will be same as the asymptotic distribution of

density of the CS-ICD based on U(0, 1) data.

For τ ∈ (0, 1], the proximity region is defined as in Equation (4.2) and for

τ > 1, the proximity region is as in Equation (4.3).

Theorem 4.3. For τ ∈ (0,∞), we have
√

n
[
ρn,2(τ, c) − pa(τ, c)

] L−→
N
(
0, 4 ν(τ, c)

)
, as n → ∞, where

(4.4) pa(τ, c) =





τ
2 if 0 < τ < 1 ,

τ (1+2 c (τ−1)(1−c))
2 (c τ−c+1)(τ+c−c τ) if τ > 1 ,

and

4 ν1(τ, c) = κ1(τ, c) I(0 < τ < 1) + κ2(τ, c) I(τ > 1)

where

κ1(τ, c) =
τ2
(
c2 τ3 − 3 c2 τ2 − c τ3 + 2 c2 τ + 3 c τ2 − c2 − 2 c τ − τ2 + c + τ

)

3 (c τ − c + 1) (c + τ − c τ)
,
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and

κ2(τ, c) =
[
c (1− c)

(
2 c4 τ5 − 7 c4 τ4 − 4 c3 τ5 + 8 c4 τ3 + 14 c3 τ4 + 3 c2 τ5

− 2 c4 τ2 − 16 c3 τ3 − 7 c2 τ4 − c τ5 − 2 c4 τ + 4 c3 τ2 + 12 c2 τ3

+ c4 + 4 c3 τ − 6 c2 τ2 − 4 c τ3 − 2 c3 − 3 c2 τ + 4 c τ2

+ c2 + c τ − τ2
)]/[

3
(
c τ − c + 1

)3(
c τ − c − τ

)3]
.

The proof is provided in the Appendix. Notice that pa(τ, c) is indepen-

dent of the centrality parameter c for τ ∈ (0, 1]. See Figure 2 for the surface

plots of pa(τ, c) and 4 ν(τ, c). Observe that limτ→∞ ν(τ, c) = 0, so the CLT re-

sult fails for τ = ∞ and limτ→0 ν1(τ, c) = 0, but CS-ICD is not defined for τ = 0.
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Figure 2: The surface plots of the asymptotic mean pa(τ, c) (top) and
the variance 4 ν(τ, c) (bottom) as a function of τ and c for
τ ∈ (0, 5] and c ∈ (0, 1), respectively.

The sharpest rate of convergence in Theorem 4.3 is K pa(τ,c)√
n ν(τ,c)3

(the explicit form

not presented) and is minimized at τ ≈ 1.55 and c = 1/2 which is found by setting
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the first order partial derivatives of this convergence rate with respect to τ and c

to zero and solving for τ and c numerically and verified by the surface plot.

Surface plots for the convergence rates f c
CS

(τ, c) and f c
PE

(τ, c) are presented in

Figure 3. At optimal parameters within their entire ranges, the convergence rate

for the arc density of CS-ICDs is faster than that of the PE-PCDs.

0.2

0.4

0.6

0.8

0.5

1

1.5

2

2.5

3

20

40

60

80

100

120

t c

ra
te

Figure 3: The surface plots of the rates of convergence to normality for
PE- and CS-ICDs for the entire ranges of expansion parameter, t,
and centrality parameter, c. The rate for CS-ICD is plotted in
light gray, while that for PE-PCDs is plotted in dark gray.

Each of the following special cases follows as a corollary of Theorem 4.3.

Special Cases:

Case (i): τ > 0 and c = 1/2.

As n → ∞, we have
√

n
[
ρn,2(τ, 1/2) − pa(τ, 1/2)

] L−→ N
(
0, 4 ν(τ, 1/2)

)
,

where

(4.5) pa(τ, 1/2) =

{
τ/2 if 0 < τ < 1 ,

τ/(τ + 1) if τ > 1 ,

and

(4.6) 4 ν (τ, 1/2) =





τ2 (1+2 τ−τ2−τ3)
3 (τ+1)2

if 0 < τ ≤ 1 ,

2 τ−1
3 (τ+1)2

if τ > 1 .

Case (ii): τ = 1 and c ∈ (0, 1).

As n → ∞, we have
√

n
[
ρn,2(1, c) − pa(1, c)

] L−→ N
(
0, 4 ν(1, c)

)
, where

pa(1, c) = 1/2 and 4 ν(1, c) = c (1− c)/3.
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Case (iii): τ = 1 and c = 1/2:

As n → ∞, we have
√

n
[
ρn(1, 1/2)−pa(1, 1/2)

] L−→ N
(
0, 4 ν(1, 1/2)

)
, where

pa(1, 1/2) = 1/2 and 4 ν(1, 1/2) = 1/12.

4.2. Arc density in the case of end intervals

(for U
(
δ1, y(1)

)
or U

(
y(m), δ2

)
data)

With m ≥ 1, we have the end intervals, I1 =
(
δ1, y(1)

)
and Im+1 =

(
y(m), δ2

)
.

In these intervals, the proximity and Γ1-regions are only dependent on x and τ

(but not on c). Let D[i](1, c) be the subdigraph of the CS-ICD based on uniform

data in (δ1, δ2) where δ1 < δ2 and Ym be a set of m distinct Y points in (δ1, δ2).

By scale invariance of Theorem 4.1, we can assume that each of the end intervals

is (0, 1).

For τ ∈ (0, 1] and x in the right end interval, the proximity region is

(4.7) Ne(x, τ) =





(
(1− τ)x, (1+ τ)x

)
if x ∈

(
0, 1/(1+ τ)

)
,

(
(1− τ)x, 1

)
if x ∈

(
1/(1+ τ), 1

)
,

and for τ > 1 and x in the right end interval, the proximity region is

(4.8) Ne(x, τ) =





(
0, (1+ τ)x

)
if x ∈

(
0, 1/(1+ τ)

)
,

(0, 1) if x ∈
(
1/(1+ τ), 1

)
.

Theorem 4.4. For i ∈ {1, m +1} and τ ∈ (0,∞), as ni → ∞, we have
√

ni

[
ρ

[i]
(τ) − pe

a(τ)
] L−→ N(0, 4 νe(τ)), where

(4.9) pe
a(τ, c) =





τ (τ+2)
2 (τ+1) if 0 < τ < 1 ,

1+2 τ
2 (τ+1) if τ > 1 ,

and

(4.10) 4 νe(τ) =





τ2(4 τ+4−2 τ4−4 τ3−τ2)
3 (τ+1)3

if 0 < τ < 1 ,

τ2

3 (τ+1)3
if τ > 1 .

The proof is provided in the Appendix. See Figure 4 for the plots of pe
a(τ)

and 4 νe(τ) with τ ∈ (0, 10]. Notice that limτ→∞ νe(τ) = 0, so the CLT result fails

for τ = ∞ and limτ→0 νe(τ) = 0. The sharpest rate of convergence in Theorem 4.4
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is K pe
a(τ)√

ni νe(τ)3
(explicit form not presented) for i ∈ {1, m +1} and is minimized

at τ ≈ 0.58 which is found numerically as before and verified by the plot of

pe
a(τ)/

√
νe(τ)3.
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Figure 4: The plots of the asymptotic mean pe
a(τ, c) (top) and the vari-

ance 4 νe(τ) (bottom) for the end intervals as a function of τ
for τ ∈ (0, 10].

The distribution for the special case of τ = 1 follows as a corollary to The-

orem 4.4: For x in the right end interval, Ne(x, 1) =
(
0, min(1, 2x)

)
for x ∈ (0, 1).

