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Abstract:

• Joint modeling of longitudinal measurements and survival time has an important role
in analyzing medical data sets. For example, in HIV data sets, a biological marker
such as CD4 count measurements is considered as a predictor of survival. Usually,
longitudinal responses of these studies are severely skew. An ordinary method for
reducing the skewness is the use of square root or logarithm transformations of re-
sponses. In most of the HIV data sets, because of high rate of missingness, skewness
is remained even after using the transformations. Therefore, a general form of dis-
tributions for considering skewness in the model should be used. In this paper, we
have used multivariate skew-normal distribution to allow a flexible model for consid-
ering non-symmetrically of the responses. We have used a skew-normal mixed effect
model for longitudinal measurements and a Cox proportional hazard model for time
to event variable. These two models share some random effects. A Bayesian approach
using Markov chain Monte Carlo is adopted for parameter estimation. Some simu-
lation studies are performed to investigate the performance of the proposed method.
Also, the method is illustrated using a real HIV data set. In these data, longitu-
dinal outcomes are skew and death is considered as the event of interest. Different
model structures are developed for analyzing this data set, where model selection is
performed using some Bayesian criteria.
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1. INTRODUCTION

In most of the HIV and cancer studies a longitudinal biological marker such

as CD4 count or immune response can be an important predictor of survival. In

these studies a time to an event may also be a variable of interest. Patients are

monitored longitudinally and some longitudinal measurements are gathered until

the interest event occur. Often the longitudinal outcomes and time to event of inter-

est are analyzed jointly using joint modeling of longitudinal and time to event data.

Joint modeling of longitudinal measurements and time to event data has

been studied by DeGruttola and Tu (1994), Tsiatis et al. (1995) and Wulfsohn

and Tsiatis (1997). Henderson et al. (2000) and Hashemi et al. (2003) discussed

joint modeling of longitudinal measurements and event time data using latent

class of Gussian process, Tsiatis and Davidian (2001), Yu et al. (2004) and Sousa

(2011) provide reviews of this joint modeling. Tseng et al. (2005) used accelerated

failure time model for joint modeling of longitudinal and survival data and applied

Monte Carlo EM approach to estimate unknown parameters. Also, Diggle et al.

(2008) discussed different approaches to estimate unknown parameters of joint

modeling of longitudinal measurements and event time data and then applied

a fully parametric approach to modeling Schizophrenic patients data set. Joint

Modeling of longitudinal measurements and time to event data at the presence

of informative dropout in a HIV study was discussed by Wu et al. (2008). They

considered an additional missingness mechanism for missing values. Rizopoulos

(2010) presented the R package “JM ” that can be used to fit the joint modeling

of longitudinal measurements and survival data. Also, Guo and Carlin (2004)

discussed the implementation of the joint models in SAS and WinBUGS under

normal distributional assumption.

In the above mentioned references, usually a mixed effect model with nor-

mality or other symmetric distributional assumption is used for longitudinal part

of the model. However, in the most of such studies longitudinal measurements are

severely skew or have some outliers. For the latter problem, some models, which

are robust in the existence of outliers, have been considered by Lachos et al. (2010)

and Bandyopadhyay et al. (2010). They have used skew-normal/independent dis-

tribution assumptions in linear mixed effect models. However, the problem of

skewness, to our best of knowledge has not yet been considered in joint model-

ing of longitudinal and time to event data. The idea is that a parametric skew

distribution may be considered for this regard.

Skew-normal (SN) family is an important class of non-symmetric distribu-

tion for analyzing abnormal data set. The distribution includes normal one as a

special case. The first version of the distribution which is in the univariate form

is introduced by Azzalini (1985). More discussion about univariate skew-normal
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distribution can be found in Azzalini (1986) and Henez (1986). Generalizations

to the multivariate case are given in Azzalini and Dalla-Valle (1996), Azzalini and

Capitanio (1999), Branco and Dey (2001) and Sahu et al. (2003). For examples,

some applications of skew-normal in regression model can be found in Lachos et

al. (2007), Cancho et al. (2010) and Arellano-Valle et al. (2005b). Multivariate

skew-normal mixed effect model have discussed by Arellano-Valle et al. (2005a)

and Lin and Lee (2008), also, discussion about multivariate skew-normal with

incomplete data can be found in Lin et al. (2009) and Baghfalaki and Ganjali

(2011, 2012). Recently, there are some applications of skew-normal distribu-

tion for analysing HIV data. For examples: Ghosh and Branco (2007) develop

a Bayesian approach to bivariate random effect model with application to HIV

studies. Huang and Dagne (2011) used skew-normal distribution in a Bayesian

approach to joint modeling mixed effect and measurement error for a HIV study.

