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Abstract:

• Regression procedures are often used for estimating distributional parameters because
of their computational simplicity and useful graphical presentation. However, the re-
sulting regression model may have heteroscedasticity and/or correction problems and
thus, weighted least squares estimation or alternative estimation methods should be
used. In this study, we consider generalized least squares and weighted least squares
estimation methods, based on an easily calculated approximation of the covariance
matrix, for distributional parameters. The considered estimation methods are then
applied to the estimation of parameters of different distributions, such as Weibull,
log-logistic and Pareto. The results of the Monte Carlo simulation show that the
generalized least squares method for the shape parameter of the considered distri-
butions provides for most cases better performance than the maximum likelihood,
least-squares and some alternative estimation methods. Certain real life examples are
provided to further demonstrate the performance of the considered generalized least
squares estimation method.
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1. INTRODUCTION

Regression procedures are often used for estimating distributional param-

eters. In this procedure, the distribution function is transformed to a linear re-

gression model. Thus, least squares (LS) estimation and other regression estima-

tion methods can be employed to estimate parameters of a specified distribution.

In the literature, the parameters of the Pareto and Weibull distributions, in par-

ticular, have been estimated by such methods, since these distributions have been

commonly used in reliability and survival analysis as well as engineering (Aber-

nethy, 1996; Boudt et al. 2011; Kantar and Usta, 2008; Genschel and Meeker,

2010; Hung, 2001; Lu et al. 2004; Baxter 1980). In addition to the Pareto and

Weibull distributions, Burr-type, Gumbel, logistic and log-logistic distributions

have been studied by regression estimation methods (Bergman, 1986; Hossain and

Howlader, 1996; Wang and Cheng, 2010; Zhang et al. 2007; Zhang et al. 2008;

Zyl, 2012; Zyl and Schall, 2012; Usta, 2013; Kantar and Arik, 2014; Kantar and

Yildirim, 2015). One of the main advantages of using regression procedures for

estimating parameters is that their implementation is simple in the case of com-

plete data, censoring data or data with outliers. Nevertheless, as is well known,

the resulting regression model may have unequal variance (heteroscedastic) (En-

geman and Keefe, 1982; Boudt et al. 2011; Zyl, 2012; Zyl and Schall, 2012)

and/or correction problems (Engeman and Keefe, 1982) and thus, the weighted

least squares (WLS) estimation or alternative methods should be used (Engeman

and Keefe, 1982; Lu and Tao, 2007; Zyl, 2012; Zyl and Schall, 2012). For exam-

ple, Engeman and Keefe (1982) consider generalized least squares estimation of

the Weibull distribution by means of a linear regression model. Hung (2001), Lu

et al. (2004), Zyl and Schall (2012) emphasize that a weight function should be

used when performing regression methods, and propose different weights using

large sample properties of the empirical distribution function or order statistics,

to stabilize the variance in order to perform the WLS estimation method for the

Weibull distribution. Zhang et al. (2008) discuss alternative WLS estimation

methods for the Weibull distribution. On the other hand, Malik (1970) stud-

ied the LS method, ridge regression and maximum product of spacing methods

to estimate parameters for the Pareto distribution, while Zyl (2012) considered

the Laplace distributed errors (LAD) (Koenker and Bassett, 1978) and Box–Cox

regression to stabilize variance. It can be seen that Zyl’s (2012) WLS and Lu

and Tao’ (2007) WLS perform almost as well as the maximum likelihood (ML)

estimation method for the Pareto distribution.

In this article, we consider generalized least squares (GLS) and WLS esti-

mation methods for distributional parameters by easily calculating an approxi-

mation of the variance-covariance matrix. GLS and WLS are then applied to the

estimation of the parameters of the Weibull, Pareto and log-logistic distributions.

The simulation results show that the proposed estimation methods, particularly
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GLS for the shape parameter of the considered distributions, provide better per-

formance than the ML, LS and some alternative WLS estimation methods, for

most of the considered sample sizes.

The rest of this paper is organized as follows: Section 2 provides the process

of estimation of distributional parameters via regression models for the Weibull,

Pareto and log-logistic distributions. Section 3 introduces the GLS and WLS

estimation methods and their application to each of these distributions. Alter-

native estimation methods for the Weibull, Pareto or log-logistic distributions

are briefly discussed in Section 4. To show the performance of the considered

GLS and WLS methods, a simulation study is presented in Section 5. A num-

ber of real-data examples are discussed in Section 6 and, finally, the last section

summarizes the conclusions of the study.

2. ESTIMATION OF DISTRIBUTIONAL PARAMETERS

VIA REGRESSION MODELS

Probability plots that use the quantile function of the random variable are

often used for different objectives, such as, (i) to draw conclusions from data,

(ii) to estimate the parameters of the considered distribution, (iii) to apply

to both complete and censored data and (iv) to show graphical presentation.

(For other advantages, see Nelson, 2004)

By taking into account the objective (ii) of probability plots, the distri-

bution function is transformed into a linear regression model, so that various

regression estimation methods can then be used to estimate the parameters of

the specified distribution.

The probability density function (pdf) and cumulative distribution func-

tion (cdf) of the Weibull random variable are respectively given in the following

equations:

f(x, λ, α) =
α

λ

(

x

λ

)α−1

e−( x

λ
)α

, for x > 0 ,(2.1)

F (x, λ, α) = 1 − e−( x

λ
)α

, for x > 0 ,(2.2)

where λ is the scale parameter and α is the shape parameter. The Weibull

distribution is a reversed J-shaped, bell shaped and exponential distribution for

α < 1, α > 1 and α = 1, respectively. The Weibull distribution appears similar

to a normal distribution for α = 3.4 (Kantar and Senoglu, 2008).
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After some algebraic manipulation, equation (2.2) can be expressed as fol-

lows:

(2.3) ln
[

− ln(1 − F (x))
]

= α lnx − α lnλ ,

(2.4) lnx = lnλ +
1

α
ln

[

− ln(1 − F (x))
]

.