For i∈ {1, m+1} (i.e., in the end intervals), as ni →∞, we have
√

ni

[
ρ

[i]
(1)−pe

a(1)
]

L−→ N(0, 4 νe(1)), where pe
a(1) = 3/4 and 4 νe(1) = 1/24.

Remark 4.1. Multiple Interval Case: In the case of m > 2, we have two

versions of arc density. One is defined as the (adjusted) arc density as in Equation
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(3.2). The asymptotic distribution of ρn,m(τ, c) is the same as given in Theorem11

of [Ceyhan, 2012]. As for the other one, if we consider the entire data set Xn,

then we have n vertices. So we can also consider the arc density as ρn,m(τ, c) =

|A| /
(
n (n −1)

)
. The asymptotic distribution for ρn,m(τ, c) is as in Theorem 12

of [Ceyhan, 2012].

Remark 4.2. Use of Arc Density for Testing Multi-Class Spatial Interactions:

Arc density of CS-ICDs can be employed in testing two-class spatial point pat-

terns of one-dimensional data, as was done in [Ceyhan et al., 2007] for two-

dimensional data. In particular, for two classes of points, X and Y, whose support

is in a compact interval in R, we assume some form of complete spatial random-

ness of X points (i.e., X points having uniform distribution in the support interval

irrespective of the distribution of the Y points) as our null hypothesis. The al-

ternative patterns of interest are segregation of X from Y points or association

of X points with Y points. Association is the pattern in which the points from

the two classes tend to occur close to each other, while segregation is the pattern

in which the points from the same class tend to cluster together. In our context,

association implies that X points are clustered around Y points, while segrega-

tion implies that X points are clustered away from the Y points. The use of arc

density of CS-ICDs requires number of X points to be much larger compared

to the number of Y points. Furthermore, the power comparisons are possible for

data from large families of distributions to obtain the optimal parameters against

segregation and association alternatives.

Remark 4.3. Extension of Central Similarity Proximity Regions to Higher

Dimensions: In this article, we discuss the construction of CS-ICDs for one-

dimensional data and asymptotic distribution of their arc density (for uniform

data). The CS-ICDs in this article can be viewed as the one-dimensional version

of the PCDs introduced in [Ceyhan et al., 2007], which also contains the extension

to higher dimensions.

5. TESTING UNIFORMITY WITH THE ARC DENSITY

OF CS-ICDS

We can employ the arc density of the CS-PCDs for testing uniformity based

on its asymptotic normality. Let Xi
iid∼ F for i = 1, 2, ..., n where F has a bounded

interval support (a, b) in R. Then our null hypothesis is Ho : F = U(a, b). For

testing this hypothesis, we use the arc density ρn,2(τ, c) whose asymptotic dis-

tribution is provided in Theorem 4.3 for uniform data. By the scale invariance

property of the distribution of ρn,2(τ, c) (see Theorem 4.1), without loss of gen-

erality, we can assume (a, b) = (0, 1). In this approach, for each choice of (τ, c),
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we compute the arc density, ρn,2(τ, c), and standardize it as

Rn(τ, c) :=
√

n
(
ρn,2(τ, c) − pa(τ, c)

)/√
4ν(τ, c)

and use the standardized version as our test statistic. The critical values for the

one- and two-sided alternatives are based on the standard normal distribution,

e.g., the level α critical value for the left-sided alternative is zα, the α×100th

percentile of the standard normal distribution.

For comparative purposes, we employ the arc density of PE-ICDs intro-

duced by [Ceyhan, 2012]. In particular, the defining regions for the PE-ICD

are

(5.1) NPE(x, r, c) =





(0, r x) ∩ (0, 1) if x ∈ (0, c) ,
(
1 − r (1− x), 1

)
∩ (0, 1) if x ∈ (c, 1) .

The asymptotic distribution of the arc density of PE-ICDs for uniform data was

provided in [Ceyhan, 2012]. Furthermore, we also employ Kolmogorov–Smirnov

(KS) test for uniform distribution and Neyman’s smooth test of uniformity since

the former is one of the most commonly used tests and latter is recommended for

a large family of alternatives for testing uniformity by [Marhuenda et al., 2005].

5.1. Empirical size analysis

We first perform an extensive size analysis to determine for which parameter

values the arc density of the ICDs have the appropriate size at specific sample sizes

in testing Ho : F = U(0, 1). For this purpose, we partition the ranges of τ and c

for the CS-ICD as follows. We take c = .01, .02, ..., .99 and τ = .01, .02, ..., 10.00,

and consider each (τ, c) combination on a 99×1000 grid with n = 20, 50, 100.

Similarly, we partition the ranges of r and c for the PE-ICD as follows. We

use the same partition above for c and take r = 1.01, ..., 10.00, and consider each

(r, c) combination on a 99×900 grid with n = 20, 50, 100. For each (τ, c) (and

(r, c)) combination, we generate Nmc = 10000 samples of size n iid from U(0, 1)

distribution. Then for each sample generated, we compute the arc densities and

use their standardized versions as approximate test statistics. Empirical size

is estimated as the frequency of number of times p-value is significant at α =

.05 level divided by Nmc = 10000. We also estimate the empirical sizes for KS

and Neyman’s smooth tests with n = 20 and Nmc = 10000. With Nmc = 10000,

empirical size estimates larger than .0536 (resp. less than .0464) are deemed liberal

(resp. conservative). These bounds are determined using a binomial test for the

proportions with n = 10000 trials at .05 level of significance. The size estimates

for KS and Neyman’s smooth test are found to be about the nominal level (i.e.,

between .0464 and .0536).
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Figure 5: Two-level (i.e., black and white) image plots for the empirical size esti-
mates for the arc density of CS-ICD and PE-PCD based on n = 20 and
Nmc = 10000 the two-sided (TS), right-sided (RS) and left-sided (LS)
alternatives. The empirical sizes not significantly different from 0.05
are represented with black dots, and others are represented with white
dots. For CS-ICD, we take τ = .01, .02, ..., 10.00 and for PE-ICD, we take
r = 1.01, 1.02, ..., 10.00 and for both ICDs, we take c = .01, .02, ..., .99
with Nmc = 10000 Monte Carlo replications.
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We present the empirical size estimates in two-level image plots (with em-

pirical sizes not significantly different from 0.05 in black, and others in white)

for the two-, right- and left-sided alternatives for the CS-ICD with n = 20, c =

.01, .02, ..., .99 and τ = .01, .02, ..., 10.00 and for the PE-ICD with n = 20, c =

.01, .02, ..., .99 and r = 1.01, 1.02, ..., 10.00 in Figure 5. The size estimates for

n = 50 and 100 have the similar trend with sizes closer to nominal level for more

parameter combinations (not presented). Notice that there is symmetry in size

estimates around c = 1/2. For the one-sided alternatives, the regions at which

size estimates are appropriate are somewhat complementary, in the sense that,

the sizes are appropriate for the parameter combinations in one region for left-

sided alternative and mostly in its complement for the right-sided alternative for

each ICD family. Notice also that arc density of PE-ICD has appropriate size

for the two-sided alternative for more parameter combinations, and arc density

of CS-ICD has appropriate size for the left-sided alternative for more parameter

combinations.

5.2. Empirical power analysis

We perform power analysis to determine which tests have higher power

under various alternatives against uniformity. For the alternatives, we use three

families of non-uniform distributions with support in (0, 1) which are proposed

by [Stephens, 1974]:

(I) F1(x, δ) =
(
1 − (1− x)δ

)
I(0 ≤ x < 1) + I(x ≥ 1) ,

(II) F2(x, δ) = (2δ−1xδ) I(0≤x<1/2) +
(
1− 2δ−1(1−x)δ

)
I(1/2≤x<1)

+ I(x ≥ 1) ,

(III) F3(x, δ) =
(
1/2 − 2δ−1(1/2 − x)δ

)
I(0 ≤ x < 1/2)

+
(
1/2 + 2δ−1(x − 1/2)δ

)
I(1/2 ≤ x < 1) + I(x ≥ 1) .

