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1. INTRODUCTION

The paper concerns the invariant problem of sequentially estimating a com-

mon location parameter of two independent populations from the same distribu-

tion with an unknown location parameter and known but different scale param-

eters, in the special case when the observations arrive at random times. For

example, in studying the effectiveness of experimental safety devices of mobile

constructions relevant data may become available only as a result of accidents.

Medical data (such as data on drug abuse or an asymptomatic disease) can some-

times only be obtained when patients voluntarily seek help or are somehow other-

wise identified and examined, at random times. Other examples are data resulting

from an undersea survey of containerized radioactive waste, from archeological

discoveries, from market research or from planning the assortment of production

(when the orders come forward at random times).

The estimation problem of a common location of two independent popu-

lations has been extensively discussed in the literature. Rao and Reddy (1988)

studied the estimation of the unknown common location parameter of two sym-

metric distributions with different scale parameters. They derived asymptotic

distributions and the asymptotic relative efficiencies of proposed estimators: the

mean, the median, the average of the mean and the median and the Hodges–

Lehmann estimator. Baklizi (2004) considered estimation of the common location

parameter of several exponentials. It is found that the proposed estimators are

effective in taking advantage of the available prior information. Farsipour and

Asgharzadeh (2002) investigated the problem of estimating the common mean of

two normal distributions. They derived a class of risk unbiased estimators which

linearly combines the means of the two samples from both distributions. Mitra

and Sinha (2007) studied some aspects of the problem of estimation of a com-

mon mean of two normal populations from an asymptotic point of view. They

also considered the Bayes estimate of the common mean under Jeffrey’s prior.

Chang et al. (2012) considered the problem of estimating the common mean of

two normal distributions with unknown ordered variances. They gave a broad

class of estimators which includes the estimators proposed by Nair (1982) and

Elfessi et al. (1992) and showed that the estimators stochastically dominate the

estimators which do not take into account the order restriction on variances, in-

cluding the one given by Graybill and Deal (1959). Then they proposed a broad

class of individual estimators of two ordered means when unknown variances are

ordered.

The problem of estimating with delayed observations was investigated by

Starr et al. (1976), who considered the case of Bayes estimation of a mean of

normally distributed observations with known variance. Some of their results

were generalized by Magiera (1996). He dealt with estimation of the mean value
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parameter of the exponential family of distributions. Jokiel-Rokita and Ste֒pień

(2009) studied the model with delayed observations for estimating a location

parameter.

We consider the following model. Let the samples (X1, ..., Xn1
) and

(Y1, ..., Yn2
) be independent and have a joint distribution Pθ with a Lebesgue

p.d.f.

f

(
x1 − θ

σ1
, ...,

xn1
− θ

σ1

)
,

and

f

(
y1 − θ

σ2
, ...,

yn2
− θ

σ2

)
,

respectively, where f is known, σ1, σ2 > 0 are known and different scale param-

eters, and θ ∈ R is an unknown location parameter.

The set of observations is bounded, i.e., the statistician can receive at most

N = n1 + n2 observations. It is assumed that Xi is observed at time ti, i =

1, ..., n1, where t1, ..., tn1
are the values of the order statistics of positive i.i.d.

random variables U1, ..., Un1
which are obtained before the conducted observations

X1, ..., Xn1
and independent of X1, ..., Xn1

. Similarly: Yi is observed at time si,

i = 1, ..., n2, where s1, ..., sn2
are the values of the order statistics of positive i.i.d.

random variables V1, ..., Vn2
which are obtained before the conducted observations

Y1, ..., Yn2
and independent of Y1, ..., Yn2

. Furthermore, it is assumed that the

samples (U1, ..., Un1
) and (V1, ..., Vn2

) are independent.

Let

k1(t) =

n1∑

i=1

1[0,t](Ui)(1.1)

and

k2(t) =

n2∑

i=1

1[0,t](Vi)(1.2)

denote the number of observations which have been made by time t ≥ 0 for the

sample (X1, ..., Xn1
) and (Y1, ..., Yn2

), respectively, and let F1,t = σ
{
k1(r), r ≤ t,

X1, ..., Xk1(t)

}
and F2,t = σ

{
k2(r), r ≤ t, Y1, ..., Yk2(t)

}
be the informations which

is available at time t.