For a sample size of n and x(1) ≤ x(2) ≤ ... ≤ x(n) the regression model is rewritten

as:

(2.5) lnx(i) = lnλ +
1

α
ln

[

− ln(1 − F (x(i)))
]

,

where lnx(i) is the ith order statistics of the logarithm of the sample from the

Weibull distribution. i−a
(n+b) , (0 ≤ a ≤ 0.5, 0 ≤ b ≤ 1) is used as estimate of F (x(i))

where i is the rank of the data point in the sample in ascending order. For

complete samples, i
(n+1) and i−0.3

(n+0.4) are generally used (Tiryakioglu and Hudak,

2007; Zyl, 2012, Kantar and Yildirim, 2015).

If we replace lnx(i) with Yi, lnλ with β0,
1
α

with β1 and ln[− ln(1−F (x(i)))]

with Xi, the regression model (2.5) occurs as:

(2.6) Yi = β0 + β1Xi .

By using the regression model given in (2.5), the LS and other regression estima-

tion methods can be easily employed to estimate the parameters of the Weibull

distribution.

The Pareto cdf is given as follows:

(2.7) F (x, k, η) = 1 −

(

k

x

)η

,

where k is the scale parameter and η is the shape parameter. The Pareto distribu-

tion, which is generally used to model extreme values, is skewed and heavy-tailed.

After algebraic manipulation, equation (2.7) can be expressed as follows:

(2.8) lnx = ln k −
1

η
ln(1 − F (x)) .

For the ordered sample, the regression model for the Pareto distribution is

rewritten as:

(2.9) lnx(i) = ln k −
1

η
ln(1 − F (x(i))) .

If we replace lnx(i) with Yi, ln k with β0, −
1
η

with β1 and ln(1 − F (x(i))) with

Xi, the linear regression model is obtained for the Pareto distribution.
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The cdf of the log-logistic random variable is given as follows:

(2.10) F (x) = 1 −

(

1 +

(

x

γ

)δ )

−1

, x ≥ 0 , δ, γ > 0 ,

where γ is the scale parameter and δ is the shape parameter. For δ > 1, the log-

logistic distribution is unimodal and its variance decreases as δ increases. The

log-logistic distribution has been widely-used in hydrology to model stream flow

(Ahmad et al. 1988; Ashkar and Mahdi, 2006; Chen, 2006).

Similar to the Weibull and Pareto distributions, the obtained regression

model for the log-logistic distribution is presented as follows:

(2.11) ln(x) =
1

δ
ln

(

(1 − F (x))−1
− 1

)

+ ln(γ) ,

which may be written as:

(2.12) ln(x(i)) =
1

δ
ln

(

(1 − F (x(i)))
−1

− 1
)

+ ln(γ) .

In conclusion, the parameters of the Weibull, Pareto and log-logistic distributions

can be estimated respectively using ordinary LS estimation for equations (2.5),

(2.9) and (2.12).

It should be noted that the common LS and other regression estimation

procedures applied in the literature for the Weibull and Pareto distributions use

the least squares regression of X on Y , (Xi = β0 + β1Yi) (Genschel and Meeker,

2010; Hossain and Howlader, 1996; Hung, 2001; Kantar and Arik, 2014; Kantar

and Yildirim, 2015; Lu et al. 2004; Wang and Cheng, 2010; Zhang et al. 2008;

Zyl, 2012; Zyl and Schall, 2012). To the best of our knowledge, only Zhang et al.

(2007) compare these two LS estimation methods for the Weibull using intensive

Monte Carlo simulations, finding that LS of Y on X provides better estimators

than LS of X on Y .

3. GENERALIZED LEAST SQUARES ESTIMATION AND

WEIGHTED LEAST SQUARES ESTIMATION METHODS

FOR DISTRIBUTIONAL PARAMETERS: THE CASES OF

WEIBULL, PARETO AND LOG-LOGISTIC DISTRIBUTIONS

The most obvious point to be noticed is that since the sample is ordered

in the models (2.5), (2.9) and (2.12), lnx(i) is also ordered. For this reason,

the covariance matrices of the dependent variable of these models are not in the

form σ2I, but of σ2V =
∑

, where σ2 is unknown and V is known (White, 1969;

Engeman and Keefe, 1982). In this case, the LS estimates of the coefficients may
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not have minimum variance. In such cases, alternative estimation approaches to

stabilize variances can be used.

Generalized least squares (GLS) estimation is an efficient method for esti-

mating the unknown coefficients of a linear regression model when the observa-

tions have unequal variance and there is a certain degree of correlation between

the observations. In the linear regression model given in (2.6), if the form of the

variance of Y = (Y1, ..., Yn) is σ2V =
∑

, GLS minimizes

(3.1) (Y − Xβ)′ V−1(Y − Xβ) ,

which is solved by

(3.2) β̂GLS = (X′V−1X)X′V−1Y ,

where β̂GLS is the vector of the GLS estimates of β = (β1, β2) and X is the ma-

trix of ones and xi. In addition, the GLS estimates are equivalent to applying

ordinary LS to a linearly transformed form of the data. That is, we can write

V = SS′, where S is a triangular matrix, using Cholesky decomposition. The

LS estimates obtained by regressing S−1Y on S−1X are equal to the GLS es-

timates. Thus, Var(S−1Y) = S−1Var(Y)(S−1)′ = σ2S−1V(S−1)′ = σ2I. The

transformed form of the data is uncorrelated, with constant variance.

On occasion, the observations are uncorrelated or have a small enough

correlation to be ignored, but have unequal variance. That is, the covariance-

matrix is diagonal, say W, but does not have equal diagonal elements. WLS

estimation can be used in this situation. WLS estimate is obtained as follows:

(3.3) β̂WLS = (X′W−1X)X′W−1Y .