That is,

HI
a : F = F1(x, δ) with δ > 1 ,

HII
a : F = F2(x, δ) with δ > 1 ,

HIII
a : F = F3(x, δ) with δ > 1 .

The corresponding pdfs for the distributions in the alternatives are

(I) f1(x) =
(
δ(1− x)δ−1

)
I(0<x<1) ,

(II) f2(x) = (δ 2δ−1xδ−1) I(0<x≤1/2)+
(
δ 2δ−1(1−x)δ−1

)
I(1/2<x<1) ,

(III) f3(x) =
(
δ(1−2x)δ−1

)
I(0<x≤1/2)+

(
δ(2x−1)δ−1

)
I(1/2<x<1) .
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See Figure 6 for sample plots of the pdfs with various parameters under

types I–III alternatives. Notice that in all the alternatives, δ = 1 corresponds to

U(0, 1) distribution. Under type I alternatives, with increasing δ > 1, the pdf of

the distribution is more clustered around 0 and less clustered around 1; under

type II alternatives, with increasing δ > 1, the pdf of the distribution gets more

clustered around 1/2 (and less clustered around the end points, 0 and 1); and

under type III alternatives, with increasing δ > 1, the pdf of the distribution is

more clustered around the end points, 0 and 1, and less clustered around 1/2.

Under the type II and III alternatives, the pdfs are symmetric around 1/2.
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Figure 6: Sample plots for the pdfs of the alternative types I (top left), II (top right),
and III (bottom) with δ = 2, 3, 4. The horizontal line at 1 indicates the pdf
for U(0, 1) distribution (with δ = 1).

We generate n = 20 points according to the specified alternatives with var-

ious parameters. In particular, for each of HI
a–HIII

a , we consider δ = 2, 3, 4.

With CS-ICDs, we use (τ, c) for τ = .01, .02, ..., 10.00 and c = .01, .02...., .99 and

with PE-ICDs, we use (r, c) for r = 1.01, .02, ..., 10.00 and c = .01, .02...., .99.

With CS-ICDs, for each (τ, c) and δ combination, and with PE-ICDs, for each

(r, c) and δ combination, we replicate the sample generation Nmc = 10000 times.

We compute the power using the asymptotic critical values based on the normal

approximation.
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Table 1: The maximum power estimates for the one-sided alternatives
unadjusted (the first entry) and adjusted (the second entry)
for size. In the size adjusted version, only the parameter com-
binations at which the tests have appropriate level are kept.
RS: right-sided, LS: left-sided alternatives.

CS-ICD PE-ICD
alternative

RS LS RS LS

HI
a 0.86, .73 .65, .30 .93, .75 .41, .41

HII
a 0.93, .90 .29, .00 .91, .90 .60, .00

HIII
a 0.41, .18 .81, .81 .27, .13 .81, .81
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Figure 7: Image plots for the power estimates for PE-ICD with r ∈ (1, 10) and
c ∈ (0, 1) and CS-ICD with τ ∈ (0, 10) and c ∈ (0, 1) under HI

a : δ = 2,
with n = 20, Nmc = 10000. The intensity of the gray level increases
as the power increases, and the same darkness scale is used for each
image plot. RS stands for right-sided, LS stands for left-sided alter-
natives.
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We only keep the parameter combinations ((r, c) for PE-ICDs and (τ, c)

for CS-ICDs) at which the tests have the appropriate level (of .05), i.e., if the

test is conservative or liberal for the one-sided version in question, we ignore that

parameter combination in our power estimation, as they would yield unreliable

results. We call this procedure the “size adjustment” for the power estimation.

The maximum values of the power estimates under the one-sided alternatives

adjusted and unadjusted for the correct size are provided in Table 1. Observe that

the size adjustment has a substantial effect on the highest power values (and tends

to reduce the highest power estimates). Furthermore, under the alternatives HI
a

and HII
a , the ICDs yield higher power for the right-sided alternative, while under

HIII
a the ICDs yield higher power for the left-sided alternative. In particular,

PE-ICDs have high power for the right-sided alternative under HI
a and HII

a ,

and left-sided alternative under HIII
a with virtually zero power for the opposite

direction under these alternatives. On the other hand, CS-ICDs tend to have a
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Figure 8: Image plots for the power estimates for PE-ICD with r ∈ (1, 10) and
c ∈ (0, 1) and CS-ICD with τ ∈ (0, 10) and c ∈ (0, 1) under HII

a and
HIII

a with δ = 2, n = 20, Nmc = 10000. The gray level intensity and
alternative labeling are as in Figure 7.
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similar trend, but the power estimates for the direction of the one-sided version

depends on the parameters. That is, e.g., under HI
a , CS-PCD has high power

estimates for the right-sided alternative at some (τ, c) combinations, and for the

left-sided alternative at some other (τ, c) values. The gray-scale image plots of

the power estimates under HI
a are presented in Figure 7 and under HII

a and HIII
a

in Figure 8 (with the higher power estimates are represented with darker gray

level). Notice that the power estimates are symmetric around c = 1/2 under HII
a

and HIII
a , which is in agreement with the symmetry in the corresponding pdfs

(around c = 1/2).

The maximum power estimates and at which parameters of the ICDs they

occur are presented in Table 2. We also plot the histograms of the power esti-

mates (normalized to have unit area) under the alternatives in Figure 9. Under

HI
a , although the maximum power estimate for the right-sided alternative is at-

tained by PE-ICD test at (r, c) = (1.02, .78), the CS-ICD test tends to have higher

power estimates. Among the competitors, the power estimate is .50 for Neyman’s

smooth test and .82 for KS test (with the right-sided alternative), and the ICD

tests have lower power compared to KS-test. Likewise, under HII
a , although the

maximum power estimate for the right-sided alternative is attained by CS-ICD

at (τ, c) = (1.96, .49), the PE-ICD test tends to have higher power estimates.

Among the competitors, the power estimate is .39 for Neyman’s test and .14 for

KS test (with the right-sided alternative), and the ICD tests have higher power

compared to Neyman’s test. Finally, under HIII
a , the PE-ICD test tends to

have higher power estimates. Among the competitors, the power estimate is .59

Table 2: The maximum power estimates and the parameter combinations
at which they occur. RS: right-sided, LS: left-sided alternatives
and β̂ stands for empirical power estimates.

For CS-ICDs

HI
a HII

a HIII
a

RS LS RS LS RS LSbβ 0.65–.73 .20–.29 .85–.90 — .15–.18 .75–.80

τ (7,9) (6.5,10) (2.75,4) — (2.5,3) (1,2.5)

c ≈ .2 (.96,1) (.35,.65) — (0, .04) ∪ (.96, 1) (.4,.6)

For PE-ICDs with RS alternatives

HI
a HII

a HIII
abβ 0.65–.75 .88–.89 .80–.81

r ≈ 1 ≈ 3.8 ≈ 2.5

c ≈ .86 (.2,.8) (.33,.67)
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for Neyman’s test and .23 for KS test (with the left-sided alternative), and the

ICD tests have higher power compared to Neyman’s test for most parameter

combinations.
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Figure 9: Histograms of the power estimates the alternatives HI
a–HIII

a for
the appropriate one-sided alternatives for CS-ICDs and PE-ICDs.
The vertical lines are the power estimates for KS (dotted lines)
and Neyman’s tests (dashed lines). LS: left-sided, RS: right-sided
alternatives.
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5.3. Consistency of the tests based on the density of ICDs

Any reasonable test should have higher power under the alternatives as the

sample size increases, and this property is reflected in the concept of consistency.