The problem is to estimate the parameter θ. If observation is stopped at

time t, the loss incurred is defined by

Lt(θ, d) := L(θ, d) + cAk1(t) + cBk2(t) + c1(t) + c2(t),(1.3)
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where L(θ, d) denotes the loss associated with estimation, when θ is the true

value of the parameter and d is the chosen estimate. The functions c1(t) and

c2(t) represents the cost of observing the processes up to time t (k1(t) and k2(t),

respectively). It is supposed to be a differentiable and increasing convex functions

such that c1(0) = 0 and c2(0) = 0. The constants cA ≥ 0 and cB ≥ 0 are the cost

of taking one observation Xi and Yi, respectively.

The family {Pθ : θ ∈ R} is invariant under the location transformations

x 7→ x + α (y 7→ y + α) with α ∈ R. Consequently, the decision problem is invari-

ant under location transformations if and only if L(θ, a) = L(θ + α, a + α) for all

α ∈ R, which is equivalent to

L(θ, a) = δ(a − θ)(1.4)

for a Borel function δ(·) on R. An estimator d of the parameter θ is location

equivariant if and only if

d(X1 + α, ..., Xn1
+ α, Y1 + α, ..., Yn2

+ α) = d(X1, ..., Xn1
, Y1, ..., Yn2

) + α.

Suppose that we agree to take at least one observation. If we observe the

process for t ≥ t1 units of time, then the conditional expected loss, given k1(t)

and k2(t), associated with an equivariant estimator d
(
Xk1(t),Yk2(t)

)
based on

the random size samples Xk1(t) =
(
X1, ..., Xk1(t)

)
and Yk2(t) =

(
Y1, ..., Yk2(t)

)
is

of the form

Rt

(
θ, d

(
Xk1(t),Yk2(t)

))
: = Eθ

[
Lt

(
θ, d

(
Xk1(t),Yk2(t)

)) ∣∣∣k1(t), k2(t)
]

= h1(k1(t)) + h2(k2(t)) + c1(t) + c2(t),(1.5)

where Eθ means the expectation with respect to the conditional distribution given

θ. The functions h1 and h2 depend only on the loss function δ.

The form of the risk function Rt(θ, d), given by (1.5), follows from the fact

that the risk of any equivariant estimator of the parameter θ in the invariant

problem of estimation is independent of θ (see e.g. Lehmann and Casella 1998,

Theorem 3.1.4). Hence, if an equivariant estimator exists which minimizes the

constant risk, it is called the minimum risk equivariant (MRE) estimator.

In Section 2 we present the method of finding a stopping time which min-

imizes the expected risk associated with a MRE estimator of the parameter θ

over all stopping times. We consider a situation when the common distributions

of the random variables U1, ..., Un1
and V1, ..., Vn2

, respectively, which can be in-

terpreted as the lifetimes of n1 and n2 objects are known exactly. In Section 3

we apply the results of Section 2 to estimate a common location parameter of

two normal distributions under the squared error loss and a LINEX loss function.

Additionally, in Section 4 some illustrative simulations are given.
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2. THE OPTIMAL STOPPING TIME

Suppose that in the estimation problem of the parameter θ with the loss

function L(θ, d) there exists an MRE estimator, denoted by d∗. We look for a

stopping time τ∗ which minimizes the expected risk

E
[
Rτ

(
θ, d∗

(
Xk1(τ),Yk2(τ)

))]
= E[h1(k1(τ)) + h2(k2(τ)) + c1(τ) + c2(τ)](2.1)

over all stopping times τ ≥ t1, τ ∈ T , where T denotes the class of (F1,t,F2,t)-

measurable functions. Such a stopping time will be called an optimal stopping

time. Then we construct an optimal sequential estimation procedure of the form(
τ∗, d∗

(
Xk1(τ∗),Yk2(τ∗)

))
.

Let the random variables U1, ..., Un1
be independent and have a common

known distribution function G1. Suppose that G1(0) = 0, G1(t) > 0 for t > 0, G1

is absolutely continuous with density g1, and g1 is the right hand derivative of G1

on (0,∞). Denote the class of such G1 by G1. Let ζ1 = sup{t : G1(t) < 1}, and

ρ1(t) = g1(t)[1 − G1(t)]
−1, 0 ≤ t < ζ1, denote the failure rate. Under the above

assumptions the process k1(t), given by (1.1), is a nonstationary Markov chain

with respect to F1,t, 0 ≤ t ≤ ζ1 (see Starr et al. (1976)). The random variables

V1, ..., Vn2
satisfy the analogous assumptions. Namely, let the random variables

V1, ..., Vn2
be independent and have a common known distribution function G2.