Now, the problem is to estimate the V matrix for the considered distribu-

tions. Taking into account equation (2.5) for the Weibull distribution, it is noted

that the cumulative function F is transformed into ln[− ln(1 − F (x))] and the

random variable X is transformed into lnX. If these transformations are respec-

tively denoted by TF and TX, the regression model for the Weibull distribution

given in (2.5) can be expressed as follows:

(3.4) TX(Xi) = β0 + β1TF (Fi) ,

where β0 = lnλ and β1 = 1
α
. Taking the expectation, variance and covariance of

both sides yields:

(3.5) E(TX(Xi)) = β0 + β1E(TF (Fi)) ,

(3.6) V ar(TX(Xi)) = β2
1V ar(TF (Fi)) ,

(3.7) Cov(TX(Xi), TX(Xj)) = β2
1Cov(TF (Fi), TF (Fj)) .
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By using Taylor expansion, it is possible to approximate the expectation of the

observation and also variance and covariance between the observations. Taylor

series expansion of TF (Fi) about the value F0i = i
n+1 , i = 1, 2, ..., n, is given by:

(3.8) TF (Fi) ≈ TF (F0i) + TF ′(F0i)(F − F0i) +
1

2
TF ′′(F0i)(F − F0i)

2 .

Taking the expectation of both sides yields:

(3.9) E(TF (Fi)) ≈ E(TF (F0i)) +
1

2
TF ′′(F0i)E((F − F0i)

2) .

Similarly, taking the variance of both sides yields:

(3.10) V ar(TF (Fi)) ≈ (TF ′(F0i))
2V ar(F ) = (TF ′(F0i))

2 F0i(1 − F0i)

n + 2

A similar closed-form approximate formula for the covariance between TF (Fi)

and TF (Fj) is

(3.11) Cov(TF (Fi), TF (Fj)) ≈ TF ′(F0i)TF ′(F0j)
F0i(1 − F0j)

n + 2
, i < j .

(See Blom, 1962; White, 1969; Engeman and Keefe, 1982). Thus,

E(TX(Xi)) ≈ β0 + β1(TF (F0i)) +
1

2
TF ′′(F0i)

F0i(1 − F0j)

n + 2
,(3.12)

V ar(TX(Xi)) ≈ β2
1(TF ′(F0i))

2 F0i(1 − F0i)

n + 2
,(3.13)

Cov(TX(Xi), TX(Xj)) ≈ β2
1TF ′(F0i)TF ′(F0j)

F0i(1 − F0j)

n + 2
, i < j ,(3.14)

where TF (F ) = ln(− ln(1 − F )), TF ′(F ) = −1
(1−F ) ln(1−F ) and

TF ′′(F ) = ln(1−F )+1
((1−F ) ln(1−F ))2

(3.15)

V ar(TX(Xi)) = Cov(TX(Xi), TX(Xj)) ≈
β2

1

n + 2

i

(n + 1 − i)

1

ln(n+1−i
n+1 )

1

ln(n+1−j
n+1 )

.

Thus, considering
β2

1

n+2 as σ2V as in Engeman and Keefe (1982), the approximate formula
for the V matrix can be expressed as follows:

(3.16) vij =
i

(n + 1 − i)

1

ln(n+1−i
n+1 )

1

ln(n+1−j
n+1 )

, i ≤ j ,

where vij is an element of the V matrix. Thus, in order to apply GLS and WLS estima-
tion methods for the Weibull distribution, the covariance matrix and the matrix of the
diagonal elements of the covariance matrix are expressed respectively as follows:

(3.17) V =







v11 ... v1n

...
. . .

...
vn1 ... vnn






,

(3.18) W =







v11 ... 0
...

. . .
...

0 ... vnn






.
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For the Weibull distribution:

β̂GLS1 = (X′V−1X)−1X′V−1Y ,

β̂WLS = (X′W−1X)−1X′W−1Y ,

where Y = [ln(x(1)), ..., ln(x(n))], X =







1 ln(− ln(1 − F̂1))
...

...

1 ln(− ln(1 − F̂n))






, β̂ = (β̂0, β̂1), where β̂0 =

ln λ̂ and β̂1 = 1
α̂
, λ̂ = exp(β̂0) and α̂ = 1

β̂1

.

It should be noted that independent variables in equations (2.5), (2.9) and (2.12)
are unobserved, but are estimated differently from classical regression analysis. In order
to estimate regression coefficients, we replaced the independent variable with its estimate.

Considering the expected value of E(TF (Fi)) given in (3.9) and (3.12), we can
choose the independent variable as TF (F0i) + 1

2TF ′′(F0i)V ar(F ) to reduce bias in the
GLS procedure. Nevertheless, unbiasedness of the resulting estimator is not claimed,
since TX(Xi), as the dependent variable, has an estimate of mean. Consequently, the
considered generalized estimation procedure here is denoted by GLS2 for the purpose of
distinction.

Thereby, the design matrix of the regression model for the Weibull distribution is
given as follows:

(3.19) Z =











1 ln(− ln(1 − F̂1)) − 0.5 −
ln(1−F̂1)+1

((1−F̂1) ln(1−F̂1))2

...
...

1 ln(− ln(1 − F̂n)) − 0.5 −
ln(1−F̂n)+1

((1−F̂n) ln(1−F̂n))2











.

Consequently,
β̂GLS2 = (Z′V−1Z)−1Z′V−1Y .

Taken into account the model given in (2.9) for the Pareto distribution, TF (F) = ln(1−F ),
TF ′(F ) = −1

1−F
and TF ′′(F ) = −1

(1−F )2

The approximate formula for the V matrix for the Pareto distribution can be
expressed as follows:

(3.20) vij =
1

(n + 1 − i)
, i ≤ j .

Similarly, the V matrix for the log-logistic distribution is:

(3.21) vij =
(n + 1)2

i(n + 1 − i)
, i ≤ j .

where TF (F ) = ln( F
1−F

), TF ′(F ) = 1
1−F

and TF ′′(F ) = 2F−1
(F (1−F ))2 .

Similar to the Weibull distribution, WSL, GLS1 and GLS2 estimation methods can
be applied to estimate the parameters of the Pareto and log-logistic distributions using
the approximate covariance matrices. It should also be highlighted that the obtained
covariance matrix and the proposed GLS1 estimation method coincide with GLS for the
Weibull studied in (Engeman and Keefe, 1982). However, Engeman and Keefe (1982)



272 Yeliz Mert Kantar

compare GLS estimation with ML for sample size n = 25 and find that GLS for the shape
parameter of the Weibull distribution performs better than ML estimation. In this study,
we compare GLS1 for the Weibull distribution with existing alternative WLS estimation
methods for different sample sizes and shape parameter cases.

