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Abstract:

• We develop a hierarchical dynamic Bayesian beta model for modelling a set of time
series of rates or proportions. The proposed methodology enables to combine the
information contained in different time series so that we can describe a common un-
derlying system, which is though flexible enough to allow the incorporation of random
deviations, related to the individual series, not only through time but also across se-
ries. That allows to fit the case in which the observed series may present some degree
of level shift. Additionally, the proposed model is adaptive in the sense that it incor-
porates precision parameters that can be heterogeneous no only over time but also
across the series. Our methodology was applied to both real and simulated data.
The real data sets used in this article include three time series of Brazilian monthly
unemployment rates, observed in the cities of Recife, São Paulo and Porto Alegre, in
the period from March 2002 to March 2012. A new parametrization of the precision
parameter makes possible the use of the same type of link function for both the mean
and the precision parameters, which are then expressed in the (0, 1) interval, providing
a more meaningful interpretation in terms of the magnitude of the scale.
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1. INTRODUCTION

The beta regression models, proposed by Ferrari and Cribari-Neto (2004),

have attracted the attention of many researchers. Those models are useful in

situations where the response is restricted to the standard unit interval. In this

seminal work the authors developed generalized linear models (GLM) theory for

dealing with the situation where only the parameter related to the mean of the

beta distribution was allowed to vary.

In the context of GLM’s Nelder and Lee (1991) and Smyth and Verbyla

(1999) describe a class of joint generalized linear models which allow both the

mean and the dispersion parameters in the GLM model to vary with the response.

Nelder and Lee (1991) argue that it is necessary to use two GLM’s when

both mean and dispersion are to be modeled, i.e., we would have the so called

mean process and the dispersion process. Pregibon (1984) was the first to suggest

this kind of specification. Other articles related to such perspective, in which the

dispersion parameter of the beta model is allowed to vary, include Cuervo-Cepeda

and Gamerman (2004), Smithson and Verkuilen (2006), Espinheira (2007), Simas

et al. (2010) and Bayer (2011). These works emphasize the need of correctly

modelling the dispersion parameter of the beta regression in order to achieve

efficient estimation.

Based on the class of beta regressions introduced by Ferrari and Cribari-

Neto (2004), Rocha and Cribari-Neto (2009) proposed a dynamic model for con-

tinuous random variates whose range is described by the standard unit interval

(0,1). The proposed frequentist βARMA model includes both autoregressive and

moving average dynamics, and also includes a set of regressors. Da-Silva et al.

(2011) proposed a dynamic Bayesian beta model for modelling and forecasting

single time series of rates or proportions. In such work only the mean parameter

of the beta model was allowed to vary with time.

In the present work we build upon the dynamic Bayesian beta model in-

troduced by Da-Silva et al. (2011) and upon the class of conditionally Gaussian

dynamic models (see Cargnoni et al., 1997; Gamerman and Migon, 1993) to pro-

pose a hierarchical dynamic Bayesian beta model in which both the mean and

the dispersion parameters of the beta model can vary with time. Since the pro-

posed model is hierarchical, the parameters in the model are related both through

time and hierarchically across several series, which supposedly share a common

underlying trend.

Even though it is possible to individually fit time series that share common

features, gains are obtained when those series are analyzed jointly (Gamerman

and Migon, 1993). Naturally, by disregarding existing common features shared
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by a given set of time series (e.g. trends, seasonal behavior, etc) one could end

up with poorer analyses and forecasts.

We also would like to stress the fact that Cargnoni et al. (1997) and Gamer-

man and Migon (1993) do not deal with the situation of fitting the dispersion

process, a feature that we introduce in our present model formulation. Thus, in

this paper we address the issues of formulating a hierarchical dynamic beta model

that allows dealing with a set of related time series, each one following related

beta models that may present time-evolving mean and precision parameters.

We motivate our study with the problem of forecasting monthly Brazilian

unemployment rates in different cities. The Brazilian Institute of Geography and

Statistics (IBGE) implemented the Monthly Unemployment Survey (PME) in

1980, but since 2002 a new survey methodology has been adopted.

The PME is a monthly survey about workforce and income. The most

important metropolitan regions in Brazil are included in such survey: São Paulo,

Rio de Janeiro, Belo Horizonte, Porto Alegre, Recife and Salvador. The data can

be found at http://www.ibge.gov.br/.

In Figure 1 we present the PME data for the cities of Recife, São Paulo and

Porto Alegre. As we can observe, the three series have similar underlying trends

but distinct levels and, possibly, distinct dispersions, specially in the case of the

city of Recife.
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Figure 1: Observed unemployment rates in the cities of Recife,
São Paulo and Porto Alegre — Brazil.

This article is organized as follows. In Section 2 we introduce the hierarchi-

cal dynamic beta model. In Section 3 we describe a fully Bayesian methodology

to analyze data from a hierarchical dynamic beta process. In Sections 4 to 6 we

apply the methods to simulated and real data.
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2. THE HIERARCHICAL DYNAMIC BETA MODEL

In this section we present a methodology for modelling a set of I time series

of rates or proportions, yit, i = 1, ..., I, which share certain characteristics which

allows us to treat them in the class of the hierarchical models.