We will prove consistency of the tests under the alternatives based on the arc

density of ICDs in a general framework, and then extend the results to our al-

ternative types for certain parameter combinations. Let Ho : F = U(0, 1) and the

alternative Ha : F 6= U(0, 1) is parameterized by δ so that δ = δo corresponds to

the null hypothesis and with increasing δ > δo, arc probability tends to increase

or decrease.

Theorem 5.1 (Consistency). Let ρn,2(δ) be the arc density of the ICD

based on data from F parameterized by δ and pa(δ) be the corresponding

arc probability. Moreover, suppose 4ν(δ) be the covariance term Cov[h12, h13].

If the arc probability increases as δ increases (resp. decreases), the test against

Ha : F 6= U(0, 1) which rejects for Rn > z1−α (resp. for Rn < zα) are consistent.

Proof: Under Ho (i.e., for Xn being a random sample from U(0, 1)), the

arc density is ρn,2(δo), and arc probability is pa(δo) and Cov(h12, h13) is ν(δo).

Similarly, under Ha (i.e., for Xn being a random sample from F ) these quantities

are denoted similarly with δo being replaced with δ. Suppose arc probability

increases as δ > δo increases. Then pa(δ) > pa(δo) and the asymptotic variances

4ν(δo)/n and 4ν(δ)/n tends to zero as n → ∞. As standardized arc density,

Rn, tends to standard normal distribution or is degenerate with unit mass at

pa(δo) or pa(δ) under both null and alternative hypotheses, respectively, the power

under Ha tends to 1 as n goes to infinity, and hence consistency follows. The

consistency for the alternative under which arc probability increases as δ decreases

is similar.

The alternatives, HI
a–HIII

a , are parameterized with δ so that δo = 1. Under

HI
a and HII

a with F = Fi(x, δ) for i = 1, 2 the test based on CS-ICD and PE-ICD

which rejects for Rn > z1−α is consistent for most of the parameter combinations.

In particular, let ρn,2(F, τ, c) be the arc density, pa(F, τ, c) and ν(F, τ, c) be the arc

probability and Cov(h12, h13) for CS-ICD with Xn being a random sample from

F . Then under HI
a , pa(F1, τ, c) > pa(U , τ, c) for c ≤ 1/2, since under F1, Xi are

more likely to be in (0, 1/2) and hence more likely to be closer to c and hence the

N(τ, c) regions are more likely to be larger which implies higher arc probability

compared to the null case. Moreover, for c closer to 1 and large τ (say τ ≥ 5),

under F1, the N(τ, c) regions are more likely to be smaller which implies lower

arc probability compared to the null case. Under HII
a , pa(F1, τ, c) > pa(U , τ, c)

for all c away from 0 and 1 and τ > 0, since under F1, Xi are more likely to be
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closer to 1/2 and hence the N(τ, c) regions are more likely to be larger which

implies higher arc probability compared to the null case. Moreover, for c closer

to 1 and large τ (say τ ≥ 5), under F1, the N(τ, c) regions are more likely to be

smaller which implies lower arc probability compared to the null case. Similarly,

under HII
a , pa(F2, τ, c) < pa(U , τ, c) for all c away from 0 and 1 and τ > 0. Hence

consistency follows for these one-sided tests for such parameter combinations.

In fact, with careful bookkeeping one can determine the parameter ranges for

which consistency holds for each of the one-sided alternatives. For example,

under HI
a : δ = 2 with c ∈ (0, 1), for τ ∈ (0, 1), pa(F1, τ, c) > (resp. <) pa(U , τ, c)

for τ > (resp. <) 2c2−6c+3
(2c−1)(2c−3) , hence consistency for the right-sided (resp. left-

sided) alternative follows; likewise, for τ > 1, pa(F1, τ, c) > (resp. <) pa(U , τ, c)

for τ < (resp. >) 2c+1−
√

3
2c−3+

√
3
, hence consistency for the right-sided (resp. left-sided)

alternative follows. The corresponding three dimensional figure to illustrate these

regions of consistency for the one-sided alternatives are plotted in Figure 10 in the

Appendix. Under HII
a : δ = 2, pa(F2, τ, c) > pa(U , τ, c) for all c ∈ (0, 1) and τ > 0,

hence consistency for the right-sided alternative follows; and under HIII
a : δ = 2,

pa(F3, τ, c) < pa(U , τ, c) for all c ∈ (0, 1) and τ > 0, hence consistency for the left-

sided alternative follows. The actual ranges of (τ, c) for the one-sided alternatives

with other specific δ values can also be determined by careful calculations.

Similarly, let ρPE
n,2 (F, r, c) be the arc density, pPE

a (F, r, c) and νPE(F, r, c)

be the arc probability and Cov(h12, h13) for PE-ICD with Xn being a random

sample from F , respectively. Then under HI
a , pPE

a (F1, r, c) > pPE
a (U , r, c) for c

close to 0, since for F1, Xi are more likely to be around 0 and hence the NPE(r, c)

regions are more likely to be larger which implies higher arc probability compared

to the null case. Under HII
a (resp. HIII

a ), pPE
a (F2, r, c) > (resp. <) pPE

a (U , r, c)

for c around 1/2, since for F2 (resp. F3), Xi are more likely to be closer to 1/2

(resp. 0 and 1) and hence the NPE(r, c) regions are more likely to be larger (resp.

smaller) which implies higher (resp. lower) arc probability compared to the null

case. Hence consistency follows for the right-sided (resp. left-sided) tests for such

parameter combinations. In fact, under HI
a : δ = 2:

• With c ∈ (0, 1/2):

— pPE
a (F1, r, c) > (resp. <) pPE

a (U , r, c), for 1 < r < 1/(1 − c) and

r < (resp. >) 8c3−6c2−6c+3
6c4−16c3+18c2−12c+3

;

— pPE
a (F1, r, c) > (resp. <) pPE

a (U , r, c), for 1/(1 − c) < r < 1/c and

(r, c) is in (resp. outside) the region bounded by r = 1/(1 − c)

and the implicit curve 3 r4c4 − 4 r4c3 − 8 r3c3 + 9 r3c2 + 6 r2c2 −
6 cr2 + 3 r − 3 = 0 ;

— pPE
a (F1, r, c) > pPE

a (U , r, c) for r ≥ 1/c .

Hence consistency for the right-sided (resp. left-sided) alternative follows

for these parameter values.
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• With c ∈ (1/2, 1):

— pPE
a (F1, r, c) > pPE

a (U , r, c) for 1 < r < 1/c hence consistency for the

right-sided alternative follows ;

— pPE
a (F1, r, c) > (resp. <) pPE

a (U , r, c), for 1/c < r < 1/(1 − c) and

(r, c) is in (resp. outside) the region bounded by c = 1 and the

implicit curve 3 r4c4 − 12 r4c3 + 18 c2r4 − 3 r3c2 − 12 cr4 − 6 r2c2 +

6 cr3 + 3 r4 + 6 cr2 − 3 r3 − r + 1 = 0 ;

— pPE
a (F1, r, c) > pPE

a (U , r, c) for r ≥ 1/(1 − c) .

Hence consistency for the right-sided (resp. left-sided) alternative follows

for these parameter values.