In conclusion, the considered WLS, GLS1 and GLS2 estimation methods are based
on explicit functions of the sample observations and are therefore easy to compute, with-
out the typical computational complexity of ML (Kantar and Senoglu, 2008; Gebizli-
oglu et al. 2011). Also, the standard error of the WLS, GLS1 and GLS2 estimates are
easily calculated taking the square roots of the diagonal elements of (X′W−1X)−1σ2,
(X′V−1X)−1σ2 and (Z′V−1Z)−1σ2 respectively.

4. DISCUSSION OF OTHER ALTERNATIVE ESTIMATION

METHODS

Many estimators have been proposed in the literature for the parameters of the
Weibull distribution, and these estimators have been compared according to different
criteria (Bergman, 1986; Gebizlioglu et al. 2011; Hassanein 1971; Hossain and Zimmer
2003; Hossain and Howlader, 1996; Hung, 2001; Marks, 2005; Kantar and Senoglu, 2008;
Kantar and Usta, 2008; Zhang et al. 2008; Prakash and Singh, 2009; Zyl and Schall,
2012). The ML estimator, generally preferred due to its good theoretical properties for
large sample sizes (n > 100), (Kantar and Senoglu, 2008), may have poor small sam-
ple performance (Kantar and Senoglu, 2008; Marks, 2005; Teimouri and S. Nadarajah,
2012). Moreover, ML requires an iterative numerical method for most distributions, such
as Newton–Raphson. Among other alternative estimators, the most popular is LS estima-
tion because of its computational simplicity in the case of complete data, censoring data
and data with outliers (Genschel and Meeker, 2010; Hossain and Zimmer, 2003; Hung,
2001; Lu et al. 2004; Zhang et al. 2007). However, it is known that LS estimates for dis-
tributional parameters may give misleading inferences since there is a heteroscedasticity
or correlation problem. With this in mind, GLS (Engeman and Keefe, 1982) and WLS
are proposed in (Hung, 2001; Lu et al. 2004; Zyl and Schall, 2012), demonstrating that
WLS totally outperforms the LS method. Also, Zyl and Schall’s (2012) WLS performs
almost as well as the ML estimation.

The Pareto distribution has been widely-studied in the literature (Quandt, 1966;
Saksena and Johnson, 1984; Likes, 1969; Baxter, 1980). Since ML of its shape parameter
is biased (Baxter, 1980; Saksena and Johnson, 1984), Malik (1970) studied the LS, ridge
regression and maximum product of spacing methods to estimate the parameters for the
Pareto distribution. Hossain and Zimmer (2000) consider LS for the Pareto distribution,
showing the superiority of LS estimation over ML estimation. In addition, Lu and Tao
(2007) provide a new weighting function for WLS, in order to estimate the parameters
of the Pareto distribution. They show that their WLS method demonstrates better
performance than classical LS estimation for the Pareto distribution.

On the other hand, the ML, LS, moment, generalized moment and probability
weighted moment estimators are considered as estimation methods for log-logistic distri-
bution in the literature (Ashkar and Mahdi, 2006; Chen, 2006; Kantar and Arik, 2014;
Rao and Kantam, 2012). The moment estimator for the log-logistic distribution is not
widely-used due to constraints δ > 1 and δ > 2. Among those mentioned, ML is the
most-preferred estimation method.
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5. MONTE CARLO SIMULATION

This section presents Monte Carlo simulation carried out to compare the per-
formance of the proposed GLS1, GLS2 and WLS in comparison with ML, LS estima-
tion methods, and also certain existing WLS estimation methods for the parameters of
Weibull, Pareto and Log-logistic distributions.

Bias and RMSE for parameters are calculated using 20, 000 simulated samples. All
computations for the simulation are performed using MATLAB 10.1. We consider sample
sizes n = 10, 20, 30, 50, 100 and 250. While shape parameters are taken as 0.5, 1, 2, 4
for the Pareto distribution, for log-logistic and Weibull distributions, shape parameters
are taken as 1, 2, 3 and 6 in common with previous studies. Also, without any loss of
generality, the scale parameter is taken to be equal to 1.

Table 1 shows the RMSE and bias values for ML, LS estimation for regression of
X on Y (LS1), known as classical LS in the literature, LS estimation for regression of
Y on X (LS2), which is considered in this study, WLS (Zyl&Schall), WLS (Hung) and
WLS (Lu et al.) and the considered WLS, GLS1 and GLS2 in this study, for the shape
parameter of the Weibull distribution. From the simulation results presented in Table 1,
the following conclusions may be summarized:

According to the RMSE criterion:

(a) GLS1 and GLS2 apparently show better performance than others for most
considered sample sizes.

(b) While GLS1 provides less RMSE than others for n = 10, GLS1 and GLS2
show similar and best performance for n = 20, 30, 50, 100.

(c) WLS estimation performs better than LS1 for all sample sizes and shape
parameter cases.

(d) LS2 performs better than LS1 for all considered sample sizes except n = 10.
The same result is observed in the study of Zhang et al., 2007.

According to bias criterion:

(a) GLS2 is clearly the best estimator in terms of bias. Particularly, a superior
performance of GLS2 is observed for n ≥ 20.

(b) Next to GLS2, LS2, GLS1 and WLS provide similar good performance for
n = 10, 20 with ML being best for other n = 50, 100, 250.

From the simulation results presented in Table 2 for the shape parameter of the
Pareto distribution, the following conclusions may be summarized:

According to RMSE:

(a) While the proposed GLS1 estimation shows better performance than ML,
LS1, LS2, WLS (Lu&Tao) and ELS (Lu&Tao) for most of the considered
sample sizes, GLS2 is the best for n = 250. Also, the considered WLS is the
best performer next to GLS1 for n = 10, 20, 30, 100 with GLS2 presenting
the second best performance after GLS1 for n = 50.

(b) The considered WLS estimation methods and WLS (Lu and Tao) show sim-
ilar performance.

(c) ML shows the worst performance compared with others, in terms of RMSE
for n = 10. This result matches the study of Lu and Tao (2007).

