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1. INTRODUCTION

Goodness of fit tests (GOFTs) validate the closeness of the theoretical dis-

tribution function to the empirical distribution function. They are also known as

empirical distribution function tests. These tests determine how well the distri-

bution under study fits to a data set. They are used to test simple hypothesis

which completely specifies the model and also the composite hypotheses where

only the name of the model/distribution is stated but not its parameters. In the

latter case, the parameters are estimated from the data. The common GOFTs

are Kolmogorov–Smirnov, Cramér–vonMises and Anderson–Darling.

In literature, many authors have studied the goodness of fit tests. Nikulin

[21,22] studied Chi-squared test for continuous distributions. Rao and Robson

[25] studied Chi-squared statistic for exponential family. Power of a series of

goodness of fit tests for simple and complex hypotheses have been analyzed by

Lemeshko et al. [14,15]. Lemeshko et al. [16] analyzed the goodness of fit test for

Inverse Gaussian family. Goodness of fit tests for testing composite hypotheses,

using maximum likelihood estimators (MLEs) of double exponential distribution,

have been given in Lemeshko and Lemeshko [17].

The idea of weighted distributions was conceptualized by Fisher [6] and

studied by Rao [24] in a unified manner who pointed out that in many situations,

the recorded observations cannot be considered as a random sample from the orig-

inal distribution. This can be due to one or the other reason viz non-observability

of some events, damage caused to original observations and adoption of unequal

probability sampling. In observational studies for human, wild-life, insect, plant

or fish population, it is not possible to select sampling units with equal proba-

bilities. In such cases, there are no well-defined sampling frames and recorded

observations are biased. These observations do not follow the original distribu-

tion and hence their modelling uses the theory of weighted distributions. It is,

therefore, important to study the stochastic orderings and ageing properties of

the weighted random variables with respect to the original random variables.

For a non-negative random variable X with pdf f(x), the weighted random

variable Xw has the pdf given by

(1.1) fw(x) =
w(x) f(x)

E
[
w(X)

] ,

where w(x) is a non-negative weight function such that E[w(X)] is non-zero and

finite. The distribution of Xw is called the weighted distribution corresponding

to X.

The weighted distribution with w(x) = x is called the length-biased (size-

biased) distribution which finds various applications in biomedical areas such as

early detection of a disease. Rao [24] used this distribution in the study of human
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families and wild-life populations. Various other important weighted distributions

and their properties have been discussed by Mahfoud and Patil [19], Jain et al.

[12], Gupta and Kirmani [10], Nanda and Jain [20], Patil [23] and Gupta and

Kundu [11].

A brief discussion of weighted version of Gamma distribution labelled as

Weighted Gamma (WG) distribution is provided in Section 2. This distribution

has been introduced by Jain et al. [13]. The Weighted Gamma (WG) distribution

has Weighted exponential, Gamma and Exponential distributions as its submod-

els. This distribution can also be interpreted as a hidden upper truncation model

as in case of skew-normal distribution (Arnold and Beaver [2]). The pdf of WG

distribution is also expressible as a linear combination of two Gamma pdfs. This

distribution accommodates increasing and upside-down bathtub shaped failure

rate function and hence has wider applicability in reliability and survival analy-

sis.

The motive of this study is to carry out goodness of fit tests viz Kolmogorov–

Smirnov, Cramér–vonMises and Anderson–Darling and to compare their pow-

ers for Weighted Gamma and some competing distributions namely Weighted

Weibull, Weighted Exponential and Gamma distributions. Using the calculated

powers of these goodness of fit tests, we can determine the sample size at which

these various closely related distributions can be distinguished from each other.

The paper is organized as follows. In Section 2, we provide a brief de-

scription of Weighted Gamma (WG) distribution. Various goodness of fit tests

have been described in Section 3. Testing of simple and composite hypotheses for

WG versus Weighted Weibull (WW), Weighted Exponential (WE) and Gamma

is presented in Section 4. This section also consists of results and power studies

based on simulations and real data set analysis. Section 5 includes the concluding

remarks.

2. WEIGHTED GAMMA DISTRIBUTION

The random variable X is said to follow Weighted Gamma distribution

with scale parameter λ and shape parameters α and β if the probability density

function (pdf) of X is given by

(2.1) fX(x;α, β, λ) = k
(1 − e−αλx)λβ xβ−1 e−λx

Γ(β)
, x > 0 , α, β, λ > 0 ,

where k−1 = 1 −

(
1

1+α

)β
.