Da-Silva et al. (2011) used the parametrization of the beta distribution

given by Ferrari and Cribari-Neto (2004) to describe a dynamic beta model in

which the precision parameter ζ was considered fixed. However, a more general

model can be described by considering both the mean and the precision param-

eters varying with time. In such case, the observation equation of the dynamic

model is given by

p
(

yit | µit, ζit
)

=
Γ(ζit)

Γ(ζitµit) Γ
(

ζit(1−µit)
) yζitµit−1

it (1− yit)
ζit(1−µit)−1 ,(2.1)

and we have E(yit | µit, ζit) = µit and V (yit | µit, ζit) = µit(1 − µit)/(1 + ζit),

with 0 ≤ µit ≤ 1 and ζit > 0, t = 1, ..., N and i = 1, ..., I.

Another parametrization for ζ, proposed by Bayer (2011), can be used in

our context, since it allows us to use link functions for the transformed ζ which

are easier to interpret than, say, a log link function, whose the upper limit is

unbounded.

In equation (2.1), let φit = 1
1+ζit

so that ζit = 1−φit

φit
. Thus, 0 < φit < 1, and

the observation equation of the model is now written as

Observation equation: Let

p
(

yit | µit, φit
)

=
y
µit

�
1−φit

φit

�
−1

it (1 − yit)
(1−µit)

�
1−φit

φit

�
−1

B
(

µit

(

1−φit

φit

)

, (1 − µit)
(

1−φit

φit

)) ,(2.2)

with i = 1, ..., I, t = 1, ..., N and B(a, b) = Γ(a)Γ(b)
Γ(a+b) , be the observation equation

of the dynamic model. Let y = (y1, ..., yN ) with yt = (y1t, ..., yIt)
′, t = 1, ..., N .

The model structure is such that we have I time series in study, in which

(yit | µit, φit) is independent of (yjt | µjt, φjt) for i 6= j. Equation (2.2) incorpo-

rates heterogeneity in the precision parameter that may occur both over time or

across the series.

Other components which are essential in the description of our hierarchical

dynamic beta model include

(i) the definition of real transformations applied to µit and φit, allowing

the use of some simplifying Gaussian properties;
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(ii) the description of structural equations represented in terms of lin-

ear models relating the transformed parameters and the latent states

and

(iii) the representation of the system equation of the dynamic model

in which the state parameters are related to surrogate observation

equations described by the structural equations.

In order to describe the structural equation, two link function, h1(·) and

h2(·), associated to, respectively, the mean process and the dispersion process,

should be defined. These are real valued transformations and are useful in the

model construction since some of the nice properties of the Gaussian dynamic

linear models (DLM’s) follow from that.

Take η1it = h1(µit) and η2it = h2(φit) with ηit = (η1it, η2it)
′ such that ηit is

a real valued vector. Let ηt = (η1t, ..., ηIt)
′, i.e., ηt is a 2I×1 vector of structural

parameters for all the I series at time t with ηit = (η1it, η2it)
′, thus η = (η1, ..., ηN ).

Now, yit is parametrized by ηit, i.e., (yit |ηit) ∼ Beta(yit |ηit).

Structural equations: Let

ηt = Ftθt + vt , vt ∼ N(0, V ) ,(2.3)

with ηit = Fitθt + vit be the structural equation in our model formulation. The

error term vit in the structural equation is assumed to follow a Gaussian distri-

bution with zero mean vector and covariance matrix Vi, i.e., vit ∼ N(0, Vi), with

t = 1, ..., N and i ∈ {1, ..., I}.

In equation (2.3) the term θt, representing the state parameter of the dy-

namic model at time t, is a real valued s-dimensional vector of latent states.

Besides, Ft = (F1t, ..., FIt)
′ is the 2I×s design matrix for all the I series at time t,

vt = (v1t, ..., vIt)
′ is the 2I×1 vector of errors for the structural equations and

V = block-diag(V1, ..., VI) is a (2I×2I) block diagonal matrix.

System Equation: Let

θt = Htθt−1 + wt , wt ∼ (0,W ) ,(2.4)

with t = 1, ..., N , be the system equation of the dynamic model.

The error term wt in the system equation is assumed to follow a Gaussian

distribution with zero mean vector and covariance matrix W, i.e., wt ∼ N(0,W ),

with t = 1, ..., N . Additionally, we assume that the error terms wt and vit are all

mutually independent.

The s-dimensional covariance matrix W (for the s-dimensional vector of

latent states, θt), is assumed to be block-diagonal including k blocks, with k ≤ s.
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Those blocks are associated to the effects included in the latent states. Thus,

W = block-diag(W1, ...,Wk). The matrix Ht is a specified s×s state evolution

matrix.

The hierarchical dynamic beta model (HDBM) requires the specification of

a (2I×2I) covariance matrix V in the structural equations and another covari-

ance matrix W for the state vector. That might become complicated for large

matrix dimensions. In many applications it may be sufficient to model simpler

dependences, in particular to allow individual random effects. That is why in our

proposed model both V and W are block-diagonal matrices.