(d) LS2 has smaller RMSE than LS1 for all the considered shape parameter cases
and sample sizes except n = 10.
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Table 1: RMSE and Bias of the estimated shape parameters of the Weibull distribution.

Shape

Methods 1 2 3 6

RMSE Bias RMSE Bias RMSE Bias RMSE Bias

n=10

ML 0.38863 −0.16511 0.76759 −0.33705 1.13419 −0.51566 2.31548 −0.98691
LS1 0.31833 0.13005 0.63634 0.26033 0.95289 0.39420 1.90491 0.78612
LS2 0.31990 0.05931 0.63967 0.11783 0.95616 0.18046 1.91233 0.36114
WLS (Z&S) 0.29821 0.13978 0.58720 0.27390 0.88842 0.40626 1.78828 0.84593
WLS (Hung) 0.30320 0.13897 0.60026 0.27159 0.90529 0.40397 1.81904 0.83832
WLS (Lu) 0.29903 0.14035 0.58920 0.27497 0.89115 0.40837 1.79431 0.84926
WLS 0.31800 0.06117 0.63271 0.11755 0.95065 0.17788 1.92669 0.37458
GLS1 0.29000 0.06362 0.56862 0.12068 0.86533 0.17573 1.73207 0.38308
GLS2 0.35385 −0.06119 0.56109 −0.04698 0.89027 −0.16520 1.96762 −0.38306

n=20

ML 0.22154 −0.07498 0.43758 −0.14731 0.64809 −0.21834 1.33219 −0.44944
LS1 0.23171 0.10663 0.46301 0.21645 0.69459 0.31827 1.38990 0.63916
LS2 0.21958 0.05772 0.43834 0.11909 0.65791 0.17143 1.31574 0.34487
WLS (Z&S) 0.20379 0.09617 0.40523 0.19618 0.60474 0.29597 1.22168 0.57716
WLS (Hung) 0.21225 0.08519 0.41520 0.17664 0.63069 0.26699 1.26565 0.50690
WLS (Lu) 0.20472 0.09610 0.40707 0.19616 0.60777 0.29605 1.22675 0.57687
WLS 0.21970 0.05956 0.43600 0.12022 0.65285 0.18496 1.31841 0.36573
GLS1 0.19204 0.05495 0.37992 0.11169 0.56485 0.17069 1.15498 0.33209
GLS2 0.19931 −0.02895 0.41816 −0.07534 0.55577 −0.05771 1.13999 −0.07700

n=30

ML 0.16694 −0.04893 0.33061 −0.09807 0.50327 −0.14007 0.99289 −0.27909
LS1 0.19433 0.09079 0.38810 0.18201 0.58324 0.27222 1.16341 0.53894
LS2 0.18047 0.05201 0.36069 0.10431 0.54226 0.15547 1.08346 0.30588
WLS (Z&S) 0.16227 0.07152 0.32184 0.14273 0.49135 0.21621 0.97494 0.44393
WLS (Hung) 0.17208 0.05960 0.34207 0.11918 0.52139 0.18016 1.03151 0.37621
WLS (Lu) 0.16303 0.07120 0.32345 0.14211 0.49372 0.21527 0.97947 0.44253
WLS 0.18075 0.05161 0.35854 0.10327 0.54220 0.15931 1.07667 0.33157
GLS1 0.15281 0.04580 0.30270 0.09133 0.46125 0.14013 0.91585 0.28804
GLS2 0.15024 −0.02217 0.30412 −0.01153 0.44822 −0.04302 0.90238 −0.02257

n=50

ML 0.11983 −0.02859 0.24544 −0.06272 0.36191 −0.08748 0.72335 −0.16474
LS1 0.15472 0.07106 0.30869 0.14283 0.46362 0.21366 0.92958 0.42794
LS2 0.14211 0.04228 0.28304 0.08543 0.42558 0.12742 0.85239 0.25580
WLS (Z&S) 0.12252 0.04702 0.24491 0.08928 0.36714 0.14028 0.74707 0.28503
WLS (Hung) 0.13334 0.03707 0.26475 0.07007 0.39962 0.10809 0.81009 0.22344
WLS (Lu) 0.12317 0.04661 0.24597 0.08849 0.36893 0.13909 0.75062 0.28238
WLS 0.14114 0.04233 0.28107 0.07777 0.42417 0.12536 0.85600 0.25945
GLS1 0.11502 0.03513 0.23203 0.06517 0.34612 0.10363 0.70692 0.21860
GLS2 0.11894 −0.01230 0.23650 −0.02100 0.34015 −0.03437 0.68911 −0.06076

n=100

ML 0.08173 −0.01503 0.16438 −0.02775 0.24102 −0.04263 0.47159 −0.07239
LS1 0.11206 0.04903 0.22417 0.09773 0.33142 0.14372 0.66981 0.29164
LS2 0.10253 0.03039 0.20509 0.06024 0.30433 0.08797 0.61356 0.18014
WLS (Z&S) 0.08532 0.02365 0.17234 0.05307 0.25084 0.07527 0.50474 0.16409
WLS (Hung) 0.09497 0.01702 0.18984 0.04145 0.27751 0.05683 0.56174 0.12774
WLS (Lu) 0.08567 0.02331 0.17300 0.05260 0.25179 0.07440 0.50692 0.16229
WLS 0.10173 0.02789 0.20430 0.06213 0.30194 0.09223 0.60435 0.18702
GLS1 0.08068 0.02223 0.16310 0.04667 0.23956 0.06941 0.47439 0.14998
GLS2 0.08112 −0.00479 0.15633 −0.01075 0.23748 −0.01722 0.47863 −0.03175

n=250

ML 0.05067 −0.00450 0.10093 −0.01063 0.15032 −0.01562 0.30313 −0.02655
LS1 0.07090 0.02789 0.14099 0.05622 0.21292 0.08332 0.42111 0.16382
LS2 0.06573 0.01797 0.13096 0.03675 0.19744 0.05341 0.39137 0.10486
WLS (Z&S) 0.05505 0.01139 0.10954 0.02045 0.16313 0.03184 0.32897 0.07036
WLS (Hung) 0.06107 0.00848 0.12296 0.01354 0.18259 0.02266 0.36949 0.05389
WLS (Lu) 0.05514 0.01126 0.10982 0.02018 0.16352 0.03146 0.32979 0.06964
WLS 0.06745 0.01893 0.13191 0.03565 0.19723 0.05478 0.39537 0.11392
GLS1 0.05235 0.01343 0.10281 0.02536 0.15375 0.03858 0.30788 0.08173
GLS2 0.04909 −0.00189 0.09938 −0.00330 0.14755 −0.00684 0.30200 −0.00780
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Table 2: RMSE and Bias of the estimated shape parameters of the Pareto distribution.