If X is a random variable with pdf given in (2.1), we use the notation

X ∼WG(α, β, λ).
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The distribution function of X can be written as

(2.2) F (x) =

[
(1 + α)β

(1 + α)β
− 1

] [
G(x;β, λ) −

1

(1 + α)β
G(x;β, λ(1+α))

]
,

where G(x; a, b) =
ba

∫ x

0 e−btta−1dt

Γ(a)
is the cumulative distribution function of

Gamma distribution with shape parameter a and scale parameter b.

Remark 2.1. (2.1) is the weighted version of the Gamma pdf with weight

function

w(x) = 1 − e−αλx , α, λ > 0 .

The choice of the weight function has been made so that Weighted Expo-

nential (Gupta and Kundu [11]), Gamma and Exponential distributions can be

obtained as special cases of WG distribution for particular values of parameters.

The special cases are:

• Weighted Exponential (WE) distribution obtained by putting β = 1,

• the Gamma distribution when α→ ∞.

• For α→ ∞ and β = 1, Exponential distribution can be obtained.

Suppose X follows WG distribution and let θ = (α, β, λ)T be the parameter

vector. The log likelihood based on the observed sample (x1, x2, ..., xn) is

l = l (α, β, λ)

= n
{

log(1+ α)β
− log

{
(1+ α)β

−1
}}

+

n∑

i=1

log
(
1 − e−αλxi

)
+ nβ log λ(2.3)

+ (β − 1)
n∑

i=1

log xi − λ

n∑

i=1

xi − n log
{
Γ(β)

}
.

The first derivative of the log likelihood function is called Fisher’s score function

and is written as

u(θ) =
∂l

∂θ
.

Score is a vector of first partial derivatives, one for each element of θ. If the

log likelihood is concave, then MLEs can be obtained by solving the system of

equations

u(θ) = 0 ,

where elements of u(θ) are given by

(2.4)
∂l

∂α
= −nβ(1+ α)β−1

{
1{

(1+ α)β −1
}

(1+ α)β

}
+ λ

n∑

i=1

xi e
−αλxi

1 − e−αλxi
,
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(2.5)
∂l

∂β
= n log(1+α)−

n(1+α)β log(1+α){
(1+α)β −1

} + n log λ +
n∑

i=1

log xi − nψ(β) ,

(2.6)
∂l

∂λ
= α

n∑

i=1

xi e
−αλxi

1 − e−αλxi
+
nβ

λ
−

n∑

i=1

xi ,

where ψ(·) denotes the digamma function, the logarithmic derivative of the

gamma function.

As these equations are difficult to be solved, Newton–Raphson method

can be used for finding ML estimates. Using this method, the score function is

evaluated at the MLE θ̂ around an initial value θ0, using a first order Taylor

series which gives

(2.7) u(θ̂) ≈ u(θ0) +
∂u(θ)

∂θ
(θ̂ − θ0) .

Equating (2.7) to zero and solving for θ̂ leads to first approximation:

(2.8) θ̂ = θ0 − H
−1(θ0)u(θ0) ,

where

H(θ) =
∂2l

∂θ ∂θ
′ =

∂u(θ)

∂θ

denotes the Hessian matrix.

Given a trial value, (2.8) is employed for obtaining an improved estimate

and the process is repeated until the differences between successive estimates are

sufficiently close to zero. The estimates obtained are considered as maxima if the

Hessian matrix is negative definite, that is, all its eigenvalues are negative.

As sometimes, it is computationally difficult to invert the Hessian matrix,

hence we use the quasi Newton method in R for finding the ML estimates as this

method usually generates an estimate of H−1 directly. The results have been

included in Table 2 of Section 4.