Notice that equations (2.3) and (2.4) represent a standard dynamic linear

model for the state vector θt. Additionally, θ is conditionally independent of y

given η. These combined features imply a substantial simplification in the pos-

terior computations of the parameters η and θ, as described in Cargnoni et al.

(1997).

3. MODELLING THE LATENT COMPONENTS OF THE HDBM

In this section we set up the hierarchical beta model for a hypothetical case

in which yit represents a given rate or proportion at region i and time t, i = 1, ..., I

and t = 1, ..., N . We take the logit transformation of both µit and φit and, to

η1it and η2it, we fit dynamic models considering, respectively, a second-order

polynomial trend seasonal effects and a second-order polynomial trend effects.

The formulation of the structural equations is given below:

η1it = log

(

µit
1 − µit

)

= Fi1tθt + vi1t , vi1t ∼ N(0, Vi1) ,

(3.1)

η2it = log

(

φit
1 − φit

)

= Fi2tθt + vi2t , vi2t ∼ N(0, Vi2) ,

with Vi = diag(Vi1, Vi2).

In equation (3.1) the term Fi1tθt, on the right-hand side of ηi1t, is the

linear predictor of the logit transformed expected value of the beta model for

time t and region i. We use a second-order polynomial trend seasonal effects

model with offset term in order to describe ηi1t, that is

η1it = βt + λt0 + γit + vi1t .(3.2)

The DLM representation of the model for η1it is

Second-order polynomial effects for the level with respect to µit:

βt = βt−1 + δt−1 + wβt
,

(3.3)
δt = δt−1 + wδt ,
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Free-form Seasonal effects:

λtr = λt−1,r+1 + wtr , r = 0, ..., p− 2 ,
(3.4)

λt,p−1 = λt−1,0 + wt,p−1 ,

First-order polynomial effects for the offset term:

(3.5) γit = γi,t−1 + wγit
,

where

• βt represents an underlying level at time t, with respect to h1(µit), that

is common to the I series;

• δt is the incremental growth;

• λt0 represents a seasonal effect that is common to the I series.

We denote the size of the seasonal cycle as p.

• γit is an offset parameter representing deviations of the observed rate in

region i at time t with respect to the average βt;

• vi1t represents the region i series-specific stochastic deviation.

In equation (3.1) the term Fi2tθt, on the right-hand side of η2it, is the linear

predictor of the logit transformed term related to the precision of the beta model

for time t and region i. We use a second-order polynomial effects model with

offset term in order to describe η2it, that is

η2it = ψt + αit + vi2t .(3.6)

The DLM representation of the model for η2it is

Second-order polynomial effects for the level with respect to φit:

ψt = ψt−1 + ξt−1 + wψt
,

(3.7)
ξt = ξt−1 + wξt ,

First-order polynomial effects for the offset term:

αit = αi,t−1 + wαit
,(3.8)

where

• ψt represents an underlying level at time t, with respect to h2(φit), that

is common to the I series;

• ξt is the incremental growth;

• αit is an offset parameter representing deviations of the observed rate

in region i at time t with respect to the average ψt;

• vi2t represents the region i series-specific stochastic deviation.
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Identifiability restrictions:

λt,p−1 = −

p−2
∑

r=0

λtr , γIt = −
I−1
∑

i=1

γit , αIt = −
I−1
∑

i=1

αit .

In order to exemplify the construction of the model, we consider I = 3

regions where the rates are measured over time. Thus, the vector (η1it, η2it)
′ is

described by
(

η1it

η2it

)

=

(

βt + λt0 + γit
ψt + αit

)

+

(

vi1t
vi2t

)

, i = 1, 2, 3 .

That is,

ηit = Fitθt + vit , i = 1, 2, 3 ,

where γ3t = −(γ1t + γ2t), α3t = −(α1t + α2t). For example, for seasonal cycles of

size p = 4 (quarters), then λt3 = −(λt0 + λt1 + λt2).

The state vector θt for generic-sized p cycles is represented by

θt =
(

βt, δt, λt0, λt1, ..., λt,p−2, ψt, ξt, γ1t, γ2t, α1t, α2t

)

.

Consider the following design matrices:

J =

(

1 1
0 1

)

and P =

(

−1′

p−2 −1

Ip−2 0

)

.

Matrices J and P are essential in the description of our dynamic model.

Suppose a DLM such that the observation equation is yt = βt + ǫt and the system

equation is given by the pair of equations in expression (3.3). Such model is

called a linear growth model and it includes a time-varying slope βt. If we define

θt = (βt, δt)
′ and F = (1, 0)′, then the observation equation can be represented

by yt = F ′θt + ǫt, while the system equation, by θt = Jθt−1 + (wβt
, wδt)

′.

Matrix J allows us to write a linear growth model such the permutation

matrix P is p-cyclic, so that Pnp = Ip and P h+np = P h, for h = 1, ..., p, and

any integer n ≥ 0. For example, suppose, for simplicity, a DLM model with

yt = Fθt + ǫt describing the observation equation and θt = θt−1 +wt, the system

equation. Additionally, suppose a purely seasonal series and quarterly data yt,

t = 1, 2, ..., so that when yt−1 refers to the first quarter of the year, yt refers to

the second one.