These regions of consistency for the one-sided alternatives are plotted in

Figure 11 in the Appendix. Under HII
a : δ = 2, pPE

a (F2, r, c) > pPE
a (U , r, c) for

all c ∈ (0, 1) and r > 1, hence consistency for the right-sided alternative follows;

and under HIII
a : δ = 2, pPE

a (F3, r, c) < pPE
a (U , r, c) for all c ∈ (0, 1) and r > 1

(except (r, c) inside a region that is part of [1, 1.4]×([9.98, 1] ∪ [0, .02]) where

the inequality is reversed), hence consistency for the left-sided (resp. right-sided)

alternative follows. These regions of consistency for the one-sided alternatives are

presented in Figure 12 in the Appendix. The actual ranges of (r, c) for the one-

sided alternatives with other specific δ values can also be determined by careful

calculations.

5.4. Extension of the methodology to test non-uniform distributions

We can modify the CS-ICD approach to test any distribution in a bounded

interval in R. Since any bounded interval (a, b) with a < b can be mapped to

(0, 1), we can assume the support for the distribution in question to be (0, 1).

First we prove the below result which is instrumental for this purpose.

Proposition 5.1. Let Xi be iid from an absolutely continuous distribu-

tion F with support (0, 1) and let Xn = {X1, X2, ..., Xn}. Define the proximity

map NF (x, τ, c) := F−1
(
N
(
F (x), τ, c

))
. More specifically for τ ∈ (0, 1],

(5.2) NF (x, τ, c) =

=





(
F−1

(
(1− τ)F (x)

)
, F−1

((
1+ (1−c)

c τ
)
F (x)

))
if x∈

(
0, F−1(c)

)
,

(
F−1

(
F (x)− c τ

(1−c)

(
1−F (x)

))
, F−1

(
F (x)+

(
1−F (x)

)
τ
))

if x∈
(
F−1(c), 1

)
,
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and for τ > 1,

(5.3) NF (x, τ, c) =

=





(
0, F−1

((
1+ (1−c)

c τ
)
F (x)

))
if x ∈

(
0, F−1

(
c

c+(1−c) τ

))
,

(0, 1) if x ∈
(
F−1

(
c

c+(1−c) τ

)
, F−1

(
c τ

1−c+c τ

))
,

(
F−1

(
F (x)− c τ

(1−c)

(
1−F (x)

))
, 1

)
if x ∈

(
F−1

(
c τ

1−c+c τ

)
, 1
)

.

Then the arc density of the ICD based on NF and Xn has the same distribution

as ρn,2(U , τ, c) (provided in Theorem 4.3).

Proof: Let Ui := F (Xi) for i = 1, 2, ..., n and Un := {U1, U2, ..., Un}. Hence,

by probability integral transform, Ui
iid∼U(0,1). So the image of NF (x, r, c) under F

is F
(
NF (x, r, c)

)
= N

(
F (x), r, c

)
for (almost) all x∈ (0,1). Then F

(
NF (Xi, r, c)

)
=

N
(
F (Xi), r, c

)
= N(Ui, r, c) for i = 1, 2, ..., n. Since Ui

iid∼ U(0, 1), the distribution

of the arc density of the ICD based on N(·, τ, c) and Un is given in Theorem4.3.

Observe that for any j, Xj ∈ NF (Xi, τ, c) iff Xj ∈ F−1
(
N
(
F (Xi), τ, c

))
iff F (Xj)∈

N
(
F(Xi), τ, c

)
iff Uj ∈N(Ui,τ,c) for i =1, 2, ..., n. Hence the desired result follows.

A similar construction is available for the PE-ICDs.

In Proposition 5.1, we have shown that if the defining proximity region for

our ICD is defined as NF (x, τ, c) := F−1
(
N
(
F (x), τ, c

))
where F is an increasing

function in (a, b) with a < b, the exact (and asymptotic) distribution of the arc

density based on the ICD for NF is the same as ρn,2(U , τ, c). Hence we can test

whether the distribution of any data set is from F or not with the methodology

proposed in this article. For example, to test a “data set is from F (x) = x2

with S(F ) = (0, 1)” (so the inverse is F−1(x) =
√

x and the corresponding pdf is

f(x) = 2x I(0 < x < 1)), we need to compute the arc density for the ICD based

on the following proximity region: For τ ∈ (0, 1],

(5.4)

NF (x, τ, c) =





(
x
√

1− τ , x

√
1 + (1−c)

c τ

)
if x ∈

(
0,
√

c
)
,

(√
x2 − c τ

(1−c) (1− x2) ,
√

x2 + (1− x2) τ

)
if x ∈

(√
c, 1
)
,

and for τ > 1,

(5.5)

NF (x, τ, c) =





(
0, x

√
1 + (1−c)

c τ

)
if x ∈

(
0,
√

c
c+(1−c) τ

)
,

(0, 1) if x ∈
(√

c
c+(1−c) τ ,

√
c τ

1−c+c τ

)
,

(√
x2 − c τ

(1−c) (1− x2) , 1

)
if x ∈

(√
c τ

1−c+c τ , 1

)
.
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Then the arc density for the ICD based on NF (·, τ, c) will have the same distri-

bution as ρn,2(U , τ, c) and hence can be used for testing data is from F or not

with the procedure discussed in Section 5.

6. DISCUSSION AND CONCLUSIONS

We consider the central similarity interval catch digraphs (CS-ICDs) based

on one dimensional data. The CS-ICDs are defined with two parameters: an ex-

pansion parameter τ > 0 and a centrality parameter c ∈ (0, 1). We study the arc

density of CS-ICDs, and using its U -statistics property, we derive its asymptotic

(normal) distribution for uniform data for the (interiors of) entire ranges of τ and c.

Along this process, we also determine the parameters τ and c for which the rate

of convergence to normality is the fastest. We also consider the arc density of

proportional-edge ICD (PE-ICD) for comparative purposes. We demonstrate

that convergence rate of arc density of CS-ICDs is faster than that of PE-PCDs

at their respective optimal parameters, which implies that distribution of arc

density of CS-ICDs is closer to normality at smaller sample sizes, compared to

the arc density of PE-PCDs.

We use the arc density of the ICDs for testing uniformity (i.e., for testing

Ho “data set is a random sample from U(0, 1)”), and show that under type I

alternatives in which pdf of the data points is larger around one of the end points

(0 or 1) CS-ICD test has higher power compared to PE-ICD test, but under the

types II and III alternatives in which pdf is larger around 1/2 or around both

end points, then PE-ICD test tends to have higher power compared to CS-ICDs.

We also compare the ICD tests with two well known tests in literature (namely,

Kolmogorov–Smirnov (KS) test and Neyman’s smooth test of uniformity). Under

type I alternatives, KS test tends to have higher power compared to the ICD tests

and Neyman’s smooth test, Neyman’s smooth test has higher power compared

to PE-ICD test, but lower power compared to CS-ICD tests for some parameter

combinations. Under type II (resp. type III) alternatives, ICD tests have higher

power than KS and Neyman’s smooth test for almost all (resp. most) parameter

values which have appropriate size. The recommended parameter combinations

for the ICDs are provided in Table 2.

The CS-ICDs for one dimensional data can also be used in testing spatial

interaction between multiple classes whose support is one-dimensional (see Re-

mark 4.2). The arc density approach is easily adaptable to testing nonuniform

distributions as well (see Section 5.4 for more detail). Furthermore, the study of

arc density of CS-ICDs in the one dimensional case will provide insight for and

form the foundation of related catch digraph extensions in higher dimensions.
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APPENDIX

A. PRELIMINARIES

In the proofs below, we can, without loss of generality, assume that the

support of the uniform distribution is (0, 1) based on Theorem 4.1.

A.1. Proof of Theorem 4.3

There are two cases for τ , namely 0 < τ ≤ 1 and τ > 1.