3. GOODNESS OF FIT TESTS

For a random sample of size n, let x(1), ..., x(n) be ordered observations. The

empirical distribution function (edf) Fn(x) is a step function with a step of height
1
n

at each ordered sample observation. Empirical Distribution Function (EDF)

tests measuring the distance between the edf and theoretical cdf are described by

Dufour et al. [6]. Arshad et al. [3] and Seier [26] claimed that the widely used

EDF tests are Kolmogorov–Smirnov, Cramér–vonMises and Anderson–Darling

tests.
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For a random variable X, we let F (x) to be the theoretical cumulative

distribution function (cdf). F (x, θ) denotes the cdf for a particular distribution

with parameter θ. The focus shall be on testing the following types of null

hypotheses:

• Simple null hypothesis:

H0: F (x) = F (x, θ) ,

where the form of F (x, θ) is completely specified;

• Composite null hypothesis:

H0: F (x) ∈
{
F (x, θ), θ ∈ Θ

}
,

where Θ is the domain of unknown parameter θ which is replaced by its

estimator.

We will use the tests explained in the subsequent discussion.

Kolmogorov–Smirnov Test:

This test is based upon the largest vertical distance between empirical dis-

tribution function Fn(x) and theoretical distribution function F (x, θ). The statis-

tic is

(3.1) Dn = sup
|n|<∞

∣∣Fn(x) − F (x, θ)
∣∣ , θ ∈ Θ .

If the value of KS statistic is greater than critical point, we reject the null hy-

pothesis (Gibbons and Chakraborti [9]).

Cramér–vonMises and Anderson–Darling statistics belong to the class of

quadratic EDF statistics (Stephens [28]) defined as

(3.2) n

∫ ∞

−∞

(
Fn(x) − F (x)

)2
w(x) dF (x) ,

where w(x) is a weighting function.

Cramér–vonMises Test:

For w(x) = 1, (3.2) gives n times the Cramér–vonMises (CVM) statistic.

This statistic can be computed using the sum of squared differences between

the empirical distribution function (EDF) and theoretical CDF (Anderson and

Darling [1]) and is defined as

(3.3) CVM =
1

12n
+

n∑

i=1

(
F (xi, θ) −

2i− 1

2n

)2

.
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If the value of CVM test statistic is greater than the critical point, we reject the

null hypothesis. According to Conover [5], CVM is more powerful than KS test

because it uses more sample data.

Anderson–Darling test:

It is a modification of the CVM Test. It gives more weightage to the tails

of the distribution (Farrel and Stewart [7]).

By taking w(x) = [F (x) (1−F (x))]−1 in (3.2), Anderson–Darling (AD) test

statistic (Anderson and Darling [1]) is obtained as

n

∫ ∞

−∞

(
Fn(x) − F (x)

)2

[
F (x)

(
1−F (x)

)] dF (x) .

It can also be written as

(3.4) AD = −n− 2
n∑

i=1

{
2i−1

2n
lnF (xi, θ) +

(
1−

2i−1

2n

)
ln

(
1−F (xi, θ)

)}

(Lewis [18]).

If the value of AD test statistic is greater than critical point, we reject the

null hypothesis.

The critical points (C.P.) of these tests have been calculated by generating

random samples from the distribution under null hypothesis, calculating value of

test statistics and arranging values of test statistic in increasing order. (1−α)th

largest order test statistic gives the critical point corresponding to α level of

significance. These values have been calculated for sample sizes n = 50, 100, 200,

500, 1000 and 2000 at α = .20, .15, .10 and .05 and are shown in Table 1.

Table 1: Critical points for Kolmogorov–Smirnov, Cramér–vonMises
and Anderson–Darling tests.

n

Kolmogorov–Smirnov Cramér–vonMises Anderson–Darling

Level of significance Level of significance Level of significance

.20 .15 .10 .05 .20 .15 .10 .05 .20 .15 .10 .05

50 .151 .161 .172 .192 .241 .281 .344 .455 1.427 1.619 1.900 2.422

100 .107 .114 .122 .136 .244 .286 .361 .475 1.388 1.603 1.909 2.412

200 .076 .081 .086 .096 .237 .282 .339 .453 1.39 1.59 1.92 2.49

500 .048 .051 .055 .061 .232 .275 .334 .444 1.405 1.609 1.932 2.500

800 .038 .040 .043 .048 .241 .286 .347 .469 1.410 1.617 1.904 2.399

1000 .034 .036 .039 .043 .245 .286 .347 .449 1.423 1.638 1.945 2.514

2000 .024 .026 .027 .030 .241 .287 .349 .476 1.395 1.588 1.914 2.438
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4. APPLICATION

4.1. Simulations for estimation and applying GOFTs

Weighted Exponential and Gamma distributions are considered as compet-

ing distributions for WG. The Weighted Weibull (WW) distribution with three

parameters α, β and λ (Shahbaz et al. [27]) has also been considered as one of

the competing distributions for WG. The cdf and pdf of WW are

F (x;α, β, λ) =

(1+ α)

[
1 − e−λxβ

−

(
1−e−(1+α)λxβ

)

1+α

]

α

and

f(x;α, β, λ) =
(1+ α)λβ xβ−1 e−λxβ(

1− e−αλxβ)

α
.