Due to the restriction
∑4

i=1 αi = 0, the series might be described by sea-

sonal deviations from the zero. Thus assume that yt−1 = α1 + ǫt−1, yt = α2 + ǫt,

and so on, so that to (yt−1, yt, yt+1, yt+2, yt+3, yt+4, yt+5, yt+6) are associated the

respective seasonal deviations from zero, (α1, α2, α3, α4, α1, α2, α3, α4). Consider

now that θt−1 = (α1, α4, α3, α2) and that F ′ = (1, 0, 0, 0). Then, the successive

application of matrix P makes possible to formulate the desired quarterly seasonal

pattern.
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Considering I = 3 sub-populations or regions, the design matrices associ-

ated to the hierarchical beta dynamic model given by expressions (2.3), (2.4) and

(3.1) to (3.8) are given by

(3.9) H = block-diag
(

J, P, J, I2, I2

)

,

F1 =

(

1 0 1 01×(p−2) 0 0 1 0 0 0

0 0 0 01×(p−2) 1 0 0 0 1 0

)

,

F2 =

(

1 0 1 01×(p−2) 0 0 0 1 0 0

0 0 0 01×(p−2) 1 0 0 0 0 1

)

,

F3 =

(

1 0 1 01×(p−2) 0 0 −1 −1 0 0

0 0 0 01×(p−2) 1 0 0 0 −1 −1

)

.

The incorporation of seasonal components in the model can also be done by

using the Fourier Representation Theorem (see Pole, West and Harrison, 1994,

pp. 49) in which any cyclical function of period p defined by a set of p effects

ψ1, ..., ψp, can be expressed as a linear combination of sine and cosine terms.

Let ω = 2π/p, then there exist (p− 1) real numbers a1, ..., ah; b1, ..., bh−1 such

that, for j = 1, ..., p,

ψj = ah cos(πj) +
h−1
∑

r=1

[

ar cos(ωrj) + br sin(ωrj)
]

,(3.10)

where p = 2h if p is even, and p = 2h− 1 with ah = 0 if p is odd. The Fourier

coefficients ar and br are known quantities and we usually set ah = 0. Thus

equation (3.10) can be written as ψj =
∑h

r=1 Sr(j), where

Sr(j) = ar cos(ωrj) + br sin(ωrj) = Ar cos(ωrj + γr) ,

Ar = (a2
r + b2r)

1/2 and γr = arctan(−br/ar) .

The terms Sr(j) is called the r-th harmonic. Ar, ωr and γr describe, respectively,

the amplitude, the frequency and the phase of Sr(j).

For seasonal cycles of even size p (say quarters), we replace matrix P by G

where G = block-diag
(

J2(1, ω), J2(1, 2ω), ..., J2(1, (p/2 − 1)), −1
)

, with Gp = G

and

J2(1, ω) =

(

cos(ω) sin(ω)
−sin(ω) cos(ω)

)

.

For a second-order polynomial trend two harmonic model, the design ma-

trices are given by

G = block-diag
(

J2(1, ω), J2(1, 2ω)
)

,

(3.11) H = block-diag
(

J,G, J, I2, I2

)

,
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F1 =

(

1 0 1 0 1 0 0 0 1 0 0 0
0 0 0 0 1 0 1 0 0 0 1 0

)

,

F2 =

(

1 0 1 0 1 0 0 0 0 1 0 0
0 0 0 0 1 0 1 0 0 0 0 1

)

,

F3 =

(

1 0 1 0 1 0 0 0 −1 −1 0 0
0 0 0 0 1 0 1 0 0 0 −1 −1

)

.

3.1. Estimated proportions and forecasting

The estimated proportions are calculated using the following procedure:

(1) The inverse transformations µit = exp(η1it)
1+exp(η1it)

and φit = exp(η2it)
1+exp(η2it)

are

evaluated at the estimated values (posterior means) of η1it and η2it,

for i = 1, ..., I and t = 1, ..., N .

(2) For i = 1, ..., I and t = 1, ..., N we simulate n (say, n = 1,000) samples

from a beta distribution Beta
(

µit

(

1−φit

φit

)

, (1−µit)
(

1−φit

φit

))

and then

we take the average value of those draws.

(3) For the confidence bands we repeat steps (1) and (2) for calculating

the 2.5% and 97.5% percentiles of the posterior distribution of ηit.

