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Abstract:

• We estimate the derivative of a probability density function defined on [0,∞). For
this purpose, we choose the class of kernel estimators with asymmetric gamma kernel
functions. The use of gamma kernels is fruitful due to the fact that they are non-
negative, change their shape depending on the position on the semi-axis and possess
good boundary properties for a wide class of densities. We find an optimal bandwidth
of the kernel as a minimum of the mean integrated squared error by dependent data
with strong mixing. This bandwidth differs from that proposed for the gamma kernel
density estimation. To this end, we derive the covariance of derivatives of the density
and deduce its upper bound. Finally, the obtained results are applied to the case of a
first-order autoregressive process with strong mixing. The accuracy of the estimates
is checked by a simulation study. The comparison of the proposed estimates based on
independent and dependent data is provided.
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1. INTRODUCTION

Kernel density estimation is a non-parametric method to estimate a prob-

ability density function (pdf) f(x). It was originally studied in [20], [22] for sym-

metric kernels and univariate independent identically distributed (i.i.d.) data.

When the support of the underlying pdf is unbounded, this approach performs

well. If the pdf has a support on [0,∞), the use of classical estimation methods

with symmetric kernels yield a large bias on the zero boundary and leads to a

bad quality of the estimates [30]. This is due to the fact that symmetric ker-

nel estimators assign nonzero weight at the interval (−∞, 0]. There are several

methods to reduce the boundary bias effect, for example, the data reflection [25],

boundary kernels [19], the hybrid method [14], the local linear estimator [18], [17]

among others. Another approach is to use asymmetric kernels. In case of univari-

ate nonnegative i.i.d. random variables (r.v.s), the pdf estimators with gamma

kernels were proposed in [8]. In [5] the gamma-kernel estimator was developed for

univariate dependent data. The gamma kernel is nonnegative and it changes its

shape depending on the position on the semi-axis. Estimators constructed with

gamma kernels have no boundary bias if f ′′(0) = 0 holds, i.e. when the underlying

density f(x) has a shoulder at x = 0 (see formula (4.3) in [31]). This shoulder

property is fulfilled particularly for a wide exponential class of pdfs which satisfy

important integral condition

(1.1)

∫ ∞

0
x−1/2f(x)dx < ∞

assumed in [8]. In [31] the half normal and standard exponential pdfs are consid-

ered as examples such that the boundary kernel Kc(t) (p. 553 in [31]) gives the

better estimate than the gamma-kernel estimator considered in [8]. At the same

time, the exponential distribution does not satisfy both the shoulder condition

and the condition (1.1). The half normal density satisfies the shoulder condition,

but it does not satisfy (1.1). Since (1.1) is not valid for the latter pdfs, such

comparison is not appropriate.

Alternative asymmetrical kernel estimators like inverse Gaussian and recip-

rocal inverse Gaussian estimators were studied in [24]. The comparison of these

asymmetric kernels with the gamma kernel is given in [6].

Along with the density estimation it is often necessary to estimate the

derivative of a pdf. Derivative estimation is important in the exploration of struc-

tures in curves, comparison of regression curves, analysis of human growth data,

mean shift clustering or hypothesis testing. The estimation of the density deriva-

tive is required to estimate the logarithmic derivative of the density function. The

latter has a practical importance in finance, actuary mathematics, climatology

and signal processing. However, the problem of the density derivative estimation

has received less attention. It is due to a significant increasing complexity of
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calculations, especially for the multivariate case. The boundary bias problem for

the multivariate pdf becomes more solid [4]. The pioneering papers devoted to

univariate symmetrical kernel density derivative estimation are [7], [26].

The paper does not focus on the boundary performance but on finding of

the optimal bandwidth that is appropriate for the pdf derivative estimation in

case of dependent data satisfying a strong mixing condition. In [30] an optimal

mean integrated squared error (MISE) of the kernel estimate of the first derivative

of order n− 4
7 was indicated. This corresponds to the optimal bandwidth of order

n− 1
7 for symmetrical kernels. The estimation of the univariate density derivative

using a gamma kernel estimator by independent data was proposed in [11], [12].

This allows us to achieve the optimal MISE of the same order n−4/7 with a

bandwidth of order n− 2
7 .