Shape

Methods 0.5 1 2 4

RMSE Bias RMSE Bias RMSE Bias RMSE Bias

n=10

ML 0.26682 −0.12505 0.53541 −0.25050 1.06415 −0.49718 2.13514 −1.00263
LS1 0.20968 0.04864 0.41600 0.09824 0.83662 0.19479 1.66619 0.39608
LS2 0.22352 0.01044 0.44241 0.02185 0.89118 0.04120 1.77565 0.08861
ELS 0.24558 −0.04463 0.49464 −0.09034 0.98164 −0.17592 1.96201 −0.36301
WLS (L&T) 0.19586 −0.00777 0.39277 −0.01558 0.78208 −0.02760 1.56403 −0.06245
WLS 0.19118 −0.00860 0.38300 −0.01950 0.76350 −0.00124 1.52641 −0.00795
GLS1 0.18815 0.00937 0.37398 0.01637 0.74324 0.03592 1.48892 0.06459
GLS2 0.21636 −0.04981 0.43160 −0.09986 0.86333 −0.20072 1.72788 −0.39918

n=20

ML 0.14642 −0.05530 0.29084 −0.11156 0.58265 −0.22108 1.16502 −0.44376
LS1 0.14772 0.05070 0.29604 0.09971 0.59634 0.19960 1.18038 0.39813
LS2 0.14621 0.02396 0.29318 0.04620 0.59092 0.09233 1.16898 0.18253
ELS 0.15748 −0.01357 0.31413 −0.02760 0.63213 −0.05491 1.25870 −0.11178
WLS (L&T) 0.12506 0.00255 0.24789 0.00402 0.49643 0.01074 0.99388 0.01982
WLS 0.12426 0.00388 0.24623 0.00693 0.49396 0.01578 0.98857 0.03018
GLS1 0.11975 0.01462 0.23707 0.02849 0.47619 0.05864 0.95094 0.11581
GLS2 0.12905 −0.02108 0.25999 −0.04308 0.51875 −0.09169 1.03973 −0.18273

n=30

ML 0.10913 −0.03567 0.21762 −0.07012 0.43559 −0.14240 0.87266 −0.28254
LS1 0.12375 0.04583 0.24788 0.09080 0.49645 0.18579 0.99177 0.36783
LS2 0.11925 0.02400 0.23871 0.04717 0.47713 0.09810 0.95442 0.19228
ELS 0.12570 −0.00582 0.25086 −0.00965 0.50424 −0.02141 1.01027 −0.04358
WLS (L&T) 0.09935 0.00262 0.19872 0.00624 0.39603 0.01096 0.79497 0.02404
WLS 0.09900 0.00322 0.19817 0.00742 0.39477 0.01342 0.79265 0.02855
GLS1 0.09482 0.01333 0.18955 0.0278 0.37870 0.05361 0.75963 0.10923
GLS2 0.10082 −0.01303 0.20118 −0.02577 0.40632 −0.05303 0.80194 −0.11129

n=50

ML 0.07906 −0.02046 0.15777 −0.04141 0.31351 −0.08160 0.62915 −0.16547
LS1 0.09967 0.03844 0.19854 0.07558 0.39837 0.15476 0.79066 0.30625
LS2 0.09372 0.02144 0.18723 0.04185 0.37493 0.08732 0.74424 0.17248
ELS 0.09798 0.00172 0.19465 −0.00282 0.38897 −0.00561 0.77529 −0.00025
WLS (L&T) 0.07629 0.00218 0.15245 0.00409 0.30287 0.00911 0.60790 0.01549
WLS 0.07616 0.00236 0.15212 0.00452 0.30241 0.00988 0.60706 0.01720
GLS1 0.07273 0.01106 0.14481 0.02164 0.28832 0.04439 0.57757 0.08671
GLS2 0.07446 −0.00845 0.15212 −0.01880 0.30202 −0.03505 0.60540 −0.06028

n=100

ML 0.05310 −0.01009 0.10578 −0.01982 0.21128 −0.04089 0.42800 −0.08124
LS1 0.07279 0.02822 0.14520 0.05607 0.29094 0.11272 0.57808 0.22687
LS2 0.06765 0.01673 0.13485 0.03315 0.26997 0.06692 0.53589 0.13466
ELS 0.06993 0.00239 0.13950 0.00553 0.27776 0.00878 0.55709 0.02359
WLS (L&T) 0.05376 0.00107 0.10691 0.00273 0.21361 0.00432 0.43429 0.00801
WLS 0.05367 0.00108 0.10686 0.00270 0.21335 0.00457 0.43377 0.00810
GLS1 0.05089 0.00726 0.10159 0.01491 0.20246 0.02852 0.41018 0.05789
GLS2 0.05186 −0.00413 0.10262 −0.00746 0.20545 −0.01435 0.41371 −0.03020

n=250

ML 0.03225 −0.00393 0.06527 −0.00813 0.13035 −0.01499 0.26125 −0.03125
LS1 0.04690 0.01701 0.09390 0.03438 0.18550 0.06628 0.37319 0.13153
LS2 0.04376 0.01060 0.08753 0.02151 0.17273 0.04044 0.34929 0.08020
ELS 0.04416 0.00226 0.08871 0.00508 0.17827 0.00943 0.35890 0.01919
WLS (L&T) 0.03376 0.00068 0.06812 0.00093 0.13531 0.00327 0.27164 0.00474
WLS 0.03376 0.00066 0.06804 0.00087 0.13535 0.00327 0.27137 0.00457
GLS1 0.03178 0.00390 0.06419 0.00758 0.12853 0.01631 0.25743 0.03136
GLS2 0.03107 −0.00171 0.06313 −0.00292 0.12684 −0.00505 0.25707 −0.01208
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According to bias criterion:

(a) GLS2 estimation outperforms GLS1 for n = 50, 100, 250.