The k-step-ahead forecasts for the states are obtained by the repeated

application of the system equation (see expression (2.3)), that is,

θt+k = HHt+k(k) θt +
k
∑

r=1

HHt+k(k − r)wt+r ,

where HHt+k(r) = Ht+kHt+k−1 × ··· ×Ht+k−r+1 for all t and integer r ≤ k, with

HHt+k(0) = I. Thus, by linearity and independence and also taking into account

the Bayesian linear estimation method,

θt+k ∼
(

at(k), Rt(k)
)

,

with at(k) = Ht+k at(k− 1) and Rt(k) = Ht+kRt−kH
′

t+k +Wt+k, and at(0) = mt

and Rt(0) = Ct. Therefore the “future” θt values are obtained by successively

sampling from the system equation followed by the evaluation of the structural

equation (see expression (2.4)). The forecast rates are then obtained by running

steps (1) to (3) given above.
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4. BAYESIAN ANALYSIS

In the prior specification for θ0, V and W we assume that θ0, V1, ..., VI and

W1, ...,Wk are mutually independent, with θ0 ∼ N(m0, C0), Vi, i = 1, ..., I have a

common inverse Wishart prior and W be block-diagonal with an inverse Wishart

prior for each block.

It is more convenient to work with the precision matrices instead of with

the covariances matrices. Let Φ0i = V −1
i , i = 1, ..., I, Φl = W−1

l , l = 1, ..., k,

Φ0 = block-diag(Φ01, ...,Φ0I) and Φ = block-diag(Φ1, ...,Φk). Suppose that Φ0i,

i = 1, ..., I, follow independent Wishart distributions such that Φ0i ∼W (ν0i, S0i),

where S0i is a symmetric positive definite matrix of dimensions pi×pi. Similarly,

Φl ∼W (ςl, Zl), follows independent prior distributions for l = 1, ..., k, where Zl
is a symmetric positive definite matrix of dimensions ql×ql.

The joint posterior distribution is given by

p
(

η, θ,Φ0,Φ | y
)

∝

[

N
∏

t=1

(

I
∏

i=1

Beta(yit |ηit)N
(

ηit;Fitθt,Φ
−1
0i

)

)

N
(

θt;Htθt−1,Φ
−1
)

]

× N(θ0;m0, C0)
I
∏

i=1

W (Φ0i; ν0i, S0i)
k
∏

l=1

W (Φl; ςl, Zl) .(4.1)

The Markov chain Monte Carlo (MCMC) procedure used for the inferential

processes involves sampling from the full conditional posteriors p(η | θ,Φ0,Φ, y),

p(θ | η,Φ0,Φ, y) and p(Φ0,Φ | η, θ, y).

4.1. Sampling from p
(

θ | η,Φ0,Φ, y
)

As mentioned before, the equations (2.3) and (2.4) represent a standard

dynamic linear model for the state vector θt. In such setting, the fact that

θ is conditionally independent of y given η implies that p(θ | η,Φ0,Φ, y) = p(θ |

η,Φ0,Φ). Then, in a regular DLM, η has the same rule as y, so that in the

sequential updating formulations of the DLM, y will be replaced by η.

The representation of the full conditional posterior distribution of p(θ |

η,Φ0,Φ), considering the conditional independence structure of the DLM as well
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the Bayes theorem is given by

p
(

θ | η,Φ0,Φ
)

= p
(

θN | η,Φ0,Φ
)

N−1
∏

t=0

p
(

θt | θt+1, ..., θN , η,Φ0,Φ
)

= p
(

θN | η,Φ0,Φ
)

N−1
∏

t=0

p
(

θt | θt+1, η,Φ0,Φ
)

∝ p
(

θN | η,Φ0,Φ
)

N−1
∏

t=0

p
(

θt+1 | θt, η,Φ0,Φ
)

p
(

θt | η,Φ0,Φ
)

.(4.2)

Thus, all the state vectors can be sampled from p(θ | η,Φ0,Φ) using the

FFBS (Forward-filtering, backward-sampling) algorithm (Carter and Kohn, 1994;

Frühwirth-Schnatter, 1994). Conditionally on the “observed values” of η, the

algorithm below allows us to draw a sample θN , θN−1, ..., θ0 from p(θ | η,Φ0,Φ)

as follows:

(1) Filtering

Using the Kalman filter (de Jong, 1991), compute the moments mt

and Ct of the joint posterior p(θt | η,Φ0,Φ), t = 1, ..., N , by applying

the standard DLM sequential updating formulae with y replaced by η.

For more details see West and Harrison (1997).

• mt = at +Atet, Ct = Rt −AtQtA
′

t;

• At = RtFtQ
−1
t , et = ηt − ft;

• at = Htmt−1, Rt = HtCt−1H
′

t + Φ−1;

• ft = Ftat, Qt = F ′

tRtFt + Φ−1
0 .

(2) Smoothing

At time t = N , sample the vector state θN from p(θN | η,Φ0,Φ), i.e.,

sample θN from (θN | η,Φ0,Φ) ∼ N(mN , CN ). For times t=N−1, ..., 0,

sample θt from p(θt | θt+1, η,Φ0,Φ) conditionally on the just sampled

value θt+1. That is performed by sampling θt from (θt | θt+1, η,Φ0,Φ)∼

N(ut, Ut), where

• ut = mt +Bt(θt+1 − at+1);

• Ut = Ct −BtRt+1B
′

t;

• Bt = CtHtR
−1
t+1.