1.1. Contributions of this paper

It is shown that in the case of dependent data, assuming strong mixing, we

can estimate the derivative of the pdf using the same technique that has been

applied for independent data in [11]. Lemma 2.1, Section 2.1 contains the upper

bound of the covariance. The mathematical technic applied for the derivative

estimation is similar to one applied for the pdf. However, formulas became much

more complicated, particularly because one has to deal with the special Digamma

function that includes the bandwidth b. Thus, one has to pick out the order by b

from complicated expressions containing logarithms and the special function. In

Section 2.2 we find the optimal bandwidth b ∼ n−2/7 which is different from the

optimal bandwidth b∗2 ∼ n−2/5 proposed for the pdf estimation (see [8], p. 476).
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Figure 1: Nonparametric gamma-kernel estimation of Maxwell density
derivative function for sample size n=2000. The pdf derivative
(solid line), the estimate with b (dotted gray line), the estimate
with b∗

2
(dashed line).
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In Fig. 1 it is shown that the use of b∗2 to estimate the pdf derivative leads to a

bad quality (for simplicity the i.i.d. data were taken). We prove that the optimal

MISE of the pdf derivative has the same rate of convergence to the true pdf

derivative as for the independent case, namely O(n−4/7). We show in Section 2.3

that for the strong mixing autoregressive process of the first order (AR(1)) all

results are valid without additional conditions. In Section 3 a simulation study

for i.i.d. and dependent samples is performed. The flexibility of the gamma kernel

allows us to fit accurately the multi-modal pdf derivatives.

1.2. Practical motivation

In practice it is often necessary to deal with sequences of observations that

are derived from stationary processes satisfying the strong mixing condition. As

an example of such processes one can take autoregressive processes like in Section

2.3. Along with the evaluation of the density function and its derivative by

dependent samples, the estimation of the logarithmic derivative of the density is

an actual problem. The logarithmic pdf derivative is the ratio of the derivative of

the pdf to the pdf itself. The pdf derivative estimation is necessary for an optimal

filtering in the signal processing and control of nonlinear processes where only the

exponential pdf class is used, [10]. Moreover, the pdf derivative gives information

about the slope of the pdf curve, its local extremes, significant features in data

and it is useful in regression analysis [9]. The pdf derivative also plays a key role

in clustering via mode seeking [23].

1.3. Theoretical background

Let {Xi; i = 1, 2, ...} be a strongly stationary sequence with an unknown

probability density function f(x), which is defined on x ∈ [0,∞). We assume

that the sequence {Xi} is α-mixing with coefficient

α(i) = sup
k

sup
A∈Fk

1 (X)

B∈F∞
k+i

(X)

|P (A ∩ B) − P (A)P (B)|.

Here, Fk
i (X) is the σ-field of events generated by {Xj , i ≤ j ≤ k} and α(i) → 0 as

i → ∞. For these sequences we will use a notation {Xj}j≥1 ∈ S(α). Let fi(x, y)

be a joint density of X1 and X1+i, i = 1, 2, ....

Our objective is to estimate the derivative f ′(x) by a known sequence of

observations {Xi}. We use the non-symmetric gamma kernel estimator that was
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defined in [8] by the formula

(1.2) f̂n(x) =
1

n

n∑

i=1

Kρb(x),b(Xi).

Here

(1.3) Kρb(x),b(t) =
tρb(x)−1 exp(−t/b)

bρb(x)Γ(ρb(x))

is the kernel function, b is a smoothing parameter (bandwidth) such that b → 0

as n → ∞, Γ(·) is a standard gamma function and

ρb(x) =

{
ρ1(x) = x/b, if x ≥ 2b,

ρ2(x) = (x/(2b))2 + 1, if x ∈ [0, 2b).
(1.4)

The use of gamma kernels is due to the fact that they are nonnegative, change

their shape depending on the position on the semi-axis and possess better bound-

ary bias than symmetrical kernels. The boundary bias becomes larger for mul-

tivariate densities. Hence, to overcome this problem the gamma kernels were

applied in [4]. Earlier the gamma kernels were only used for the density estima-

tion of identically distributed sequences in [4], [8] and for stationary sequences in

[5].

To our best knowledge, the gamma kernels have been applied to the density

derivative estimation at first time in [11]. In this paper the derivative f ′(x) was

estimated under the assumption that {X1, X2, ..., Xn} are i.i.d. random variables

as derivative of (1.2). This implies that

f̂ ′
n(x) =

1

n

n∑

i=1

K ′
ρb(x),b(Xi)(1.5)

holds, where

K ′
ρb(x),b(t) =

{
K ′

ρ1(x),b(t) = 1
bKρ1(x),b(t)L1(t), if x ≥ 2b,

K ′
ρ2(x),b(t) = x

2b2
Kρ2(x),b(t)L2(t), if x ∈ [0, 2b),

(1.6)

is the derivative of Kρ(x),b(t),

L1(t) = L1(t, x) = ln t − ln b − Ψ(ρ1(x)),(1.7)

L2(t) = L2(t, x) = ln t − ln b − Ψ(ρ2(x)),

Here Ψ(x) denotes the Digamma function (the logarithmic derivative of the

gamma function). The unknown smoothing parameter b was obtained as the

minimum of the mean integrated squared error (MISE) which, as known, is

equal to

MISE(f̂ ′
n(x)) = E

∞∫

0

(f ′(x) − f̂ ′
n(x))2dx.
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Remark 1.1. The latter integral can be splitted into two integrals
∫ 2b
0

and
∫∞

2b . In the case when x ≥ 2b the integral
∫ 2b
0 tends to zero when b → 0.