For τ ∈ (0, 1], the proximity region is defined as in Equation (4.2) and the

Γ1-region is

(A.1) Γ1(x, τ, c) =





(
cx

c+(1−c)τ , x
1−τ

)
if x ∈

(
0, c (1− τ)

]
,

(
cx

c+(1−c)τ , (1−c)x+cτ
1−c+cτ

)
if x ∈

(
c (1− τ), c (1− τ) + τ

]
,

(
x−τ
1−τ , (1−c)x+cτ

1−c+cτ

)
if x ∈

(
c (1− τ) + τ, 1

)
.

For τ > 1, the proximity region is as in Equation (4.3) and the Γ1-region is

(A.2) Γ1(x, τ, c) =

(
c x

c + (1 − c) τ
,
(1 − c)x + c τ

1 − c + c τ

)
.

Case 1: 0 < τ ≤ 1: In this case depending on the location of x1, the

following are the different types of the combinations of N(x1, τ, c) and Γ1(x1, τ, c).

Let

a1 := (1 − τ)x1 , a2 := x1

(
1 +

(1 − c) τ

c

)
,

a3 := x1 −
c τ (1 − x1)

1 − c
, a4 := x1 + (1 − x1) τ ,

and
g1 :=

c x1

c + (1 − c) τ
, g2 :=

x1

1 − τ
,

g3 :=
x1 − τ

1 − τ
, g4 :=

x1 (1 − c) + c τ

1 − c + c τ
.

Then

(i) for 0 < x1 ≤ c (1−τ), we have N(x1, τ, c) = (a1, a2) and Γ1(x1, τ, c) =

(g1, g2),
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(ii) for c (1 − τ) < x1 ≤ c, we have N(x1, τ, c) = (a1, a2) and

Γ1(x1, τ, c) = (g1, g4),

(iii) for c < x1 ≤ c (1 − τ) + τ , we have N(x1, τ, c) = (a3, a4) and

Γ1(x1, τ, c) = (g1, g4),

(iv) for c (1 − τ) + τ < x1 < 1, we have N(x1, τ, c) = (a3, a4) and

Γ1(x1, τ, c) = (g3, g4).

Then

pa(τ, c) = P
(
X2 ∈ N(X1, τ, c)

)
=

∫ c

0
(a2 − a1) dx1 +

∫ 1

c
(a4 − a3) dx1 = τ/2 .

For Cov(h12, h13), we need to calculate P2N , PNG, and P2G.

P2N = P
(
{X2, X3} ⊂ N(X1, τ, c)

)

=

∫ c

0
(a2 − a1)

2dx1 +

∫ 1

c
(a4 − a3)

2dx1 = τ2/3 .

PNG = P
(
X2 ∈ N(X1, τ, c), X3 ∈ Γ1(X1, τ, c)

)

=

∫ c (1−τ)

0
(a2 − a1) (g2 − g1) dx1 +

∫ c

c (1−τ)
(a2 − a1) (g4 − g1) dx1

+

∫ c (1−τ)+τ

c
(a4 − a3) (g4 − g1) dx1 +

∫ 1

c (1−τ)+τ
(a4 − a3) (g4 − g3) dx1

=
τ2
(
c2 τ3 − 5 c2 τ2 − c τ3 + 4 c2 τ + 5 c τ2 − 2 c2 − 4 c τ − τ2 + 2 c + 2 τ

)

6 (c τ − c + 1) (c + τ − c τ)
.

Finally,

P2G = P
(
{X2, X3} ⊂ Γ1(X1, τ, c)

)

=

∫ c (1−τ)

0
(g2 − g1)

2dx1 +

∫ c (1−τ)+τ

c (1−τ)
(g4 − g1)

2dx1 +

∫ 1

c (1−τ)+τ
(g4 − g3)

2dx1

=

(
2 c2 τ − c2 − 2 c τ + c + τ

)
τ2

3 (c τ − c + 1) (c + τ − c τ)
.

Therefore

4E[h12h13] =

= P2N + 2PNG + P2G

=
τ2
(
c2 τ3 − 6 c2 τ2 − c τ3 + 8 c2 τ + 6 c τ2 − 4 c2 − 8 c τ − τ2 + 4 c + 4 τ

)

3 (c τ − c + 1) (c + τ − c τ)
.

Hence

4Cov[h12, h13] =

=
τ2
(
c2 τ3 − 3 c2 τ2 − c τ3 + 2 c2 τ + 3 c τ2 − c2 − 2 c τ − τ2 + c + τ

)

3 (c τ − c + 1) (c + τ − c τ)
.
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Case 2: τ > 1: In this case depending on the location of x1, the following

are the different types of the combinations of N(x1, τ, c) and Γ1(x1, τ, c).

(i) for 0 < x1 ≤ c
c+(1−c)τ , we have N(x1, τ, c) = (0, a2) and

Γ1(x1, τ, c) = (g1, g4),

(ii) for c
c+(1−c)τ < x1 ≤ cτ

1−c+cτ , we have N(x1, τ, c) = (0, 1) and

Γ1(x1, τ, c) = (g1, g4),

(iii) for cτ
1−c+cτ < x1 < 1, we have N(x1, τ, c) = (a3, 1) and

Γ1(x1, τ, c) = (g1, g4).

Then

pa(τ, c) = P
(
X2 ∈ N(X1, τ, c)

)

=

∫ c
c+(1−c)τ

0
a2 dx1 +

∫ cτ
1−c+cτ

c
c+(1−c)τ

1 dx1 +

∫ 1

cτ
1−c+cτ

(1− a3) dx1

=
τ
(
2 c2 τ − 2 c2 − 2 c τ + 2 c − 1

)

2 (c τ − c + 1) (c τ − c − τ)
.

Next

P2N = P
(
{X2, X3} ⊂ N(X1, τ, c)

)

=

∫ c
c+(1−c)τ

0
a2

2 dx1 +

∫ cτ
1−c+cτ

c
c+(1−c)τ

1 dx1 +

∫ 1

cτ
1−c+cτ

(1− a3)
2 dx1

=
3 c2 τ2 − 2 c2 τ − 3 c τ2 − c2 + 2 c τ + c − τ

3 (c τ − c + 1) (c τ − c − τ)
.

PNG = P
(
X2 ∈ N(X1, τ, c), X3 ∈ Γ1(X1, τ, c)

)

=

∫ c
c+(1−c)τ

0
a2 (g4 − g1) dx1 +

∫ cτ
1−c+cτ

c
c+(1−c)τ

(g4 − g1) dx1

+

∫ 1

cτ
1−c+cτ

(1− a3) (g4 − g1) dx1

=

[
τ2
(
6 c6 τ4 − 24 c6 τ3 − 18 c5 τ4 + 36 c6 τ2 + 72 c5 τ3

+ 18 c4 τ4 − 24 c6 τ − 108 c5 τ2 − 84 c4 τ3 − 6 c3 τ4 + 6 c6

+ 72 c5 τ + 132 c4 τ2 + 48 c3 τ3 − 18 c5 − 92 c4 τ − 84 c3 τ2

− 12 c2 τ3 + 26 c4 + 64 c3 τ + 30 c2 τ2 − 22 c3 − 26 c2 τ − 6 c τ2

+ 10 c2 + 6 c τ − 2 c − τ
)]/[

6 (c τ − c + 1)3 (c τ − c − τ)3
]

.
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Finally,

P2G = P
(
{X2, X3} ⊂ Γ1(X1, τ, c)

)

=

∫ 1

0
(g4 − g1)

2dx1

=

[
τ2
(
3 c4 τ2 − 6 c4 τ − 6 c3 τ2 + 3 c4 + 12 c3 τ + 3 c2 τ2 − 6 c3

− 9 c2 τ + 7 c2 + 3 c τ − 4 c + 1
)]/[

3 (c τ − c + 1)2 (c τ − c − τ)2
]
.