Suppose that G2(0) = 0, G2(t) > 0 for t > 0, G2 is absolutely continuous with

density g2, and g2 is the right hand derivative of G2 on (0,∞). Denote the class

of such G2 by G2. Let ζ2 = sup{t : G2(t) < 1}, and ρ2(t) = g2(t)[1−G2(t)]
−1, 0 ≤

t < ζ2, denote the failure rate. Under the above assumptions the process k2(t),

given by (1.2), is a nonstationary Markov chain with respect to F2,t, 0 ≤ t ≤ ζ2.

The infinitesimal operator A1,t of the processes k1(t) at h̃1 is defined by

A1,th̃1(k) := lim
s→0+

s−1E
[
h̃1(k1(t + s)) − h̃1(k1(t))|k1(t) = k

]
.(2.2)

The domain DA1,t
of A1,t is the set of all bounded Borel measurable functions

h̃1 on the set {0, 1, ..., n1} for which the limit in (2.2) exists boundedly pointwise

for every k ∈ {0, 1, ..., n1}. The infinitesimal operator A2,t of the processes k2(t)

is defined analogously.

To determine an optimal stopping time we use the following lemma which

provides the form of the infinitesimal operator A1,t of the process k1(t), given by

(1.1).

Lemma 2.1. Let h̃1 be a given real-valued function on the set {0, 1, ...,

n1}. The infinitesimal operator A1,t of the process k1(t), given by (1.1), at h̃1 is

of the form

A1,th̃1(k) = (n1 − k)
[
h̃1(k + 1) − h̃1(k)

]
ρ1(t).
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Proof: Fix k ∈ {0, 1, ..., n1}. It is clear that

E
[
h̃1(k1(t + s)) − h̃1(k1(t))|k1(t) = k

]
=

=

n1∑

i=k+1

[
h̃1(i) − h̃1(k)

]
P (k1(t + s) = i|k1(t) = k)

=
[
h̃1(k + 1) − h̃1(k)

]
P (k1(t + s) = k + 1|k1(t) = k)

+

n1∑

i=k+2

[
h̃1(i) − h̃1(k)

]
P (k1(t + s) = i|k1(t) = k)

=
[
h̃1(k + 1) − h̃1(k)

]
(n1 − k)

G1(t + s) − G1(t)

1 − G1(t)

[
1 − G1(t + s)

1 − G1(t)

]n1−k−1

+

n1∑

i=k+2

[
h̃1(i) − h̃1(k)

]
P (k1(t + s) = i|k1(t) = k)

≤
[
h̃1(k + 1) − h̃1(k)

]
(n1 − k)

G1(t + s) − G1(t)

1 − G1(t)

[
1 − G1(t + s)

1 − G1(t)

]n1−k−1

+ 2 sup
i≤n1

∣∣∣h̃1(i)
∣∣∣ P (k1(t + s) ≥ k + 2|k1(t) = k)

=
[
h̃1(k + 1) − h̃1(k)

]
(n1 − k)

G1(t + s) − G1(t)

1 − G1(t)

[
1 − G1(t + s)

1 − G1(t)

]n1−k−1

+ 2 sup
i≤n1

∣∣∣h̃1(i)
∣∣∣
{

1 −
[
1 − G1(t + s)

1 − G1(t)

]n1−k [
1 − (n1 − k)

G1(t + s) − G1(t)

[1 − G1(t + s)]

]}
.

Now it is easy to see that

lim
s→0+

E
[
h̃1(k1(t + s)) − h̃1(k1(t))|k1(t) = k

]

s
=

= (n1 − k)
[
h̃1(k + 1) − h̃1(k)

]
ρ1(t)

and the lemma is proved.

The infinitesimal operator A2,t of the processes k2(t) is calculated analo-

gously and we have

A2,th̃2(k) = (n2 − k)
[
h̃2(k + 1) − h̃2(k)

]
ρ2(t).

Let h̃1(k) = h1(k) for k = 1, ..., n1 and h̃1(0) = 0, and h̃2(k) = h2(k) for k =

1, ..., n2 and h̃2(0) = 0. The following theorem determines the optimal stopping

time τ∗ for a large class of possible h1 and h2.