Hence, we omit the consideration of this integral in contrast to [31]. The first

integral has the same order by b as the second one, thus it cannot affect on the

selection of the optimal bandwidth.

The following theorem has been proved.

Theorem 1.1 ([11]). If b → 0 and nb3/2 → ∞ as n → ∞, the integrals

∞∫

0

P (x)dx,

∞∫

0

x−3/2f(x)dx

are finite and
∞∫
0

P (x)dx 6= 0, then the leading term of a MISE expansion of the

density derivative estimate f̂ ′(x) is equal to

MISE(f̂ ′
n(x)) =

b2

16

∫ ∞

0
P (x)dx

+

∫ ∞

0

n−1b−3/2x−3/2

4
√

π

(
f(x) + b

(
f(x)

2x
− f ′(x)

2

))
dx(1.8)

+ o(b2 + n−1(b−3/2)),

where

P (x) =

(
f(x)

3x2
+ f ′′(x)

)2

.

Taking the derivative of (1.8) in b leads to equation

b

8

∫ ∞

0

(
f(x)

3x2
+ f ′′(x)

)2

dx − 3n−1b−
5
2

8
√

π

∫ ∞

0
x− 3

2 f(x)dx(1.9)

+
n−1b−

3
2

16
√

π

∫ ∞

0
x− 3

2

(
f(x)

x
− f ′(x)

)
dx = 0.

Neglecting the term with b−3/2 as compared to the term b−5/2, the equation

becomes simpler and its solution is equal to the optimal global bandwidth

b0 =




3
∫∞

0 x−3/2f(x)dx
√

π
∫∞

0

(
f(x)
3x2 + f ′′(x)

)2
dx




2/7

n−2/7.(1.10)

The substitution of b0 into (1.8) yields an optimal MISE with the rate of con-

vergence O(n− 4
7 ). The unknown density and its second derivative in (1.10) were

estimated by the rule of thumb method [12].
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In [30], p. 49, it was indicated an optimal MISE of the first derivative

kernel estimate n− 4
7 with the bandwidth of order n− 1

7 for symmetrical kernels.

Nevertheless, our procedure achieves the same order n−4/7 with a bandwidth of

order n− 2
7 . Moreover, our advantage concerns the reduction of the bias of the

density derivative at the zero boundary by means of asymmetric kernels. Gamma

kernels allow us to avoid boundary transformations which is especially important

for multivariate cases.

Further results presented in Section 2.2 will be based on Theorem 1.1.

2. MAIN RESULTS

2.1. Estimation of the density derivative by dependent data

Here, we estimate the density derivative by means of the kernel estimator

(1.5) by dependent data. Thus, its mean squared error is determined as

MSE(f̂ ′
n(x)) = (Bias(f̂ ′

n(x)))2 + var(f̂ ′
n(x)),(2.1)

where, due to the stationarity of the process Xi, the variance is given by

var(f̂ ′
n(x)) = var

(
1

n

n∑

i=1

K ′
b(Xi)

)
=

1

n2
var

(
n∑

i=1

K ′
b(Xi)

)

=
1

n2




n∑

i=1

var(K ′
b(Xi)) + 2

∑

1≤i<j≤n

cov(K ′
b(Xi), K

′
b(Xj))




=
1

n
var(K ′

b(Xi)) +
2

n2

∑

1≤i<j≤n

cov(K ′
b(Xi), K

′
b(Xj))

=
1

n
var(K ′

b(Xi)) +
2

n

n−1∑

i=1

(
1 − i

n

)
cov(K ′

b(X1), K
′
b(X1+i))

= V (x) + C(x).

For simplicity we use here and further the notation K ′
ρb(x),b(t) = K ′

b(t) in (1.5).

Thus, (2.1) can be written as

MSE(f̂ ′(x)) = B(x)2 + V (x) + C(x),(2.2)

where

B(x) = Bias(f̂ ′
n(x)).

The bias of the estimate does not change, but the variance contains a covariance.

The next lemma is devoted to its finding.
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Lemma 2.1. Let

1. {Xj}j≥1 ∈ S(α) and
∞∫
1

α(τ)υdτ < ∞, 0 < υ < 1 hold,

2. f(x) be a twice continuously differentiable function,

3. b → 0 and nb−(υ+1)/2 → ∞ as n → ∞.