Huang and Dagne (2010) developed a Bayesian nonlinear mixed effect model

with skew-normal random effect and within subject errors for providing a better

fit to HIV data set, Huang et al. (2011a) suggested linear, nonlinear and semi-

parametric mixed-effect model using skew-normal distribution with measurement

error in covariates for analyzing an AIDS data set and Lachos et al. (2011) devel-

oped a Bayesian framework for analyzing censored data using linear or non-linear

model under skew-normal/independent distributional assumption with applica-

tion in HIV studies. Huang et al. (2011b) used skew-normal distribution for

joint modeling of CD4 process and time to increase CD4/CD8 ratio. They used

a mixed effect model for analyzing the longitudinal measurements alongside a

log-normal model for analyzing event time data.

In this paper, we have discussed Bayesian joint modeling of longitudinal

and survival data when skewness exists in the data set. We have used multi-

variate skew-normal distribution introduced by Sahu et al. (2003) for considering

skewness of the data. Implementation of the Bayesian approach using this form

is easier than other forms of skew-normal distributions. A non-ignorable missing-

ness mechanism is considered for missingness. Also, a skew-normal mixed effect

model and a Cox proportional hazard model (as a semiparametric model) with

step baseline hazard in a frailty model structure are considered for the joint mod-

eling. We have performed some simulation studies to investigate the performance

of the proposed method with different sample sizes and different rates of drop

out. We have used the proposed method for analyzing a HIV study, where CD4

count measurements are longitudinal measurements and time to death is consid-

ered as the interest event. The aim of the study was to compare the efficacy and

safety of two alternative antiretroviral drugs, namely didanosine (ddI) and zal-

citabine (ddC). In this data set CD4 count measurement is a skew variable which

is gathered along side with the time to the event of interest. We have used the

proposed model and pure normal model for analyzing the data set. The results

of using these distributional assumptions are compared using some criteria; also

some influential observations are detected using Kullback–Leibler divergence.
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The rest of this paper is organized as follows. In Section 2, we introduce

multivariate skew-normal distribution which we will use in this paper. Section 3

includes the model and notations of the paper. In that Section, the model for

longitudinal and survival part is described separately. In Section 4 Bayesian

approach of joint modeling of longitudinal measurements and event time data

using multivariate skew-normal distribution is discussed. Section 5 includes some

simulation studies for investigating the proposed model. In Section 6, we apply

the proposed approach to the HIV data set and finally concluding remarks are

given in Section 7.

2. MULTIVARIATE SKEW-NORMAL DISTRIBUTION

Multivariate skew-normal distributions have different forms, some of these

distributions have been introduced by: Azzalini and Dalla-Valle (1996), Azzalini

and Capitanio (1999), Arellano-Valle and Genton (2005) and Arellano-Valle et al.

(2005b). One of the commonly used multivariate skew-normal distributions, in

Bayesian context, is introduced by Sahu et al. (2003). In this section, we review

this form.

Let φk(y|µ,Σ) and Φk(y|µ,Σ) be the probability density function and

cumulative density function of the Nk(µ,Σ) evaluated at y, respectively. A k-

dimensional random vector Y follows a k-variate skew-normal distribution with

location vector µ ∈ Rk, k×k positive definite scale matrix Σ and k×k skewness

matrix ∆ = diag(δ1, ..., δk), where diag(a1, ..., ak) denotes a diagonal matrix with

elements a1, ..., ak, if its density function is given by:

f
(

y|µ,Σ,∆
)

= 2k φk

(

y|µ,Σ+∆∆′
)

× Φk

(

∆′
(

Σ+∆∆′
)

−1
(y−µ)

∣

∣0 ,
(

Ik +∆′Σ−1∆
)

−1
)

.
(2.1)

We denote this by Y ∼ SNk(µ,Σ,∆). The mean and covariance matrix of Y

are given, respectively, by:

E[Y ] = µ+

√

2

π
δ and cov(Y ) = Σ +

(

1 − 2

π

)

∆2 ,

where δ = (δ1, ..., δk)
′. The use of the following proposition which is called stochas-

tic representation, makes it possible to generate a sample from skew-normal dis-

tribution using available software.