(b) WLS and GLS1 estimation show better performance than LS1 and LS2.

(c) WLS (Lu and Tao) and the considered WLS present similar bias and display
the best performance of the considered other methods

(d) LS2 performs better than LS1 for all considered sample sizes and shape
parameter cases.

Table 3: RMSE and Bias of the estimated shape parameters
of the log-logistic distribution.

Shape

Methods 1 2 3 6

RMSE Bias RMSE Bias RMSE Bias RMSE Bias

n=10

ML 0.38796 −0.15471 0.78149 −0.3109 1.16347 −0.45895 2.32594 −0.91451
LS1 0.30902 0.15929 0.62230 0.31840 0.92998 0.47446 1.85716 0.95062
LS2 0.29362 0.08694 0.59277 0.17352 0.88646 0.25647 1.76698 0.51585
WLS 0.29648 0.07146 0.59574 0.14163 0.89171 0.21789 1.78314 0.43795
GLS1 0.29472 0.08268 0.59331 0.16425 0.88798 0.25136 1.77551 0.50485
GLS2 0.33087 −0.05343 0.65867 −0.10590 0.97803 −0.14401 1.97124 −0.31417

n=20

ML 0.22390 −0.06861 0.45489 −0.13848 0.67829 −0.20789 1.34570 −0.41794
LS1 0.22448 0.12767 0.44931 0.25450 0.67293 0.38268 1.34322 0.76474
LS2 0.20281 0.07589 0.40629 0.15064 0.60819 0.22676 1.21250 0.45194
WLS 0.19860 0.05444 0.40275 0.10805 0.60008 0.16147 1.18873 0.32162
GLS1 0.19875 0.07033 0.40239 0.13916 0.60100 0.20922 1.19166 0.41605
GLS2 0.20748 −0.02236 0.41765 −0.04474 0.62353 −0.06622 1.24679 −0.13392

n=30

ML 0.17141 −0.04370 0.34395 −0.08501 0.52345 −0.14420 1.03422 −0.27163
LS1 0.18629 0.10648 0.36970 0.21193 0.55713 0.32123 1.11029 0.63844
LS2 0.16603 0.06451 0.32959 0.12839 0.49574 0.19560 0.98802 0.38663
WLS 0.16011 0.04180 0.32274 0.08621 0.48336 0.11330 0.96052 0.24106
GLS1 0.16092 0.05816 0.32357 0.11810 0.48363 0.16259 0.96633 0.34148
GLS2 0.16449 −0.01475 0.32823 −0.02932 0.48997 −0.03890 0.98450 −0.08392

n=50

ML 0.12621 −0.02668 0.25227 −0.04722 0.37653 −0.07609 0.76238 −0.16317
LS1 0.14506 0.08190 0.29183 0.16550 0.43646 0.24620 0.86976 0.48919
LS2 0.12857 0.05090 0.25852 0.10325 0.38689 0.15309 0.77050 0.30204
WLS 0.12240 0.02660 0.24763 0.05935 0.36726 0.08315 0.73900 0.15699
GLS1 0.12289 0.04194 0.24840 0.08941 0.36860 0.12961 0.73981 0.24918
GLS2 0.12421 −0.00941 0.24635 −0.01618 0.36919 −0.02661 0.73388 −0.04230

n=100

ML 0.08709 −0.01411 0.17256 −0.02669 0.25856 −0.04118 0.52055 −0.08304
LS1 0.10268 0.05523 0.20460 0.10987 0.30874 0.16597 0.61404 0.32834
LS2 0.09175 0.03532 0.18259 0.06989 0.27599 0.10623 0.54827 0.20855
WLS 0.08723 0.01382 0.17290 0.02787 0.25850 0.04125 0.52305 0.08135
GLS1 0.08647 0.02528 0.17223 0.05236 0.25759 0.07728 0.51743 0.15365
GLS2 0.08571 −0.00277 0.16993 −0.00706 0.25560 −0.01324 0.50743 −0.01613

n=250

ML 0.05291 −0.00510 0.10644 −0.01131 0.15879 −0.01616 0.32245 −0.03197
LS1 0.06344 0.03021 0.12690 0.06063 0.19083 0.09199 0.38095 0.18491
LS2 0.05809 0.01975 0.11620 0.03977 0.17459 0.06069 0.34850 0.12221
WLS 0.05426 0.00616 0.10873 0.01105 0.16357 0.01762 0.33027 0.03516
GLS1 0.05344 0.01334 0.10712 0.02560 0.15994 0.03929 0.32485 0.07890
GLS2 0.05431 −0.00109 0.10664 −0.00448 0.16027 −0.00499 0.32287 −0.00997
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The results for the shape parameter of the log-logistic distribution are presented
in Table 3.

According to RMSE:

(a) GLS1, GLS2 and WLS show better performance than ML and LS1 in terms
of RMSE for all sample sizes except n = 250.

According to bias criterion:

(a) GLS2 apparently shows the best performance compared with others in terms
of bias.

(b) WLS and GLS1 are the best performers next to GLS2 for all sample sizes.

In summary, it may be concluded that while the proposed WLS, GLS1 and GLS2
for the shape parameter of Pareto and log-logistic distributions are good alternatives
to ML and LS1, the proposed GLS1 and GLS2 for the shape parameter of the Weibull
distribution can be preferable estimators in terms of RMSE. If we only consider bias
criterion, GLS2 is apparently the best alternative estimator for the shape parameter of
the Weibull distribution. In other words, the bias reduction is achieved by GLS2.

Moreover, we found that the LS2 estimation for the shape parameter of Pareto
and log-logistic distributions performs better than LS1 in terms of RMSE, similar to the
result of the Weibull distribution (Zhang et al., 2007).

Additionally, it can be deduced from all the simulation studies for scale param-
eters of the considered distributions that the considered GLS1, GLS2 and WLS are in
competition with existing estimation methods. Simulation results for the scale parameter
are available from the author upon request.