Then the covariance C(x) is bounded by

|C(x)| =

∣∣∣∣∣
2

n

n−1∑

i=1

(
1 − i

n

)
cov(K ′

ρb(x),b(X1), K
′
ρb(x),b(X1+i))

∣∣∣∣∣

≤
(

2−
υ+3
2 π

1−υ
2 x−

υ+5
2

b−
υ+1
2

n

(
b2C2(υ, x) + bC1(υ, x) + C3(υ, x)

)1−υ

(2.3)

+ o(b2)

) ∞∫

1

α(τ)υdτ,

where K ′
ρb(x) is defined by (1.6) and C1(υ, x), C2(υ, x) and C1(υ, x) are given by

(4.8).

A similar lemma was proved in [10] for symmetrical kernels and not strictly

positive x.

2.2. Mean integrated squared error of f̂ ′
n(x)

Using the upper bound (2.3) we can obtain the upper bound of the MISE

and find the expression of the optimal bandwidth b as the minimum of the latter.

Theorem 2.1. If the conditions of Theorem 1.1 and Lemma 2.1 hold,

then the MISE expansion for the estimate f̂ ′
n(x) of the density derivative is

equal to

MISE(f ′(x)) ≤
∞∫

0

n−1b−
3
2 x− 3

2

4
√

π

(
f(x) +

b

2

(
f(x)

x
− f ′(x)

))
dx

+

∞∫

0

(
2−

υ+3
2 π

1−υ
2 x−

υ+5
2

b−
υ+1
2

n
C3(υ, x)1−υ

) ∞∫

1

α(τ)υdτdx(2.4)

+
b2

16

∞∫

0

P (x)dx + o(b2 + n−1(b−
3
2 )).

and the optimal bandwidth is bopt = o(n−2/7) and the MISEopt = O(n−4/7).
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Remark 2.1. It is evident from the formula (2.4) that the term responsi-

ble for the covariance has the order b−
υ+1
2

n , 0 < υ < 1. Thus, it does not influence

the order of MISE irrespective of the mixing coefficient α(τ).

The proof is given in Appendix 4.

2.3. Example of a strong mixing process

We use the first-order autoregressive process as an example of a process

that satisfies Theorem 1.1. Xi determines a first-order autoregressive (AR(1))

process with the innovation r.v. ǫ0 and the autoregressive parameter ρ ∈ (−1, 1)

if

Xi = ρXi−1 + ǫi, i = ... − 1, 0, 1, ...,(2.5)

holds and ǫi is a sequence of i.i.d. r.v.s. Let AR(1) process (2.5) be strong mixing

with mixing numbers α(τ), τ = 1, 2, ...

α(τ) ≤ α̃(τ) ≡
{

2(C + 1)E|Xi|ν |ρν |τ , if τ ≥ τ0,
1, if 1 ≤ τ < τ0,

(2.6)

where ν = min{p, q, 1} and p > 0, q > 0, C > 0, τ0 > 0 hold. In [2] it was proved

that with some conditions AR(1) is a strongly mixing process.

In Appendix 4 we prove the following lemma.

Lemma 2.2. Under the conditions (2.6) the AR(1) process (2.5) satisfies

Lemma 2.1 and Theorem 2.1.

3. SIMULATION RESULTS

To investigate the performance of the gamma-kernel estimator we select the

following positive defined pdfs: the Maxwell (σ = 2), the Weibull (a = 1, b = 4)

and the Gamma (α = 2.43, β = 1) pdf,

fM (x) =

√
2x2 exp(−x2/2σ2)

σ3
√

π
,

fW (x) = sxs−1 exp(−xs),

fG(x) =
xα−1 exp(−x/β)

βαΓ(α)
.
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Their derivatives

f ′
M (x) = −

√
2x exp(−x2/2σ2)(x2 − 2σ2)

σ5
√

π
,

f ′
W (x) = −sxs−2 exp(−xs)(sxs − s + 1),(3.1)

f ′
G(x) =

xα−2 exp(−x/β)(β + x − αβ)

βα+1Γ(α)

are to be estimated. The Weibull and the Gamma pdfs are frequently used in

a wide range of applications in engineering, signal processing, medical research,

quality control, actuarial science and climatology among others. For example,

most total insurance claim distributions are shaped like gamma pdfs [13]. The

gamma distribution is also used to model rainfalls [1]. Gamma class pdfs, like

Erlang and χ2 pdfs are widely used in modeling insurance portfolios [15].