Proposition 2.1. Let Y ∼ SNk(µ,Σ,∆), then Y
d
=∆|X0| +X1, X0 ∼

Nk(0, Ik), X1 ∼ Nk(µ,Σ) and X0 and X1 are independent. The notation
d
=

means “distributed as”. |X0| is the vector of the absolute values of each compo-

nent of X0.
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For proof of this proposition see Sahu et al. (2003) and Arellano-Valle

et al. (2007).

This proposition is used for obtaining a hierarchical set-up, that is Y |U =

u ∼ Nk(µ+ ∆u,Σ) and U ∼ Nk(0, Ik). This hierarchical set-up has been used

broadly in Bayesian context of skew-normal model.

3. NOTATION AND SEPARATE MODELS

In this section the notations and models for each part of JM are described.

The next section will discuss joint modeling (JM) of longitudinal responses and

time to event data with skew-normal distribution assumption for responses.

For longitudinal model, let yi(s) denote the value of longitudinal outcome at

time point s for the ith individual where the observed times are sij , i = 1, 2, ..., n,

j = 1, 2, ..., ni. In this case we shall write yi(sij) = yij . We consider the following

linear mixed effect model for describing longitudinal outcome:

yij = x′

1i(sij)β1 + z′1i(sij)b1i + εij , i = 1, 2, ..., n , j = 1, 2, ..., ni ,

where components of εi=(εi1, ..., εini
)′ are measurement errors, β1=(β11, ..., β1p1)

′

is a p1-dimensional vector of longitudinal fixed-effect parameters. b1i = (b1i1, ...,

b1iq1)
′ is a q1-dimensional vector of random effects and is independent of εi.

x1 and z1 are p1-dimensional and q1-dimensional vectors of explanatory vari-

ables, respectively. In the matrix notation

Yi = X1i β1 +Z1i b1i + εi ,(3.1)

where in this notation Yi is the longitudinal vector of response variable for

the ith subject. X1i =
(

x1i(si1), ...,x1i(sini
)
)

′

and Z1i =
(

z1i(si1), ...,z1i(sini
)
)

′

.

We assume that εi
iid∼ SNni

(

−
√

2
π
δe,Ψ,∆e

)

and b1i
iid∼ Nq1(0,D1). Note that

these assumptions gives E[εi] = E[b1i] = 0. Thus, this model considers the ran-

dom effects b1i to be symmetrically distributed, while the distribution of the

within subject errors εi to be asymmetric with mean zero. To seek for identifia-

bility (Arellano-Valle et al., 2007), we assume Ψ = σ2
eIni

, also, ∆e = δeIni
.

In survival model, let T ∗

i be the true event time and Ci be the censoring

time. Ti = min(T ∗

i , Ci) denotes the observed survival time for the ith individual,

i = 1, 2, ..., n. Also, δi = I(T ∗

i ≤Ci) is a censoring indicator, which is 0 for right-

censored and 1 for complete observed individuals. Therefore, the observed data

for the survival outcome consist of the pairs
{

(Ti, δi), i = 1, 2, ..., n
}

.

For survival modeling a frailty model which is linked to the longitudinal

model through some shared random effects is considered. The hazard function in
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our proposed model is given by:

h
(

ti|x2i, z2i, b2i

)

= h0(ti) exp
{

x′

2i β2 + z′2i b2i

}

,(3.2)

where h0(ti) is the baseline hazard function. Thus, the density function of survival

time for the ith individual can be written as:

hδi
(

ti|x2i, z2i, b2i

)

× exp
{

−H0(ti) exp
{

x′

2i β2 + z′2i b2i

}

}

,

where H0(t) =
∫ t

0 h0(u) du, x2 and z2 are p2- and q2-dimensional vectors of ex-

planatory variables, respectively. β2 = (β21, ..., β2p2)
′ is a p2-dimensional vector of

time to event fixed effect parameters and b2i = (b2i1, ..., b2iq2)
′ is a q2-dimensional

of random effects of time to event process where we assume, b2i
iid∼ Nq2(0,D2).