Therefore

4E[h12h13] = P2N + 2PNG + P2G

=
[
12 c6 τ6 − 50 c6 τ5 − 36 c5 τ6 + 79 c6 τ4 + 150 c5 τ5 + 36 c4 τ6

− 56 c6 τ3 − 237 c5 τ4 − 175 c4 τ5 − 12 c3 τ6 + 14 c6 τ2

+ 168 c5 τ3 + 297 c4 τ4 + 100 c3 τ5 + 2 c6 τ − 42 c5 τ2

− 220 c4 τ3 − 199 c3 τ4 − 25 c2 τ5 − c6 − 6 c5 τ + 58 c4 τ2

+ 160 c3 τ3 + 75 c2 τ4 + 3 c5 + 7 c4 τ − 46 c3 τ2

− 70 c2 τ3 − 15 c τ4 − 3 c4 − 4 c3 τ + 20 c2 τ2 + 18 c τ3

+ c3 + c2 τ − 4 c τ2 − 3 τ3
]/[

3 (c τ − c + 1)3 (c τ − c − τ)3
]
.

Hence

4Cov[h12, h13] =

[
c (1− c)

(
2 c4 τ5 − 7 c4 τ4 − 4 c3 τ5 + 8 c4 τ3 + 14 c3 τ4

+ 3 c2 τ5 − 2 c4 τ2 − 16 c3 τ3 − 7 c2 τ4 − c τ5 − 2 c4 τ + 4 c3 τ2

+ 12 c2 τ3 + c4 + 4 c3 τ − 6 c2 τ2 − 4 c τ3 − 2 c3 − 3 c2 τ + 4 c τ2

+ c2 + c τ − τ2
)]/[

3 (c τ − c + 1)3 (c τ − c − τ)3
]
.

A.1.1.Special Case (i) τ > 0 and c = 1/2

For x ∈ (0, 1/2), the proximity region for τ ∈ (0, 1] is

(A.3) N(x, τ, 1/2) =





(
(1− τ)x, (1+ τ)x

)
if x ∈ (0, 1/2) ,

(
x − (1− x)τ , x + (1− x)τ

)
if x ∈ (1/2, 1) ,

and for τ > 1

(A.4) N(x, τ, 1/2) =





(
0, (1+ τ)x

)
if x ∈

(
0, 1/(1+ τ)

)
,

(0, 1) if x ∈
(
1/(1+ τ), τ/(1+ τ)

)
,

(
x − (1− x)τ, 1

)
if x ∈

(
τ/(1+ τ), 1

)
.
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Corollary A.1. For τ ∈ (0,∞) and c = 1/2, we have
√

n
[
ρn,2(τ, 1/2) −

pa(τ, 1/2)
] L−→ N

(
0, 4 ν(τ, 1/2)

)
as n → ∞, where

(A.5) pa(τ, 1/2) =





τ/2 if 0 < τ < 1 ,

τ/(τ +1) if τ > 1 ,

and

(A.6) 4 ν(τ, 1/2) =





τ2 (1+2τ−τ2−τ3)
3 (τ+1)2

if 0 < τ ≤ 1 ,

2τ−1
3 (τ+1)2

if τ > 1 .

See Figure 10 for the plots of pa(τ, 1/2) and 4 ν(τ, 1/2) with τ ∈ (0, 5].
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Figure 10: The plots of the asymptotic mean pa(τ, 1/2) (top) and the
variance 4 ν(τ, 1/2) (bottom) as a function of τ for τ ∈ (0, 5].
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The sharpest rate of convergence in Corollary A.1 is K√
n
f c

CS
(τ, 1/2) where

(A.7) f c
CS

(τ, 1/2) =





27 τ
2

(
(6τ+3−3τ3−3τ2)τ2

(τ+1)2

)−3/2

if 0 < τ ≤ 1 ,

3
√

3 τ
τ+1

(
2τ−1
(τ+1)2

)−3/2
if τ > 1 ,

and is minimized at τ ≈ .73 which is found by using simple calculus and numerical

methods.

The plot of pa(τ, 1/2)/
√

ν(τ, 1/2)3 also indicates that this is where the

global minimum occurs. Convergence rates for PE- and CS-ICDs are presented

in Figure 11 (bottom) for c = 1/2 as a function of expansion parameter. See

[Ceyhan, 2012] for the explicit form of f c
PE

(r, 1/2). Notice that at the optimal

expansion parameters, convergence rate of CS-ICDs is faster with c = 1/2.
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Figure 11: The plots of the rates of convergence to normality for PE-
and CS-ICDs. Plotted in the top are fc

CS
(1, c) (solid line) and

fc
P E

(2, c) (dashed line); and in the bottom are fc
CS

(t, 1/2) (solid)
and fc

P E
(t, 1/2) (dashed).
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A.1.2.Special Case (ii) τ = 1 and c ∈ (0, 1)

For x ∈ (0, 1), the proximity region has the following form:

(A.8) N(x, 1, c) =





(0, x/c) if x ∈ (0, c) ,
(
(x− c)/(1− c), 1

)
if x ∈ (c, 1) .

Corollary A.2. As n→∞, for c∈ (0, 1), we have
√

n
[
ρn,2(1, c)−pa(1, c)

]

L−→ N
(
0, 4 ν(1, c)

)
, where pa(1, c) = 1/2 and 4ν(1, c) = c (1− c)/3.

Observe that pa(1, c) is constant (i.e., independent of c) and ν(1, c) is sym-

metric around c = 1/2 with ν(1, c) = ν(1, 1− c). Let K√
n

f c
CS

(τ, c) be the rate of

convergence to normality for CS-ICDs. Then the sharpest rate of convergence in

Corollary A.2 is K√
n

f c
CS

(1, c) where

(A.9) f c
CS

(1, c) =
3
√

3

2
√

c3 (1− c)3
.

Convergence rate is minimized at c = 1/2 (which can be verified by simple calcu-

lus). Also, let K√
n

f c
PE

(r, c) be the rate of convergence to normality for PE-ICDs

(see [Ceyhan, 2012] for its explicit forms). Then we have f c
PE

(2, c) ≤ f c
CS

(1, c)

for all c ∈ (0, 1) with equality holding only at c = 1/2 (see also Figure 11 (top)).

Thus at these specific centrality parameters, convergence rate to normality is

faster for PE-PCDs.

A.1.3.Special Case (iii) τ = 1 and c = 1/2

In this case we have N(x, 1, 1/2) = B(x, r(x)) where r(x) = min(x, 1 − x)

for x ∈ (0, 1). Hence CS-ICD based on N(x, 1, 1/2) is equivalent to the CCCD of

[Priebe et al., 2001] and the PE-ICD with expansion parameter 2 and centrality

parameter 1/2 of [Ceyhan, 2012].

Corollary A.3. As n → ∞, we have
√

n
[
ρn(1, 1/2) − pa(1, 1/2)

] L−→
N
(
0, 4 ν(1, 1/2)

)
, where pa(1, 1/2) = 1/2 and 4ν(1, 1/2) = 1/12 with the sharpest

rate of convergence being K pa(1,1/2)√
n ν(1,1/2)3

= 12
√

3 K√
n
.

A.2. Proof of Theorem 4.4

There are two cases for τ , namely, 0 < τ < 1 and τ > 1.
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For τ ∈ (0, 1] and x in the right end interval, the proximity region is

(A.10) Ne(x, τ) =





(
(1− τ)x, (1+ τ)x

)
if x ∈

(
0, 1/(1+ τ)

)
,

(
(1− τ)x, 1

)
if x ∈

(
1/(1+ τ), 1

)
,

and the Γ1-region is

(A.11) Γ1,e(x, τ) =





(
x

1+τ , x
1−τ

)
if x ∈ (0, 1 − τ) ,

(
x

1+τ , 1
)

if x ∈ (1 − τ, 1) .