A random sample of size 200 from Weighted Gamma (WG) distribution with

parameters α = 5, β = 2.5 and λ = 2 is generated. The empirical cumulative

distribution function (ecdf) based on the data and the theoretical cdf of WG

distribution are plotted in Figure 1. This figure depicts that ecdf and exact cdf

of WG distribution are quite close to each other.

Figure 1: Plots for ecdf and exact cdf of WG distribution.
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For the generated data set, maximum likelihood estimates (MLEs) of parameters

of WG, WW, WE and Gamma distributions and the corresponding AIC and

AICc values are given in Table 2. In quasi Newton algorithm in R, the Broyden–

Fletcher–Goldfarb Shanno (BFGS) method has been used by applying optim

routine. Hessian matrices have been checked for all the distributions and found

to be negative definite as all the eigenvalues of each Hessian matrix come out to

be negative. This implies that the estimates obtained are maximum likelihood

estimates.

Table 2: Estimates of the parameters and AIC and AICc values
for different distributions.

Distribution
MLE

AIC AICcbα bβ bλ
WG 3.0230 2.1688 1.7399 432.9696 433.092

WW 53.0360 1.6025 0.5560 437.9989 438.121

WE 0.0006 1 1.5444 438.4732 438.534

Gamma — 2.4871 1.9212 433.4271 433.488

From the above table, we can conclude that:

a) Since AIC and AICc values are the lowest for WG distribution, it can

be considered to be the best fit.

b) Since AIC values of WG and Gamma distributions are close, hence

a large sample size shall be required to distinguish between WG and

Gamma distributions.

Figure 2: Plots of ecdf and estimated cdf of WG distribution.
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Figure 2 displays the plots of empirical cdf and theoretical cdf using esti-

mates of parameters of WG distribution for generated data set.

Weighted Weibull (WW), Weighted Exponential (WE) and Gamma distri-

butions are taken up as the competing distributions for WG distribution. The

estimates of parameters for all these distributions are found for generated data set.

To check whether the generated data set fits well to WG distribution (with

assumed and estimated parameters), WW, WE and Gamma distributions, the

simple and composite hypotheses have been tested in the sequel.

Testing of simple hypothesis:

The aim is to test the simple hypothesis

H01: WG (α=5, β=2.5, λ=2) distribution fits well to the generated data set

versus
H11: It does not fit well.

The values of KS, CVM and AD test statistics and critical points (extracted

from Table 1) are given in Table 3.

Table 3: Values of test statistic and critical points for testing H01 versus H11.

Test Statistic values C.P. at 0.05 level of significance

Kolmogorov–Smirnov 0.0447 .096

Cramér–vonMises 0.0779 .453

Anderson–Darling 0.5654 2.49

It is observed that for all the tests, the null hypothesis is not rejected at

0.05 level of significance implying that WG distribution fits well to the generated

data set under all testing procedures.

Testing of composite hypotheses:

We consider testing of composite hypotheses

H02: WG (α̂, β̂, λ̂) distribution fits the generated data well

versus
H12: It does not fit the data well,

where α̂ = 3.0230, β̂ = 2.1688 and λ̂ = 1.7399.

The following table gives calculated values of test statistics.

Table 4: Values of test statistic and critical points for testing H02 versus H12.

Test Statistic values C.P. at 0.05 level of significance

Kolmogorov–Smirnov 0.0422 .096

Cramér–vonMises 0.0546 .453

Anderson–Darling 0.3480 2.49
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It is observed that values of test statistics for KS, CVM and AD are less than

C.Ps. at 0.05 level of significance for n = 200. This means that WG distribution

with estimated parameters fits the data well.