In the next section, for getting sure of identifiability we shall impose b2i to share

some components with b1i.

The longitudinal outcome yi can be partitioned into yi,obs={yi(sij): sij <Ti,

j = 1, 2, ..., ni}, which contains all observed longitudinal measurements for the

ith individual before the observed event time Ti, and yi,mis = {yi(sij) : sij ≥ Ti,

j = 1, 2, ..., ni} which contains the longitudinal measurements that should have

been taken until the end of the study and has to be considered as a vector con-

taining missing values.

4. THE SKEW-NORMAL JOINT MODELING (SNJM) OF LON-

GITUDINAL AND SURVIVAL DATA

In our proposed joint modeling, we have considered a skew-normal dis-

tribution for error terms of longitudinal measurements. However, because of

non-identifiability of some parameters, we have not considered skew-normal dis-

tribution assumption for random effects in these models. The skew-normal joint

modeling (SNJM) of longitudinal and survival data, as an extension of the usual

normal joint modeling, leads us to the following hierarchical model:

Yi|b1i,β1, σ
2
e , δe

ind.∼ SNni

(

X1iβ1 +Z1ib1i −
√

2

π
δe1ni

, σ2
eIni

, δeIni

)

,

b1i|D1
ind.∼ Nq1(0,D1) ,

h
(

ti|x2i, z2i, b2i

)

= h0(t) exp
{

x′

2iβ2 + z′2ib2i

}

,

b2i|D2
ind.∼ Nq2(0,D2) ,

(4.1)

where some components of random effects are shared between two models. The

stochastic representation of the skew-normal distribution can be used for simpli-

fying Markov Chain Monte Carlo (MCMC) approach in Bayesian specification.
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Therefore, the first line of equation (4.1) can be written as:

Yi|b1i,β1, σ
2
e ,U i = ui

ind.∼ Nni

(

X1iβ1 +Z1ib1i + δeui −
√

2

π
δe1ni

, σ2
eIni

)

,

U i
ind.∼ Nni

(0, Ini
) I(ui > 0) ,

where ui is the observed value of U i. Some components of longitudinal measure-

ments may be missing due to dropout. We consider a non-ignorable missingness

mechanism for them. In order to complete the Bayesian specification, prior dis-

tributions for all unknown parameters should be defined. The vector of unknown

parameter is θ = (β′

1,β
′

2, σ
2
e , δe,D1,D2). To ensure to have proper posteriors in

the model we consider proper but diffuse conditionally conjugate priors (Hobert

and Casella, 1996). We assume that components of θ are mutually independent

and the prior distributions are given by

β1 ∼ Np1(β01,Σ01) , β2 ∼ Np2(β02,Σ02) ,

D1 ∼ IWq1(η01,ψ01) , D2 ∼ IWq2(η02,ψ02) ,(4.2)

σ2
e ∼ IΓ(α0, τ0) , δe ∼ N(µδe , σ

2
δe

) .

The hyperparameters of these priors are selected such that they lead to the

low-informative prior distributions. As all of these priors are proper but, low-

informative in view of their variances.

For Bayesian implementation, one may use Gibbs sampling and Metropolis–

Hastings algorithm via WinBUGS package.

4.1. Models comparison

For models comparison, we have used some famous criteria which are

Deviance Information Criterion (DIC), Expected Akaike Information Criterion

(EAIC), Expected Bayesian Information Criterion (EBIC, Carlin and Louis, 2000;

Brooks, 2002) and Log Pseudo Marginal Likelihood (LPML).

Let Θ and Z = (z1, ..., zN )′ be the entire model parameters and data, re-

spectively. Define: D(Θ) = −2 ln f(z|Θ) = −2
N
∑

i=1
ln f(zi|Θ), where f(zi|Θ) is

marginal distribution of zi, then E [D(Θ)] is a measure of fit and can be approx-

imated by using the MCMC output in a Monte Carlo integration. This index is

given by D̄ = 1
K

K
∑

k=1

D(Θ(k)). Where Θ(k) is the kth iteration of MCMC chain of

the model and K is the number of iterations.