We generate Maxwell, Weibull and Gamma i.i.d. samples with sample sizes

n ∈ {100, 500, 1000, 2000} using standard Matlab generators. To get the depen-

dent data we generate Markov chains with the same stationary distributions using

the Metropolis–Hastings algorithm [16]. Due to the existence of the probability

of rejecting a move from the previous point to the next one, the variance of such

Markov sequence {Xt} is corrupted by the function of the latter rejecting prob-

ability (see [27], Theorem 3.1). The Metropolis–Hastings Markov chains [16] are

geometrically ergodic for the underlying light-tailed distributions. Hence, they

satisfy the strong mixing condition [21].

The gamma kernel estimates (1.2) with the optimal bandwidth (1.10) for

the derivatives (3.1) can be seen in Figures 2–4. The optimal bandwidth (1.10) is

counted for every replication of the simulation using the rule of thumb method,

where as a reference density we take the gamma pdf.

0 1 2 3 4 5 6 7 8 9 10
�0.15

�0.1

�0.05

0

0.05

0.1

0.15

0.2

Maxwell f’(x)

Estimate

0 1 2 3 4 5 6 7 8 9 10
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Maxwell f’(x)

Estimate

Figure 2: Estimates of the Maxwell pdf derivative by i.i.d. data (left) and
by dependent data (right): the f ′

M
(x) (black line), gamma ker-

nel estimate from the rule of thumb (grey line) for the sample
size n = 2000.
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Figure 3: Estimates of the Weibull pdf derivative by i.i.d. data (left) and
by dependent data (right): the f ′

W
(x) (black line), gamma ker-

nel estimate from the rule of thumb (grey line) for the sample
size n = 2000.
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Figure 4: Estimates of the Gamma pdf derivative by i.i.d. data (left) and
by dependent data (right): the f ′

G
(x) (black line), gamma ker-

nel estimate from the rule of thumb (grey line) for the sample
size n = 2000.

The estimation error of the pdf derivative is calculated by the following

formula

m =

∞∫

0

(f ′(x) − f̂ ′(x))2dx,

where f ′(x) is a true derivative and f̂ ′(x) is its estimate. Values of m′s aver-

aged over 500 simulated samples and the standard deviations for the underlying

distributions are given in Table 1 for i.i.d. r.v.s and in Table 2 for dependent data.

Table 1: Mean errors m and standard deviations for i.i.d. r.v.s.

Distribution
n

100 500 1000 2000

Gamma
0.032792 0.015208 0.010675 0.0074668

(0.011967) (0.0044094) (0.0027815) (0.0016452)

Weibull
2.0056 1.1987 0.9157 0.69155

(0.52931) (0.25172) (0.18333) (0.12178)

Maxwell
0.0077597 0.0035692 0.0028675 0.0020923

(0.0033915) (0.0015351) (0.00099263) (0.00068739)
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Table 2: Mean errors m and standard deviations for strong mixed r.v.s.

Distribution
n

100 500 1000 2000

Gamma
0.039226 0.018124 0.01252 0.0086675

(0.015824) (0.006055) (0.0038485) (0.0023361)

Weibull
2.2052 1.3009 0.97509 0.75382

(1.1585) (0.5957) (0.41041) (0.28755)

Maxwell
0.0077694 0.0039277 0.002878 0.0027313
(0.006793) (0.0028336) (0.0020021) (0.0016573)

As expected, the mean error and the standard deviation decrease when

the sample size rises, and this holds both for i.i.d. and the dependent case. The

performance of the gamma kernel changes when dependence is introduced, but the

results in both tables are close. The mean errors are very close due to the fact the

bandwidth parameter is selected to minimize this error. However, the standard

deviations for the dependent data are higher than for the i.i.d. r.v.s. For example,

for the sample size of 500 the mean errors and the standard deviations for the

Maxwell pdf for the i.i.d. r.v.s are 0.0035692 (0.0015351) and for dependent r.v.s

0.0039277 (0.0028336). They differ due to the contribution of the Metropolis–

Hastings rejecting probability. This difference is less pronounced for larger sample

sizes.

The Metropolis–Hastings algorithm gives opportunity to generate AR pro-

cesses with known pdfs. As a consequence we know their derivatives and can

find mean errors and standard deviations of the gamma-kernel density deriva-

tives estimates for the dependent data. In the case when we consider the noise

distribution {ǫ} of the AR model (2.5) and the autoregressive parameter ρ that

influences on the dependence rate (2.6), we cannot indicate in general the true pdf

of the process. Hence, we consider the histogram based on 200000 observations

as a true pdf. As the noise distribution {ǫ} let us take the Gamma distribution

(α = 1.5, β = 1) and the Maxwell distribution (σ = 1). In [5] it was proved that,

as in the i.i.d. case, the gamma-kernel estimator of the pdf achieves the same

optimal rate of convergence in terms of the mean integrated squared error as

for strongly mixed r.v.s. For the various parameters ρ ∈ {0.1, 0.2, 0.3, 0.4} the

gamma estimates for the densities of the AR models are given in Figures 5–6.