Theorem 2.1. Suppose that G1 ∈ G1 has non-increasing failure rate ρ1,

G2 ∈ G2 has non-increasing failure rate ρ2, and the functions h1(k) and h2(k) in
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formula (1.5) are such that h1(k)−h1(k+1) is non-increasing for k ∈ {1, ..., n1−1}
and h2(k)− h2(k + 1) is non-increasing for k ∈ {1, ..., n2 − 1}. Then the stopping

time

τ∗ = inf
{

t ≥ t1 : A1,th̃1(k1(t)) + A2,th̃2(k2(t)) + c′1(t) + c′2(t) ≥ 0
}

= inf

{
t ≥ t1 : (n1 − k1(t))[h1(k1(t)) − h1(k1(t) + 1)]ρ1(t)

+ (n2 − k2(t))[h2(k2(t)) − h2(k2(t) + 1)]ρ2(t) ≤ c′1(t) + c′2(t)

}
(2.3)

minimizes the expected risk given by (2.1) over all stopping times τ ≥ t1, τ ∈ T .

Proof: The proof follows Starr et al. (1976), Theorem 2.1. Using Dynkin’s

formula, we have

E[h̃1(k1(τ)) + h̃2(k2(τ)) + c1(τ) + c2(τ)] =

= E

{∫ τ

0
[A1,th̃1(k1(t)) + A2,th̃2(k2(t)) + c′1(t) + c′2(t)]dt

}

for all stopping times τ . In particular for τ ≥ t1 we have

E[h1(k1(τ
∗)) + h2(k2(τ

∗)) + c1(τ
∗) + c2(τ

∗)] −
− E[h1(k1(τ)) + h2(k2(τ)) + c1(τ) + c2(τ)] =

= E[h̃1(k1(τ
∗)) + h̃2(k2(τ

∗)) + c1(τ
∗) + c2(τ

∗)]

− E[h̃1(k1(τ)) + h̃2(k2(τ)) + c1(τ) + c2(τ)]

= E

{∫ τ∗

τ

[A1,th̃1(k1(t)) + A2,th̃2(k2(t)) + c′1(t) + c′2(t)]dt1(τ < τ∗)

}

− E

{∫ τ

τ∗
[A1,th̃1(k1(t)) + A2,th̃2(k2(t)) + c′1(t) + c′2(t)]dt

}
1(τ > τ∗).(2.4)

Taking into account the assumptions concerning the function h1(k), h2(k), c1(t),

c2(t), ρ1(t) and ρ2(t) we have that (2.4) is less or equal to zero. Thus, the stopping

time τ∗ is optimal.

3. SPECIAL CASE

In this section we use the solutions of Section 2 to estimate a common

location parameter of two normal distributions under the squared error loss

L(θ, d) = (d − θ)2(3.1)

and under a LINEX loss function

L(θ, d) = exp[a(d − θ)] − a(d − θ) − 1,(3.2)
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where a 6= 0. Taking MRE estimators as optimal estimators of a location pa-

rameter of two normal distributions, we construct optimal sequential estimation

procedures under the aforementioned loss functions in the model with observa-

tions which are available at random times.

Let Xi, i = 1, ..., n1, be independent random variables from the normal dis-

tribution N (θ, σ2
1) and Yi, i = 1, ..., n2, be independent random variables from the

normal distribution N (θ, σ2
2), where θ ∈ R is an unknown location parameter and

σ1, σ2 > 0 are known. We assume that the samples (X1, ..., Xn1
) and (Y1, ..., Yn2

)

are independent and σ1 6= σ2.

Let

Xk1(t) =
1

k1(t)

k1(t)∑

i=1

Xi, Y k2(t) =
1

k2(t)

k2(t)∑

i=1

Yi

denote the sample means based on the random size sample Xk1(t)=
(
X1, ...,Xk1(t)

)

and Yk2(t) =
(
Y1, ..., Yk2(t)

)
, respectively, where k1(t) is given by (1.1) and k2(t)

is given by (1.2).

The following theorem provides the MRE estimator of the parameter θ and

the corresponding risk function under the loss function given by (3.1) and (3.2),

respectively.