4.2. Sampling from p(η | θ,Φ0,Φ, y)

Given θ, Φ0 and Φ, the ηit’s are mutually independent. That implies that

a sample from the conditional posterior of (η | θ,Φ0,Φ, y) is obtained through

I×N independent samples from the respective distributions given by

p
(

ηit | θt,Φ0i,Φ, yit
)

∝ p
(

yit | ηit
)

p
(

ηit | θt,Φ0i

)

.(4.3)
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The second term on the right-hand side of the full conditional (4.3) is the normal

prior ηit ∼ N(Fitθt,Φ0i), while the first term is given by the beta model described

by expression (2.2), such that η1it = h1(µit) and η2it = h2(φit).

Since the distribution p(ηit | θt,Φi0, yit) does not have a closed form, it is

necessary to use the Metropolis–Hastings algorithm (M-H) (Metropolis et al.,

1953; Hastings, 1970) in order to draw samples from such distribution. Let m

represent the m-th MCMC draw. We use the following M-H random-walk with

symmetric normal proposal for ηit:

(a) Draw η∗1it ∼ q1(η
m−1
1it , η∗1it)

d
= N(ηm−1

1it ,Φ−1
1i0) and η∗2it ∼ q2(η

m−1
2it , η∗2it)

d
=

N(ηm−1
2it ,Φ−1

2i0).

(b) Calculate the acceptance probability α(ηm−1
it , η∗it) = min{1, Rηit

}, where

Rηit
=

π
(

η∗it | ·
)

π
(

ηm−1
it | ·

)

q
(

η∗it, η
m−1
it

)

q
(

ηm−1
it , η∗it

) =
π
(

η∗it | ·
)

π
(

ηm−1
it | ·

) ,

with π(η∗it |·) = p(yit |η
∗

it) p(η
∗

it |θt,Φ0i), π(ηm−1
it |·) = p(yit |η

m−1
it ) p(ηm−1

it |

θt,Φ0i), and q(η∗it, η
m−1
it ) = q1(η

m−1
1it , η∗1it) q2(η

m−1
2it , η∗2it).

(c) Set

ηmit =

{

η∗it with probability α
(

ηm−1
it , η∗it

)

,

ηm−1
it otherwise .

4.3. Sampling from p(Φ0,Φ | η, θ, y)

Considering that Φ0 =block-diag(Φ01,...,Φ0I) and Φ=block-diag(Φ1,...,Φk)

where Φ0i = V −1
i , i = 1, ..., I and Φl = W−1

l , l = 1, ..., k, with Φ0i ∼W (ν0i, S0i)

and Φl ∼W (ςl, Zl), l = 1, ..., k, the full conditional distribution of Φl is given by

p
(

Φl | η, θ,Φ0, y
)

∝

[

N
∏

t=1

k
∏

m=1

|Φm|
1/2 exp

{

−
1

2
(θt −Htθt−1)

T Φ(θt −Htθt−1)

}

]

× |Φl|
ςl−(pl+1)/2 exp

{

− tr(ZlΦl)
}

∝ |Φl|
N/2+ςl−(pl+1)/2 exp

{

− tr

(

1

2

N
∑

t=1

ZZll,tΦl

)

− tr(ZlΦl)

}

(4.4)

∝ |Φl|
N/2+ςl−(pl+1)/2 exp

{

− tr

((

1

2
ZZl· + Zl

)

Φl

)}

,

with ZZt = (θt −Htθt−1) (θt −Htθt−1)
T and ZZl· =

∑N
t=1 ZZll,t. Thus,

(

Φl | η, θ,Φ0, y
)

∼ Wishart

(

N

2
+ ςl,

1

2
ZZl· + Zl

)

, l = 1, ..., k .
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The full conditional distribution of Φi0 is given by

p
(

Φi0 | η, θ,Φ0, y
)

∝

[

N
∏

t=1

N
(

ηit;Fitθt,Φ
−1
0i

)

]

W (Φ0i; ν0i, S0i)

∝

[

N
∏

t=1

|Φ0i|
1/2 exp

{

−
1

2
(ηit − Fitθt)

T Φ0i(ηit − Fitθt)

}

]

(4.5)

× |Φ0i|
ν0i−(p0i+1)/2 exp

{

− tr(S0iΦ0i)
}

∝ |Φ0i|
N/2+ν0i−(p0i+1)/2 exp

{

− tr

((

1

2
SSηi

+ S0i

)

Φ0i

)}

,

with SSηi
= (ηit − Fitθt) (ηit − Fitθt)

T . Thus,

(

Φ0i | η, θ,Φ, y
)

∼ Wishart

(

N

2
+ ν0i,

1

2
SSηi

+ S0i

)

, i = 1, ..., I .

4.4. The case of static dispersion parameters

It is also possible to describe a beta hierarchical model such that the dis-

persion process does not vary with time, i.e., the precision parameters are static.

In such case, the vector ηt on the left-hand side of the structural equation (2.3)

will only include the term related to the mean process and ηit = η1it = h1(µit).

However, we can still associate a link function to the precision parameters, and

we will denote it by η2i = h2(φi), i = 1, ..., I.