Next, we consider testing of composite hypotheses:

i) H03: Generated data set is fitted well by WW (α̂=53.0360, β̂=1.6025,

λ̂= .5566)

versus

H13: compliment to H03, that is, data is not fitted well.

ii) H04: WE (α̂= .0006, λ̂=1.5444) distribution fits the generated data well

versus

H14: WE (α̂= .0006, λ̂=1.5444) distribution does not fit the data well.

iii) H05: Gamma (β̂=2.4871, λ̂=1.9212) distribution fits the generated data well

versus

H15: Gamma distribution with estimated parameters does not fit the data

well.

Tables 5–7 display the values of test statistics for KS, CVM and AD tests

and corresponding critical points at 0.05 level of significance for testing the com-

posite hypotheses.

Table 5: Values of test statistic and critical points for testing H03 versus H13.

Test Statistic values C.P. at 0.05 level of significance

Kolmogorov–Smirnov 0.0576 .096

Cramér–vonMises 0.1489 .453

Anderson–Darling 0.8541 2.49

Table 6: Values of test statistic and critical points for testing H04 versus H14.

Test Statistic values C.P. at 0.05 level of significance

Kolmogorov–Smirnov 0.0540 .096

Cramér–vonMises 0.0786 .453

Anderson–Darling 0.8263 2.49

Table 7: Values of test statistic and critical points for testing H05 versus H15.

Test Statistic values C.P. at 0.05 level of significance

Kolmogorov–Smirnov 0.0464 .096

Cramér–vonMises 0.0822 .453

Anderson–Darling 0.5203 2.49
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The values in Tables 3–7 help us to conclude that:

a) All the distributions fit well to the given data set at 0.05 level of signif-

icance because the values of test statistics are less than critical points.

b) WG distribution fits best to the data set because the values of test

statistics are lowest in case of WG distribution.

In the next subsection, we find the powers of goodness of fit tests viz KS,

CVM and AD for comparing WG distribution with WW, WE and Gamma dis-

tributions. The values of power for GOFTs help us in differentiating among the

distributions under consideration and also in determining the optimal sample size

for differentiation.

4.1.1. Powers of goodness of fit tests for WG

To differentiate among different distributions, we carry out the power study

for testing of hypotheses about belonging of the sample to WG distribution,

considering WW, WE and Gamma distributions as competing distributions.

For power analysis, we use the technique of Bootstrapping to generate the

samples. We generate 10,000 copies of random sample under alternative hy-

potheses. The values of the test statistics have been calculated using estimates

of parameters for different distributions. The power analysis has been carried

out for sample sizes n = 50, 100, 200, 500, 1000, 2000 at .20, .15, .10, .05 levels of

significance.

Using estimated parameters, Tables 8–10 give the power of KS, CVM and

AD tests for testing about belonging of the samples to WG distribution against

that sample is from WW, WE and Gamma distributions.

Power of Anderson–Darling test is more than those of Cramér–vonMises

and Kolmogorov–Smirnov tests in all cases. Hence, AD is the most powerful and

KS is the least powerful test.

From Tables 8–10, it is observed that at 0.10 level of significance to obtain

low probability of type II error (less than or equal to 0.1):

a) A sample size greater than or equal to 2000 is required to differentiate

WG distribution from WW distribution, since the power of AD test is

.9630 implying that probability of type II error is .0370;

b) A sample of at least 2000 observations is required to distinguish WG

distribution from WE and Gamma distributions.
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Table 8: Power of tests for testing goodness of fit of WG versus WW
with estimated parameters.

Level of

significance

Sample size

n = 50 n = 100 n = 200 n = 500 n = 1000 n = 2000

Power of Anderson–Darling

.20 .4993 .5834 .6253 .7351 .9005 .9899

.15 .4321 .4995 .5535 .7032 .8622 .9869

.10 .2557 .3072 .4993 .5938 .8123 .9630

.05 .1540 .2505 .3857 .4887 .7945 .8756

Power of Cramér–vonMises

.20 .4286 .4993 .5547 .5790 .8750 .9666

.15 .4274 .4740 .5038 .5732 .8443 .9311

.10 .1571 .2946 .4586 .5606 .7801 .8959

.05 .1243 .2815 .2783 .4043 .7278 .8322

Power of Kolmogorov–Smirnov

.20 .4078 .4551 .5013 .5485 .8539 .9521

.15 .3451 .4738 .5008 .5308 .8123 .9222

.10 .1526 .2574 .4165 .5243 .6959 .7898

.05 .1182 .2299 .2439 .2858 .5557 .6345

Table 9: Power of tests for testing goodness of fit of WG versus WE
with estimated parameters.