Since the gamma-kernel estimators perform good for the various depen-

dence rates it is also true for the gamma-kernel pdf derivative estimators, but the

bandwidth parameter must be selected differently.

Hence, this findings confirms the fact that the covariance term (2.3) of the

pdf derivative is negligible in comparison with its variance and implies that one
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can use the same optimal bandwidth (1.10), both for independent and strongly

mixed dependent data.
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Figure 5: Gamma-kernel estimates of the pdf of the AR model with the
Gamma noise and ρ ∈ {0.1, 0.2, 0.3, 0.4} for the sample size
n = 2000.
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Figure 6: Gamma-kernel estimates of the pdf of the AR model with the
Maxwell noise and ρ ∈ {0.1, 0.2, 0.3, 0.4} for the sample size
n = 2000.
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4. APPENDIX

Proof of Lemma 2.1: Taking an integral from (2.2) we get

MISE(f̂ ′(x)) =

∞∫

0

(B(x)2 + V (x) + C(x))dx,(4.1)

where

C(x) =
2

n

n−1∑

i=1

(
1 − i

n

)
cov(K ′

b(X1), K
′
b(X1+i)).(4.2)

To evaluate the covariance we shall apply Davydov’s inequality

|cov(K ′
b(X1), K

′
b(X1+i))| ≤ 2πα(i)1/r ‖ K ′

b(X1) ‖q‖ K ′
b(X1+i) ‖p,(4.3)

where p−1 + q−1 + r−1 = 1, 1 ≤ p, q, r ≤ ∞, [3].

The latter norm for the case x ≥ 2b is determined by

‖ K ′
b(X1) ‖q =

(∫ (
1

b
K(y)L1(y)

)q

f(y)dy

)1/q

(4.4)

=
1

b

(
E
(
K(ξ1)

q−1L1(ξ1)
qf(ξ1)

))1/q
,

where L1(t) is introduced in (1.7). The kernel K(ξ1) was used in (4.4) as a density

function and ξ1 is a Gamma(ρ1(x), b) random variable.

In the case x ∈ [0, 2b), similarly we have

‖ K ′
b(X1) ‖q =

(∫ ( x

2b2
K(y)L2(y)

)q
f(y)dy

)1/q

(4.5)

=
x

2b2

(
E
(
K(ξ2)

q−1L2(ξ2)
qf(ξ2)

))1/q
,

where L2(t) is determined by (1.7), and ξ2 is a Gamma(ρ2(x), b) random variable.

Expressions (4.4) and (4.5) are constructed similarly, thus to a certain point, we

will not make differences between them.

By the standard theory of the gamma distribution it is known that µ =

E(ξ) = ρb(x)b and the variance is given by var(ξ) = ρb(x)b2. For simplicity, we

further use the notation ρ instead of ρb(x) defined in (1.4).

The Taylor expansion of both mathematical expectations in (4.4), (4.5) in

the neighborhood of µ is represented by

E
(
K(ξ)q−1L(ξ)qf(ξ)

)
= K(µ)q−1L(µ)qf(µ) + (K(ξ)q−1L(ξ)qf(ξ))′|ξ=µE(ξ − µ)

+
(
K(ξ)q−1L(ξ)qf(ξ)

)′′ |ξ=µ
E(ξ − µ)2

2
+ o

(
E(ξ − µ)2

)
.
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In the case when x ≥ 2b, µ = ρb = x, var(ξ) = ρb2 = xb, we get

E
(
K(ξ)q−1L(ξ)qf(ξ)

)
=

=
K(x)q−1

b

(
qL(x)q+1f ′(x) − L(x)qf(x)L′(x)

−L(x)q+1f ′(x) + bL(x)qf ′′(x) + q2L(x)qf(x)L′(x) + bq2L(x)q−2(L′(x))2f(x)

+ 2bqL(x)q−1L′(x)f ′(x) + bqL(x)q−1f(x)L′′(x) − bqL(x)q−2(L′(x))2

)

+
K(x)q−1L(x)(q − 1)

b2

(
(q − 1)f(x)L(x)q+1 + bL(x)qf ′(x)

+ bqL(x)q−1f(x)L′(x)

)
+ o

(
b2
)
.

Using Stirling’s formula

Γ(z) =

√
2π

z

(z

e

)z
(

1 + O

(
1

z

))
,

we can rewrite the kernel function as

K(t) =
tρ−1 exp(−t/b)

bρΓ(ρ)
=

tρ−1 exp(−t/b) exp(ρ)

bρ
√

2πρρ− 1
2 (1 + O(1/ρ))

.