The observation equation for such case is then (yit | ηit, η2i) ∼ Beta(yit |

ηit, η2i), i = 1, ..., I. The Bayesian analysis for such situation can be adapted

from the one we just described in the previous sections.

The MCMC developments for ηit are largely the same described in Section

4.2, but now they will be conditioned upon the current values of η2i. Addi-

tionally, for a given prior distribution for η2i, the corresponding full conditional

distribution is

(4.6) p
(

η2i | η, θ,Φ0,Φ, y
)

∝

[

N
∏

t=1

Beta(yit | ηit, η2i)

]

p(η2i) .

In this work the prior p(η2i) was set to be a Gaussian distribution, with

parameters chosen as the average mean and average variance of the initial esti-

mated values of η2i, i = 1, ..., I, that were obtained from separate MCMC runs

for each of the individual time series.
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5. A SIMULATION STUDY

We applied the model described in Section 3 to simulated data in which we

considered N = 72 time points (say, six years), I = 3 sub-populations and cycles

of size p = 4.

In order to obtain initial values for the MCMC procedure, we estimated the

parameters involved by running separate DLM models (described by equations

(2.3) and (2.4)) for each of the sub-populations. All the routines were written

using the R language (http://www.r-project.org/). We also made extensive use

of the excellent dlm R library by Petris (2010).

In such DLM setting the ηit’s have the same rule as the observed data.

Thus, in order to run those initial models we estimated η1it by log
(

yit

1−yit

)

and

η2it by log
(

σ̃2

it

1−σ̃2

it

)

with σ̃2
it = var(yi)/(yit(1 − yit)) (see properties of expression

(2.1)).

For the simulated data we considered a hierarchical dynamic beta model in

which a second-order polynomial trend seasonal effects were fitted to the param-

eters related to the mean, µit, and a second-order polynomial effects was fitted

to the parameters related to the precision, φit. We run chains of size 50,000 with

burn-in period of 20,000. The autocorrelations could be significantly controlled

by using gaps of size 30.

Figure 2 shows the true values (in red) used in the simulations, the esti-

mated values of the parameters involved in expressions (3.2), and the respective

confidence bands for the main effects of level, growth and seasonality. Figure 3

shows the estimated proportions for each of the sub-populations and their cor-

responding confidence bands. As we can observe all the effects and probabilities

are well estimated.
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Figure 2: Simulated data — estimated values and 95% credibility bounds for the
components of η1it: (a) Level (βt), (b) Growth (δt), (c) Seasonality (λt).
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Figure 3: Simulated data — estimated proportions and 95% credibility bounds
for the three sub-populations.
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6. APPLYING THE HIERARCHICAL DYNAMIC BETA MODEL

TO BRAZILIAN UNEMPLOYMENT RATES

In this section we apply our methods to fit the three time series of Brazilian

monthlyunemploymentrates thatweredescribed inthe Introduction(seeSection1).

The three sub-populations in our the analysis are Recife, São Paulo and Porto

Alegre, i.e., I = 3. We analyze monthly unemployment rates (MUR) based on

PME data in the period from March 2002 to July 2011 (N = 113 observations).

As a procedure for checking the performance of the model, forecast rates are also

provided. We used MUR data for the months of August 2011 to March 2012.

The Brazilian Institute of Geography and Statistics acknowledges the ne-

cessity of incorporating seasonal components in any analyses based on MUR data

(http://www.ibge.gov.br). In fact the MURs are affected by yearly cycles caused

by factors such as climatic changes, Christmas festivities and school vacations.

To the mean process, we considered a hierarchical dynamic beta model

in which a second-order polynomial trend seasonal effects model (with cycles

of p = 12 months) was fitted to the parameters related to the mean, µit (see

expressions (3.1) to (3.5)). The model structure was similar to the one used in

Da-Silva et al. (2011), and we opted for using a free-form seasonal effects model

(see equation (3.9)) instead of using harmonic analysis via Fourier representation

(see equation (3.10)), just to be consistent with Da-Silva et al. (2011).

To the dispersion process we used two models: Model 1 describes a static

hierarchical model with respect to the precision parameter (see Section 4.4).

Model 2 adds dynamics to the precision parameter of the beta model. For that

purpose we use a second-order polynomial trend effects model (see expressions

(3.6) to (3.8)).

Considering Model 2 and the parameters of both mean and dispersion pro-

cesses, the design matrices H and F = (F ′

1, F
′

2, F
′

3)
′ are the ones defined by ex-

pression (3.9). For Model 1 those matrices are:

H = block-diag(J, P, I2) ,

F1 =
(

1 0 1 01×(p−2) 1 0
)

, F2 =
(

1 0 1 01×(p−2) 0 1
)

and

F3 =
(

1 0 1 01×(p−2) −1 −1
)

.