Level of

significance

Sample size

n = 50 n = 100 n = 200 n = 500 n = 1000 n = 2000

Power of Anderson–Darling

.20 .5947 .6543 .7686 .8504 .9404 .9969

.15 .4928 .5689 .7038 .8153 .8935 .9851

.10 .3853 .4537 .6583 .7328 .8589 .9708

.05 .1549 .3839 .5841 .6685 .8040 .9146

Power of Cramér–vonMises

.20 .4899 .5251 .6493 .8039 .8991 .9784

.15 .4518 .5103 .5552 .6751 .8599 .9485

.10 .2538 .3840 .4993 .5998 .8328 .9113

.05 .1959 .3014 .3547 .4853 .7943 .8993

Power of Kolmogorov–Smirnov

.20 .4286 .4865 .5878 .6438 .8689 .9663

.15 .3945 .4793 .5584 .5991 .8402 .9365

.10 .2090 .2940 .4738 .5344 .7556 .8734

.05 .1547 .2591 .2973 .3905 .6938 .7488



Goodness of Fit Tests and Power Comparisons for Weighted Gamma Distribution 43

Table 10: Power of tests for testing goodness of fit of WG versus Gamma
with estimated parameters.

Level of

significance

Sample size

n = 50 n = 100 n = 200 n = 500 n = 1000 n = 2000

Power of Anderson–Darling

.20 .4037 .4270 .4408 .6728 .8875 .8993

.15 .3018 .3363 .3401 .5556 .8543 .8775

.10 .2134 .2627 .2800 .3959 .8024 .8543

.05 .1172 .1498 .2268 .3463 .7738 .8345

Power of Cramér–vonMises

.20 .3535 .3889 .4229 .5389 .8198 .8856

.15 .3008 .3232 .4113 .4458 .7993 .8691

.10 .1418 .2138 .2542 .3304 .7583 .8434

.05 .1004 .1184 .2034 .3183 .7234 .8138

Power of Kolmogorov–Smirnov

.20 .3038 .3359 .3947 .5126 .8057 .8535

.15 .2857 .3015 .3998 .4032 .7328 .8119

.10 .1218 .2028 .2238 .3123 .6888 .7735

.05 .0926 .1039 .1727 .2485 .5311 .6188

Further, it can also be concluded on the basis of Tables 8–10 that:

a) Power in case of testing goodness of fit of WG versus WE distribution

is more than in other cases. Hence, the tests are detecting the gap

between WG and WE distributions with high power and hence a small

sample is sufficient to differentiate WG from WE.

b) The power of all GOFTs for all sample sizes and levels of significance is

least when comparing WG and Gamma distributions. This means that

the GOFTs are not detecting the difference between these two distribu-

tions as efficiently as in other cases. It implies that these distributions

are quite close to each other. So, large sample sizes are required to

differentiate these distributions.

4.2. Real data set illustration

We consider a data set consisting of survival times of guinea pigs injected

with different amount of tubercle bacilli and studied by Bjerkedal [4]. The obser-

vations in the data set are: 12 15 22 24 24 32 32 33 34 38 38 43 44 48 52 53 54

54 55 56 57 58 58 59 60 60 60 60 61 62 63 65 65 67 68 70 70 72 73 75 76 76 81

83 84 85 87 91 95 96 98 99 109 110 121 127 129 131 143 146 146 175 175 211 233

258 258 263 297 341 341 376.
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This data set was also considered by Gupta and Kundu [9] for fitting of

Weighted Exponential (WE) distribution. The estimates of parameters, AIC and

AICc values for above considered data set are reported in Table 11.

Table 11: Estimates of the parameters, AIC and AICc values
for different distributions.

Distribution
MLE

AIC AICcbα bβ bλ
WG 2.274 1.513 .0172 791.438 791.784

WW 139.4 1.39 .0014 799.271 799.624

WE 1.624 1 .0138 791.138 791.312

Gamma — 2.081 .0208 792.495 792.669

From Table 11, it is seen that there is not a significant difference in AIC and

AICc values for WG and WE models, hence both the models can be considered

for fitting to this real data set. As WG provides generalization to many existing

distributions viz WE, Gamma and Exponential distributions, hence it can be

considered as a better choice for this data set.