Theorem 3.1. For any stopping time t

(a) If the loss function is given by (3.1), then the MRE estimator of the

parameter θ is

d∗S
(
Xk1(t),Yk2(t)

)
= ωXk1(t) + (1 − ω)Y k2(t)

with ω ∈ (0, 1), and the risk function of the estimator d∗S has the form

Rt (θ, d∗S) =
ω2σ2

1

2k1(t)
+

(1 − ω)2σ2
2

2k2(t)
+ cAk1(t) + cBk2(t) + c1(t) + c2(t).

(b) If the loss function is given by (3.2), then the MRE estimator of the

parameter θ is

d∗L
(
Xk1(t),Yk2(t)

)
= ω

(
Xk1(t)−

aσ2
1

2k1(t)

)
+ (1−ω)

(
Y k2(t)−

aσ2
2

2k2(t)

)

+ ω(1 − ω) a

(
σ2

1

2k1(t)
+

σ2
2

2k2(t)

)

with ω ∈ (0, 1), and the risk function of the estimator d∗L has the form

Rt(θ,d
∗
L) =

ω2a2σ2
1

2k1(t)
+

(1−ω)2a2σ2
2

2k2(t)
+ cAk1(t) + cBk2(t) + c1(t) + c2(t).
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Proof: The forms of the MRE estimators d∗S and d∗L are obtained from

the general formula for the MRE estimators of the location parameter under the

loss function (1.4) (see e.g. Shao (2003), Theorem 4.5). The formulas for the risk

functions Rt (θ, d∗S) and Rt (θ, d∗L) follow from straightforward calculations.

On the basis of Theorems 2.1 and 3.1 we construct optimal sequential esti-

mation procedures of the form
(
τ∗, d∗

(
Xk1(τ∗),Yk2(τ∗)

))
, where τ∗ is defined by

(2.3), and d∗ is the corresponding sequential MRE estimator of θ based on the

random size samples Xk1(τ∗) and Yk2(τ∗).

The next theorem determines the optimal sequential estimation procedure

under the loss function L(θ, d) given by (3.1) and (3.2), respectively.

Theorem 3.2. Suppose that G1 ∈ G1 has non-increasing failure rate ρ1

and G2 ∈ G2 has non-increasing failure rate ρ2.

(a) Under the loss function Lt(θ, d) given by (1.3) with L(θ, d) of the form

(3.1), the sequential estimation procedure
(
τ∗
S , d∗S

(
X

k1(τ∗
S),Yk2(τ∗

S)

))
,

where

τ∗
S = inf

{
t ≥ t1 : (n1 − k1(t))

[
ω2σ2

1

2k1(t)
− ω2σ2

1

2(k1(t) + 1)
− cA

]
ρ1(t)

+ (n2−k2(t))

[
(1−ω)2σ2

2

2k2(t)
− (1−ω)2σ2

2

2(k2(t)+1)
− cB

]
ρ2(t) ≤ c′1(t) + c′2(t)

}

and

d∗S

(
Xk1(τ∗

S
),Yk2(τ∗

S
)

)
= ωXk1(τ∗

S
) + (1 − ω)Y k2(τ∗

S
)

is optimal.

(b) Under the loss function Lt(θ, d) given by (1.3) with L(θ, d) of the form

(3.2), the sequential estimation procedure
(
τ∗
L, d∗L

(
X

k1(τ∗
L),Yk2(τ∗

L)

))
,

where

τ∗
L = inf

{
t ≥ t1 : (n1 − k1(t))

[
ω2a2σ2

1

2k1(t)
− ω2a2σ2

1

2(k1(t) + 1)
− cA

]
ρ1(t)

+ (n2−k2(t))

[
(1−ω)2a2σ2

2

2k2(t)
− (1−ω)2a2σ2

2

2(k2(t)+1)
− cB

]
ρ2(t) ≤ c′1(t) + c′2(t)

}

and

d∗L

(
Xk1(τ∗

L
),Yk2(τ∗

L
)

)
= ω

(
Xk1(τ∗

L
) −

aσ2
1

2k1(τ∗
L)

)

+ (1 − ω)

(
Y k2(τ∗

L
) −

aσ2
2

2k2(τ∗
L)

)

+ ω(1 − ω) a

(
σ2

1

2k1(τ∗
L)

+
σ2

2

2k2(τ∗
L)