For τ > 1 and x in the right end interval, the proximity region is

(A.12) Ne(x, τ) =





(
0, (1+ τ)x

)
if x ∈

(
0, 1/(1+ τ)

)
,

(0, 1) if x ∈
(
1/(1+ τ), 1

)
,

and the Γ1-region is Γ1,e(x, τ) =
(
x/(1+ τ), 1

)
.

Case 1: 0 < τ ≤ 1: For x1 ∈ (0, 1), depending on the location of x1, the

following are the different types of the combinations of Ne(x1, τ) and Γ1,e(x1, τ).

(i) for 0 < x1 ≤ 1 − τ , we have Ne(x1, τ) =
(
(1− τ)x1 , (1+ τ)x1

)
and

Γ1,e(x1, τ) =
(
x1/(1+ τ), x1/(1− τ)

)
,

(ii) for 1− τ < x1 ≤ 1/(1+ τ), we have Ne(x1, τ) =
(
(1−τ)x1 , (1+τ)x1

)

and Γ1,e(x1, τ) =
(
x1/(1+ τ), 1

)
,

(iii) for 1/(1 + τ) < x1 < 1, we have Ne(x1, τ) =
(
(1− τ)x1, 1

)
and

Γ1,e(x1, τ) =
(
x1/(1+ τ), 1

)
.

Then

pe
a(τ, c) = P

(
X2 ∈ Ne(X1, τ)

)

=

∫ 1/(1+τ)

0

(
(1+ τ)x1 − (1− τ)x1

)
dx1 +

∫ 1

1/(1+τ)

(
1 − (1− τ)x1

)
dx1

=

∫ 1/(1+τ)

0
(2 τ x1) dx1 +

∫ 1

1/(1+τ)
(1− x1 + x1 τ) dx1 =

τ (τ + 2)

2 (τ +1)
.

For Cov(h12, h13), we need to calculate P2N,e, PNG,e, and P2G,e.

P2N,e = P
(
{X2, X3} ⊂ Ne(X1, τ)

)

=

∫ 1/(1+τ)

0
(2 τ x1)

2 dx1 +

∫ 1

1/(1+τ)
(1− x1 + x1 τ)2 dx1

=
τ2 (τ2 + 3 τ + 4)

3 (τ + 1)2
.



Density of an Interval Catch Digraph Family 389

PNG,e = P
(
X2 ∈ Ne(X1, τ), X3 ∈ Γ1,e(X1, τ)

)

=

∫ 1−τ

0
(2 τ x1)

(
2 τ x1

1− τ2

)
dx1 +

∫ 1/(1+τ)

1−τ
(2 τ x1)

(
1− x1

1+ τ

)
dx1

+

∫ 1

1/(1+τ)

(
1 − (1− τ)x1

)(
1− x1

1+ τ

)
dx1

=

(
7 τ2 + 14 τ + 8 − 2 τ4 − 2 τ3

)
τ2

6 (τ + 1)3
.

Finally,

P2G,e = P
(
{X2, X3} ⊂ Γ1,e(X1, τ)

)

=

∫ 1−τ

0

(
2 τ x1

1− τ2

)2
dx1 +

∫ 1

1−τ

(
1− x1

1+ τ

)2
dx1 =

τ2 (3 τ + 4)

3 (τ + 1)2
.

Therefore 4E[h12h13] = P2N,e + 2PNG,e + P2G,e =
τ2(2τ2+5τ+4)(2τ+4−τ2)

3(τ+1)3
.

Hence

4Cov[h12, h13] =
τ2
(
4 τ + 4 − 2 τ4 − 4 τ3 − τ2

)

3 (τ + 1)3
.

Case 2: τ > 1: For x1 ∈ (0, 1), depending on the location of x1, the

following are the different types of the combinations of Ne(x1, τ) and Γ1,e(x1, τ).

(i) for 0 < x1 ≤ 1/(1 + τ), we have Ne(x1, τ) =
(
0, (1+ τ)x1

)
and

Γ1,e(x1, τ) =
(
x1/(1+ τ), 1

)
,

(ii) for 1/(1 + τ) < x1 < 1, we have Ne(x1, τ) = (0, 1) and Γ1,e(x1, τ) =(
x1/(1+ τ), 1

)
.

Then

pe
a(τ, c) = P

(
X2 ∈ Ne(X1, τ)

)

=

∫ 1/(1+τ)

0
(1+ τ)x1 dx1 +

∫ 1

1/(1+τ)
1 dx1 =

1 + 2 τ

2 (τ +1)
.

Next,

P2N,e = P
(
{X2, X3} ⊂ Ne(X1, τ)

)

=

∫ 1/(1+τ)

0

(
(1+ τ)x1

)2
dx1 +

∫ 1

1/(1+τ)
1 dx1 =

1 + 3 τ

3 (τ +1)
,

PNG,e = P
(
X2 ∈ Ne(X1, τ), X3 ∈ Γ1,e(X1, τ)

)

=

∫ 1/(1+τ)

0

(
(1+ τ)x1

)(
1− x1

1+ τ

)
dx1 +

∫ 1

1/(1+τ)

(
1− x1

1+ τ

)
dx1

=
6 τ3 + 12 τ2 + 6 τ + 1

6 (τ + 1)3
.
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Finally,

P2G,e = P
(
{X2, X3} ⊂ Γ1,e(X1, τ)

)

=

∫ 1

0

(
1− x1

1+ τ

)2
dx1 =

3 τ2 + 3 τ + 1

3 (τ + 1)2
.

Therefore 4E[h12h13] = P2N,e + 2PNG,e + P2G,e = 12τ3+25τ2+15τ+3
3(τ+1)3

. Hence

4Cov[h12, h13] =
τ2

3 (τ +1)3
.

A.3. Figures for the consistency results in Section 5.3
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Figure 12: The three dimensional plot of the difference between arc prob-
ability of CS-ICD under HI

a : δ = 2 and the null hypothesis
pa(F1, τ, c) − pa(U , τ, c) for c ∈ (0, 1) and τ ∈ (0, 5). The hor-
izontal plane is at z = 0 and is used to determine the sign
changes in the difference.
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Figure 13: The three dimensional plot of the difference between arc prob-
ability of PE-ICD under HI

a : δ = 2 and the null hypothesis
pPE

a (F1, r, c) − pPE
a (U , r, c) for c ∈ (0, 1) and r ∈ (1, 10). The

horizontal plane is at z = 0 and is used to determine the sign
changes in the difference.
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Figure 14: The three dimensional plot of the difference between arc prob-
ability of PE-ICD under HIII

a : δ = 2 and the null hypothe-
sis pPE

a (F3, r, c) − pPE
a (U , r, c). The top plot is with c ∈ (0, 1)

and r ∈ (1, 10) and the bottom plot is with c ∈ (.98, 1) and
r ∈ (1, 1.4) (to better visualize the region of positive difference
around (r, c) = (1, 1)). The horizontal planes at z = 0 are used
to determine the sign changes in the difference.
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[8] Coleman, T.F. and Moré, J.J. (1983). Estimation of sparse Jacobian matri-
ces and graph coloring problems, SIAM Journal on Numerical Analysis, 20(1),
187–209.

[9] Douglas, B.W. (1996). Short proofs for interval digraphs, Discrete Math, 178,
287–292.

[10] Goldberg, A.V. (1984). Finding a maximum density subgraph, Technical Re-
port UCB/CSD-84-171, EECS Department, University of California, Berkeley.
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