4.2.1. Powers of goodness of fit tests for real data set

For power calculation, we generate random samples of sizes 100, 200, 500,

1000 and 2000 under alternative hypothesis. Test statistics are calculated using

the estimates of parameters. By comparing these values with critical points, we

either reject or do not reject the null hypothesis. Repeating this process 10,000

times and dividing the total number of rejections by 10,000, gives power.

Powers for goodness of fit tests for the following hypotheses have been

reported in Tables 12, 13 and 14 respectively:

H06 : WG (α̂=2.274, β̂=1.513, λ̂=.0172) fits the data set well
versus

i) H
′

16 : WW (α̂=139.4, β̂=1.39, λ̂=.0014) fits the data set well,

ii) H
′′

16 : WE (α̂=1.624, λ̂=.0138) distribution fits the data well,

iii) H
′′′

16 : Gamma (β̂=2.081, λ̂=.0208) distribution fits the data well.

From the Tables 12–14, it can be concluded that:

a) Anderson–Darling (AD) is the most powerful and Kolmogorov–Smirnov

(KS) is the least powerful test.

b) Power for testing GOF of WG versus WW is more than for testing in

other cases.
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c) Power is least when comparing WG distribution versus WE distribu-

tion. This means that for the considered data set, the GOFT’s are not

detecting the difference between these two models.

Table 12: Power of tests for testing goodness of fit of WG versus WW
with estimated parameters.

Level of

significance

Sample size

n = 100 n = 200 n = 500 n = 1000 n = 2000

Power of Anderson–Darling

.20 .4829 .6238 .7812 .8524 .9423

.15 .4458 .5744 .7123 .8047 .8850

.10 .3943 .5209 .6838 .7773 .8595

.05 .3451 .4753 .6552 .7239 .8391

Power of Cramér–vonMises

.20 .4467 .5924 .6874 .7955 .8620

.15 .4139 .5251 .6193 .7338 .8354

.10 .3533 .4435 .5366 .6940 .7889

.05 .2669 .3981 .4921 .6569 .7495

Power of Kolmogorov–Smirnov

.20 .3999 .5099 .6434 .7809 .8345

.15 .3458 .4875 .5701 .7051 .8003

.10 .3049 .4223 .4959 .6532 .7448

.05 .2225 .3801 .4153 .6034 .7115

Table 13: Power of tests for testing goodness of fit of WG versus WE
with estimated parameters.

Level of

significance

Sample size

n = 100 n = 200 n = 500 n = 1000 n = 2000

Power of Anderson–Darling

.20 .4145 .5125 .6720 .7518 .8498

.15 .3509 .4809 .6548 .7285 .8156

.10 .2877 .4053 .5740 .6893 .7632

.05 .2329 .3069 .4169 .6673 .7253

Power of Cramér–vonMises

.20 .3595 .4430 .5407 .6863 .8002

.15 .3250 .4018 .4933 .6545 .7803

.10 .2589 .2944 .4356 .6187 .7234

.05 .2055 .2882 .3204 .5522 .6868

Power of Kolmogorov–Smirnov

.20 .3486 .3997 .4407 .6562 .7259

.15 .3058 .3449 .4113 .5328 .6885

.10 .2137 .2507 .3876 .4935 .6138

.05 .1851 .2187 .3092 .4580 .5609
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Table 14: Power of tests for testing goodness of fit of WG against Gamma
with estimated parameters.

Level of

significance

Sample size

n = 100 n = 200 n = 500 n = 1000 n = 2000

Power of Anderson–Darling

.20 .4277 .5459 .7032 .8089 .8927

.15 .3639 .4994 .6633 .7746 .8558

.10 .3073 .4227 .6118 .7268 .7982

.05 .2857 .3998 .5844 .6934 .7639

Power of Cramér–vonMises

.20 .4008 .4935 .6632 .7604 .8239

.15 .3401 .4349 .6110 .7093 .7994

.10 .2831 .3970 .5256 .6859 .7530

.05 .2217 .3239 .5012 .6221 .7126

Power of Kolmogorov–Smirnov

.20 .3603 .4158 .5728 .6953 .7649

.15 .3041 .3945 .4592 .5889 .7325

.10 .2859 .3567 .4182 .5234 .7049

.05 .2130 .3018 .3993 .5008 .6532
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