)

is optimal.
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Proof: We have to show that the assumptions of Theorem 2.1 are satisfied,

i.e., the functions h1(k) − h1(k + 1) and h2(k) − h2(k + 1) are non-increasing on

the set {1, ..., n1−1} and {1, ..., n2−1}, respectively. Hence, we need to verify the

condition 2h1(k + 1) − h1(k) − h1(k + 2) ≤ 0 and 2h2(k + 1) − h2(k) − h2(k + 2)

≤ 0, which are equivalent to h1(k + 1) ≤ (h1(k) + h1(k + 2))/2 and h2(k + 1) ≤
(h2(k) + h2(k + 2))/2. This can be reduced to the verification that h1 and h2 are

convex on the interval [1, n1 − 1] and [1, n2 − 1], respectively. It is easy to see

that

(a) h′′
1(k) =

ω2σ2
1

k3
, h′′

2(k) =
(1 − ω)2σ2

2

k3

and h′′
1(k) > 0, h′′

2(k) > 0 for k ≥ 1;

(b) h′′
1(k) =

ω2a2σ2
1

k3
, h′′

2(k) =
(1 − ω)2a2σ2

2

k3

and h′′
1(k) > 0, h′′

2(k) > 0 for k ≥ 1.

4. SIMULATION RESULTS

In this section we present some results of the numerical study. The first

table contains the results of the simulation study for X1, ..., Xn1
∼ N (0, 1), n1 =

30 and Y1, ..., Yn2
∼ N (0, 25), n2 = 50: the means of τ∗

S , d∗S , τ∗
L and d∗L for a = 2,

over the 1000 replications, when ω = 0.25, ρ1(t) = 1 (Ui ∼ E(1)), c1(t) = t2 and

ρ2(t) = (2 ·
√

3t)−1, (Vi ∼ We(1/2, 3)), c2(t) = et − 1.

cA cB Mean(τ∗
S
) Mean(d∗

S
) Mean(τ∗

L
) Mean(d∗

L
)

0.005 0.000001 0.2388 −0.0094 0.4705 −0.8777
0.000001 0.005 0.2339 −0.0099 0.4629 −0.8949
0.005 0.005 0.2281 0.0123 0.4537 −0.8943
0.000001 0.000001 0.2455 −0.0406 0.4687 −0.9203

The second table contains the results of the simulation study for X1, ..., Xn1
∼

N (0, 1), n1 = 30 and Y1, ..., Yn2
∼ N (0, 25), n2 = 50: the means of τ∗

S , d∗S , τ∗
L and

d∗L for a = 2, over the 1000 replications, when ω = 0.5, ρ1(t) = (2 ·
√

3t)−1 (Ui ∼
We(1/2, 3)), c1(t) = et − 1 and ρ2(t) = 1 (Vi ∼ E(1)), c2(t) = t2.

cA cB Mean(τ∗
S
) Mean(d∗

S
) Mean(τ∗

L
) Mean(d∗

L
)

0.005 0.000001 0.3634 0.0036 0.6073 −0.4517
0.000001 0.005 0.3657 −0.0088 0.6144 −0.4831
0.005 0.005 0.3610 −0.0097 0.6102 −0.4881
0.000001 0.000001 0.3665 0.0134 0.6165 −0.4453



308 Agnieszka Ste֒pień-Baran

The third table contains the results of the simulation study for X1, ..., Xn1
∼

N (0, 1), n1 = 30 and Y1, ..., Yn2
∼ N (0, 25), n2 = 50: the means of τ∗

S , d∗S , τ∗
L and

d∗L for a = 2, over the 1000 replications, when ω = 0.75, ρ1(t) = (2 ·
√

3t)−1 (Ui ∼
We(1/2, 3)), c1(t) = t2 and ρ2(t) = 1 (Vi ∼ E(1)), c2(t) = et − 1.

cA cB Mean(τ∗
S
) Mean(d∗

S
) Mean(τ∗

L
) Mean(d∗

L
)

0.005 0.000001 0.2975 −0.0107 0.5129 −0.1816
0.000001 0.005 0.2956 0.0284 0.5076 −0.1504
0.005 0.005 0.2908 0.0014 0.5010 −0.1417
0.000001 0.000001 0.3021 0.0106 0.5110 −0.1710

Simulation results above are consistent with expectations. The both procedures

are working properly. In case of Linex loss function, decision function is biased,

however it is MRE estimator because ω is fixed. It could be applicable especially

in a case when one sample is more preferable than second one.
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