6. REAL LIFE EXAMPLES

In this section, we aim to show the performance of GLS by considering certain real
applications.

Example 1

This example was studied with Pareto distribution in Clark, 2013. The sample
consists of U.S. Weather/Climate Disasters, taken from the National Climatic Data Cen-
ter and represents total economic damage from weather events in the U.S. for 1980–2011,
adjusted to 2012 dollars. The sample size is 36. Using Q–Q plots, Kolmogorov–Smirnov
and Chi-square tests, we show that the Pareto distribution can be used to model this
data.

When we use LS1, LS2, GLS1 and GLS2 to estimate the parameters of the Pareto
distribution, the descriptive statistics concerning their residuals are given in Table 4.
Also, Jarque–Bera (JB) and Durbin–Watson (DW) tests are provided to test normality
and autocorrelation, respectively.

The p-values, 0.075 and 0.080, for the Durbin–Watson (DW) test of null hypothesis
that errors of the linear regression model are uncorrelated, show that there may be
autocorrelation between residuals obtained from LS1 and LS2. On the other hand, the
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p-values, 0.2855 and 0.2805 of the DW for the residuals of GLS1 and GLS2, respectively
show that the null hypothesis cannot be rejected, that is, the residuals of GLS1 and GLS2
are not autocorrelated.

Table 4: Descriptive statistics and normality test results of regression residuals
of the LS1, LS2, GLS1 and GLS2 for the Pareto distribution.
(Note: Regression residuals’ maximum (max), minimum (min), mean,
variance (var), skewness (skew.), kurtosis (kurt.) values, also p-value
and test value of Jarque Bera (JB) and Durbin Watson (DW) tests for
the residuals are presented.)

Descriptive statistics JB Test DW Test
Methods

min max skew. kurt. p-val. Test val. p-val. Test val.

LS1 −0.2638 0.1153 −1.6353 8.1862 0.0010 56.3904 0.0075 1.2658

LS2 −0.2430 0.1090 −1.5279 7.8415 0.0010 49.1681 0.0080 1.2723

GLS1 −0.9217 2.2652 1.1770 3.9269 0.0149 9.6002 0.2855 2.4067

GLS2 −1.1162 2.7486 1.2189 3.9606 0.0130 10.2977 0.2805 2.3987

We now calculate the estimates of the scale and shape parameters of the Pareto
distribution using the estimation methods mentioned in this study. (See Table 7).

Table 5: Parameter estimates for the Pareto distribution.

Parameters ML LS1 LS2 ELS WLS WLS GLS1 GLS2
(Zyl&Schall)

Scale 5.3000 5.0354 5.0623 5.2445 5.0907 5.0891 5.1696 5.1744

Shape 1.1902 1.0680 1.0744 1.1754 1.1069 1.0824 1.0995 1.1577

Example 2

The considered data, taken from (Lawless, 2002), is analyzed by (Gupta and
Kundu, 2001) with Gamma, Weibull and EE distributions. The data arose from results
of tests on the endurance of deep groove ball bearings. We fit the Weibull distribution
to this data set and observe that the Weibull distribution can be a plausible model.

The descriptive statistics of the resulting residuals from LS1, LS2, GLS1 and
GLS2 are given in Table 6. As can be seen from Table 6, while autocorrelation among
the residuals of LS1 and LS2 may be present according to the DW test, with p values
less than 0.05, the p-values of 0.6004 and 0.6457 for the DW test suggests that the GLS1
and GLS2 residuals are not autocorrelated.
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Table 6: Descriptive statistics and normality test results of regression residuals
for the LS1, LS2 and GLS1 for the Weibull distribution.

Descriptive statistics JB Test DW Test
Methods

min max skew. kurt. p-val. Test val. p-val. Test val.

LS1 −1.9634 1.8236 −0.0884 2.6113 0.5000 0.1747 0.0003 0.8454

LS2 −1.7711 2.2547 0.1630 2.8357 0.5000 0.1277 0.0004 0.8856

GLS1 −1.2475 2.1430 0.6942 2.4689 0.1289 2.1178 0.6004 2.3730

GLS2 −1.2786 2.1049 0.6090 2.3733 0.1708 1.7982 0.6457 2.3439

The estimates of the scale and shape parameters of the Weibull distribution, using
estimation methods mentioned in this study, are provided in Table 7.

Table 7: Parameter estimates for the Weibull distribution.

Param. ML LS1 LS2 WLS WLS WLS WLS GLS1 GLS2
(Z&S) (Hung) (Lu)

Scale 81.8958 82.2138 81.6037 81.1957 84.1501 81.0844 81.6037 82.8795 82.9189
Shape 2.1030 2.0430 2.1037 1.8748 1.8743 1.8863 2.1037 1.8756 2.0167

7. CONCLUSIONS

In this article, we consider generalized least squares (GLS1 and GLS2) and weighted
least squares (WLS) estimation methods, based on an easily-calculated approximation
of the covariance matrix, for estimating the parameters of a distribution that can be
converted to a linear regression model. The considered GLS1, GLS2 and WLS methods,
which are computationally easy and provide explicit estimators of the parameters, are
then applied to the estimation of the parameters of different distributions, such as the
Weibull, Pareto and log-logistic. The simulation results show that the considered GLS1,
GLS2 and WLS estimation methods, for the shape parameters of Pareto and log-logistic
distributions, show better performance than ML, LS and certain alternative estimation
methods in terms of RMSE for most of the considered sample sizes and shape cases. In
addition, GLS1 and GLS2 apparently provide an improvement over ML, LS and certain
alternative WLS for the shape parameter of the Weibull distribution in terms of RMSE
and bias. In conclusion, the results of the simulations and real life examples demonstrate
that the considered GLS1 and GLS2 for the shape parameters of log-logistic, Pareto and
Weibull distributions can be considered as good alternative estimators.

Moreover, it is also emphasized that the considered estimation methods can be
applied to Gumbel, Burr XII, Fréchet and other distributions, which have explicit cu-
mulative distribution functions, after calculation of the covariance matrix concerning
them.

In a future study, we plan to investigate the performance of the GLS estimation
method in the case of right censored data and contaminated data.
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