Taking ρ = ρ1(x) according to (1.4), t = x, it holds

K(ρ1(x)b) =
1√
2π

xx/b−1 exp((x − x)/b)

b
x
b

x
b

x
b
− 1

2 (1 + O(b/x))
=

x− 1
2 b−

1
2

√
2π(1 + O(b/x))

.

Hence, its upper bound is given by

K(x) ≤ 1√
2πxb

.(4.6)

Next, using the property of the Digamma function Ψ(x) = ln(x) − 1
2x − 1

12x2 +
1

120x4 + O(1/x6), the first equation in (1.7) can de rewritten as

L1(ρ1b) = ln(ρ1b) − ln(b) − Ψ(ρ1) =
b

2x
+

b2

12x2
+ o(b2).(4.7)

Then substituting (4.6) in (4.4) and using the expressions (4.6) and (4.7), we

deduce

‖ K ′
b(X1) ‖q ≤ π

1−q

2q (2x)
1−q

2q
−1

b
1−q

2q

(
b2C2(q, x) + bC1(q, x) + C3(q, x)

)1/q

+o(b2),
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where we used the notations

C1(q, x) = −f(x)
2q3 − 9q2 + 4q − 33

24x
− f ′(x)

q + 1

2
+ f ′′(x)

x

2
,(4.8)

C2(q, x) = f(x)
2q + 54x − q2x + 21q3x + q4x + 93qx

144x3

− f ′(x)
(q + 1)2

12x
+ f ′′(x)

q + 1

12
,

C3(q, x) = −f(x)
(q + 1)(q − 2)

2
.

The same steps can be done for ‖ K ′
b(X1+i) ‖p from (4.3). Then, if p = q holds,

one can represent Davydov’s inequality (4.3) as

|cov(K ′
b(X1), K

′
b(X1+i))| ≤(4.9)

≤ 2πα(i)
1
r π

1−q

q (2x)
1−q

q
−2

b
1−q

q

(
b2C2(q, x) + bC1(q, x) + C3(q, x)

)2/q

+ o(b2).

Using (4.9) and taking p = q = 2 + δ, r = 2+δ
δ it can be deduced that the covari-

ance (4.2) is given by

|C(x)| =

∣∣∣∣∣
2

n

n−1∑

i=1

(
1 − i

n

)
cov(K ′

b(X1), K
′
b(X1+i))

∣∣∣∣∣

≤
∣∣∣∣∣

(
2−

2δ+3
δ+2 π

1
δ+2 x−

3δ+5
δ+2

b−
δ+1
δ+2

n

(
b2C2(δ, x) + bC1(δ, x) + C3(δ, x)

) 2
2+δ
)

·
n−1∑

i=1

(
1 − i

n

)
α(i)

δ
2+δ

∣∣∣∣∣+ o(b2).

Then we can estimate the covariance by the previous expressions

|C(x)| ≤ S(b, x, δ, n)
n∑

τ=2

(
1 − τ − 1

n

)
α(τ − 1)

δ
2+δ + o(b2)

≤ S(b, x, δ, n)
∞∑

τ=2

α(τ − 1)
δ

2+δ + o(b2) ≤ S(b, x, δ, n)

∞∫

1

α(τ)
δ

2+δ dτ + o(b2),

where we used the following notation

S(b, x, δ, n) = 2−
2δ+3
δ+2 π

1
δ+2 x−

3δ+5
δ+2

b−
δ+1
δ+2

n

(
b2C2(δ, x) + bC1(δ, x) + C3(δ, x)

) 2
2+δ

.

Let us denote δ
2+δ = υ, 0 < υ < 1. Then, in this notations, we get the estimate

of the covariance

|C(x)| ≤
(

2−
υ+3
2 π

1−υ
2 x−

υ+5
2

b−
υ+1
2

n

(
bC1(υ, x) + C3(υ, x)

)1−υ

+ o(b2)

) ∞∫

1

α(τ)υdτ.
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By 0 < υ < 1 then it follows

|C(x)| ∼ 1

n
b−

υ+1
2 .

Remark 4.1. The main contribution to MISE (4.1) is provided by the

part corresponding to x ≥ 2b, so we will not do similar calculations here and

further for x ∈ [0, 2b) as b → 0.

Proof of Theorem 2.1: Regarding the dependent case it is known that

the MISE contains the bias, the variance and the covariance. By (1.8) it fol-

lows that the integrated sum of the squared bias and variance is the following

expression

∞∫

0

(B(x)2 + V (x))dx =
b2

16

∞∫

0

P (x)dx

+

∞∫

0

n−1b−
3
2 x− 3

2

4
√

π

(
f(x) +

b

2

(
f(x)

x
− f ′(x)

))
dx(4.10)

+ o(b2 + n−1b−
3
2 ).