We used the mean absolute deviation (MAD), the mean square error (MSE)

and the Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002) to

compare the forecasting accuracies of Model 1 and Model 2. The MAD and

MSE are defined, respectively, by the following formulae: MAD = 1
n

∑n
t=1 |et|

and MSE = 1
n

∑n
t=1 e

2
t , where et = Yt −E(Yt |y1:t−1) (see Section 4.1 for details).
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According to Spiegelhalter et al. (2002), the DIC is a measure of fit based

on a trade-off between the fit of the data to the model and the corresponding

complexity of the model: DIC = goodness of fit + complexity. The fit for model

Mi is measured in terms of the posterior distribution of the deviance statistic,

D(θi) = −2 logL(Y |θi), while complexity is measured by an estimate of the ef-

fective number of parameters:

di = Di −D(θ̄i) = E
(

D(θi | Y,Mi) −D(E(θi | Y,Mi)
)

,

i.e., the posterior mean deviance minus deviance evaluated at the posterior mean

of the parameters. The DIC is defined as:

DIC (Mi) = D(θ̄i) + 2di .

The DIC generalizes the AIC (Akaike, 1973) in the sense that it explicitly

applies to non nested non IID problems. Besides that, DIC can be approximated

via MCMC samples from the posterior density. For the reasons exposed so far,

in this work we used DIC instead of either AIC or BIC (Schwarz, 1978).

Models with smaller DIC are better supported by the data. The DIC is

a positive number, in general. However, it can be negative but such occurrence

does not pose any difficulty in terms of model comparison, since the focus is in

the difference between two values and not in the DIC value itself.

In general, the di component is a positive value. However, it can be negative

in cases where the likelihood function is not log-concave, when there is a conflict

between the prior and the likelihood or when the posterior distribution of the

parameters is too skewed or symmetric and multi-modal, so that the posterior

mean/median are poor measures of central tendency. In those cases, the use of

the posterior mode can be a fair alternative.

Table 1 displays the MAD, MSE, the effective number of parameters, di,

and DIC values for Model 1 and Model 2. As we observe, the total MAD and to-

tal MSE values for Model 2 are somewhat smaller than those values for Model 1.

However, the DIC for Model 2 is much smaller than the DIC for Model 1, giving

strong indication that Model 2 provides a superior fit compared to Model 1. Ad-

ditionally, the effective number of parameters, di, for both, Model 1 and Model 2,

are positive. Thus besides of the limitations of the DIC, in our applications it

seems to be performing properly.

Table 1: MSE, MAD, di and DIC values for Models 1 and 2.

Model MSE MAD di DIC

Model 1 0.00158 0.03934 36.602 −1510.622
Model 2 0.00150 0.03559 229.819 −2445.007
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In order to gain a better perspective of the real advantages of using Model 2

as opposed to Model 1, we present Figures 4 and 5 which display the estimated

proportions or rates for each of the sub-populations and their corresponding con-

fidence bands.
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Figure 4: MUR data (Model 1 with static precision parameter) — estimated pro-
portions and 95% credibility bounds for the three sub-populations:
(a) Recife, (b) São Paulo and (c) Porto Alegre.
The forecast rates are presented after the dotted vertical lines.
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Figure 5: MUR data (Model 2 with dynamic precision parameter) — estimated
proportions and 95% credibility bounds for the three sub-populations:
(a) Recife, (b) São Paulo and (c) Porto Alegre.
The forecast rates are presented after the dotted vertical lines.

It is really reassuring the superiority of Model 2 compared to Model 1 in

terms of both the precision of the credibility intervals, and how well Model 2 is

able of describing the observed proportions for each of the sub-populations.
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7. DISCUSSION

In this article we propose an extension to the Bayesian beta dynamic model

developed by Da-Silva et al. (2011). We develop a hierarchical dynamic Bayesian

beta model for modelling a set of time series of rates or proportions. The proposed

methodology enables to combine the information contained in different time series

so that we can describe a common underlying system, which is though flexible

enough to allow the incorporation of random deviations, related to the individual

series, not only through time but also across series. That allows to fit the case in

which the observed series may present some degree of level shift. Additionally, the

proposed model is adaptive in the sense that it incorporates precision parameters

that can be heterogeneous no only over time but also across the series. The use

of two link functions, one for the mean process and another to the dispersion

process, makes such extension possible. Additionally, the choice of the matrices

Ft and Ht allow for a multiplicity of ways of specifying the model, even allowing

for the inclusion of covariates.

Missing observations can be easily accommodated: if the observation at

time t is missing, then yt = NA and yt does not carry any information. Then, we

set p(θt |Dt) = p(θt |Dt−1).

Our methodology was applied to both real and simulated data. The real

data set used are three time series of Brazilian monthly unemployment rates,

observed in the cities of Recife, São Paulo and Porto Alegre, in the period from

March 2002 to March 2012. We used a second-order polynomial trend seasonal

effects to the parameters related to the mean, µit, and a second-order polynomial

effects to the parameters related to the precision, φit. The very good features of

the proposed model can be appreciated by the inspection of the graphs presented.

The new parametrization of the precision parameter that was proposed by Bayer

(2011) was used in the model formulation. It is very convenient since both, the

link functions for µit and φit, are expressed in the (0, 1) interval, which gives us

a more meaningful interpretation in terms of the magnitude of the scale.

For future work we envision the possibility of extending the current model

to enable the inclusion of different type of regimes for both, the level of the mean

process and the level of the dispersion process.
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