This corresponds to the independent case.

By integration of (2.3) we get the upper bound of the integrated covariance

∞∫

0

C(x)dx ≤
∞∫

0

(
2−

υ+3
2 π

1−υ
2 x−

υ+5
2

b−
υ+1
2

n
C3(υ, x)1−υ + o(b2)

)∞∫

1

α(τ)υdτdx.(4.11)

Combining (4.10) and (4.11), one can write

MISE(f ′(x)) ≤
∞∫

0

n−1b−3/2x−3/2

4
√

π

(
f(x) +

b

2

(
f(x)

x
− f ′(x)

))
dx

+

∞∫

0

2−
υ+3
2 π

1−υ
2 x−

υ+5
2

b−
υ+1
2

n
C3(υ, x)1−υdx

∞∫

1

α(τ)υdτ

+
b2

16

∞∫

0

P (x)dx + o(b2 + n−1b−
5
2 ).

The derivative of this expression in b leads to

b

8

∞∫

0

P (x)dx − 3n−1b−
5
2

8
√

π

∞∫

0

x− 3
2 f(x)dx +

n−1b−
3
2

16
√

π

∞∫

0

x− 3
2

(
f(x)

x
− f ′(x)

)
dx

−
∞∫

0

υ + 1

2
2−

υ+3
2 π

1−υ
2 x−

υ+5
2

b−
υ+3
2

n
C3(υ, x)1−υdx

∞∫

1

α(τ)υdτ = 0.(4.12)
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Since 0 < υ < 1 holds as in Lemma 2.1, the third term in (4.12) by b has the

worst rate

c1b
−

υ+3
2 = O

(
b−

3
2

)
,

where c1 is a constant.

Neglecting terms with b−3/2 and b−
υ+3
2 in comparison to the term containing

b−5/2, we simplify the equation

b7/2

8

∞∫

0

P (x)dx − 3n−1

8
√

π

∞∫

0

x− 3
2 f(x)dx + o(b7/2) = 0.

The optimal b = o(n−2/7) is the same as in (1.10). Let us insert such b in (2.4)

MISEopt(f̂
′(x)) =

∫ ∞

0

P (x)n− 4
7

16
T

4
7 dx +

∞∫

0

n−4/7T−3/7x−3/2

4
√

π
f(x)dx

+

∞∫

0

n−6/7T−1/7x−3/2

8
√

π

(
f(x)

x
− f ′(x)

)
dx(4.13)

+

∞∫

0

(
2−

υ+3
2 π

1−υ
2 x−

υ+5
2

T−
υ+1
7

n
6−υ

7

C3(υ, x)1−υdx

∞∫

1

α(τ)υdτ,

where

T =
3
∫∞

0 x−3/2f(x)dx
√

π
∫∞

0

(
f(x)
3x2 + f ′′(x)

)2
dx

.

The last term in (4.13) has the rate o(n
υ−6

7 ). By 0 < υ < 1 we get that the optimal

rate of convergence of MISE is given by MISEopt(f̂
′(x)) = O(n−4/7).

Proof of Lemma 2.2: We have to prove that α(τ) defined by (2.6) sat-

isfies the conditions of Lemma 2.1. Conditions 2 and 3 of Lemma 2.1 only refer

to the density distribution. Thus, we remain to check only the first condition of

Lemma 2.1.

To this end, using (2.6) we get

∞∫

1

α(τ)υdτ ≤
τ0∫

1

dτ +

∞∫

τ0

(2(C + 1)E|Xi|ν |ρν |τ )υ dτ(4.14)

= τ0 − 1 + (2(C + 1)E|Xi|ν)υ

∞∫

τ0

(|ρν |τ )υ dτ.
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The integral in (4.14) can be taken in general as

∞∫

τ0

(|ρν |τ )υ dτ =
|ρν |τυ

υ ln(|ρν |)
∣∣∣
∞

τ0

Thus, to satisfy the first condition of Lemma 2.1, it must be

|ρν |τυ
∣∣∣
τ=∞

< ∞.(4.15)

Since ρ ∈ (−1, 1) holds, it follows |ρ| ∈ [0, 1). For ρ = 0 (4.15) is satisfied. For

|ρ| ∈ (0, 1) one can rewrite (4.15) as

(
1

ξ

)ντυ ∣∣∣
τ=∞

< ∞, ξ > 1,

which is valid as νυ > 0. The latter is true since 0 < υ < 1 and ν = min{p, q, 1} >

0. Thus, the strong mixing AR(1) process (2.5) satisfies Lemma 2.1. Hence, it

satisfies the conditions of Theorem 2.1.
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