Therefore the Bayesian criteria are given by D̂IC = D̄+ p̂D, ÊAIC = D̄+2p

and ÊBIC = D̄ + p ln(N), where p is the number of parameters and N is the
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total number of observations. The smaller DIC, EAIC and EBIC, the better fit

of the model.

Another popular criterion, which is usually used for model comparison in

Bayesian context is Conditional Predictive Ordinate (CPO) statistic. Let Z(−i),

i = 1, 2, ..., N , denote the data set without its ith individual, and let π(θ|Z(−i))

denote posterior distribution of θ givenZ(−i), then CPOi =
∫

Θ
f(zi|θ)π(θ|z(−i))dθ.

Gelfand and Dey (1994) show that CPOi can be estimated by

CPOi =

(

1

K

K
∑

k=1

1

f
(

zi|θ(k), z
)

)−1

.

For collecting information of CPOis, the LPML statistic is defined by LPML =
N
∑

i=1
log(CPOi). In this concept, unlike that of DIC, EAIC or EBIC, the larger

value of LPML criterion indicates a better fitted model.

4.2. Convergence diagnostics

Gelman and Rubin (1992) have suggested a diagnostic test for assessing

convergence. Their method recommends that two or more parallels (denoted

by m) chains be generated, each with different starting values. For assessing

convergence of individual model parameters the potential scale reduction factor

(PSRF) may be used. The PSRF is calculated by PSRF =
√

n−1
n

+ m+1
nm

B
W

,

where B/n is the between-chain variance

[

B
n

= 1
m−1

m
∑

j=1

(

θj − θ̄
)2
]

and W is the

within-chain variance

[

W = 1
m(n−1)

m
∑

j=1

n
∑

i=1

(

θij − θ̄j

)2
]

. As chains converge to a

common target distribution, the between-chain variability should become small

relative to the within-chain variability and consequently PSRF should be close

to 1. Conversely, PSRF value larger than 1 indicates non-convergence.

5. SIMULATION STUDY

To investigate the performance of the proposed model, we conducted a

simulation study. In this simulation study, we generate 500 samples with sample

size n = 100, moderate sample size, and n = 500, large sample size. We have

considered the following joint modeling:

yij = β11 + β12sij + β13xi + b1i + b2isij + εij , i = 1, 2, ..., n , j = 1, 2..., 5 .
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In this model sij = j, xi ∼ Ber(0.2), β11 = 10, β12 = −3, β13 = −2, εij ∼
SN

(

−
√

2
π

δe, σ
2
e , δe

)

, where σe = 1 and δe = 3. Also, we have used a Cox pro-

portional hazard model in a frailty structure with a Weibull baseline hazard as

follows:

h(t) = h0(t) exp
{

β21 + β22xi + ρ1b1i + ρ2b2i

}

.

In this model, β22 = −2, ρ1 = 1 and ρ2 = 2. We have considered three rates of

random dropout, 10%, 30% and 50%, which are generated by using different val-

ues for β21. Therefore, we have a non-ignorable mechanism in the model, such

that when sij > Ti then ith individual dropouts from the study. In this simu-

lation study β21 = 3 leads to 10% rate of non-random dropout, β21 = −1 leads

to 30% and β21 = −2 leads to 50% rate of non-random dropout of longitudinal

outcomes. Also, bi = (b1i, b2i) ∼ N2(0,D), where D is considered to be a 2×2

matrix, where d11 = d22 = 1 and d21 = d12 = 0.5. d11, d12 and d22 are distinct

elements of the matrix D. Let β1 = (β11, β12, β13)
′ and β2 = (β21, β22)

′, we have

used the following low-informative priors for unknown parameters.

β1 ∼ N3(0, 103I3) , β2 ∼ N2(0, 103I2) ,

σe ∼ IΓ(0.01, 0.01) , δe ∼ N(0, 100) ,(5.1)

ρk ∼ N2(0, 102I), k = 1, 2 , D ∼ IW2(100I2, 2) .

We have used “R2WinBUGS” package for implementation of this simulation

study. We have implemented 10,000 iterations and have used the last 5000 iter-

ations to obtain some summary of posterior. We have analysed these simulated

data set under two distributional assumptions for within subject error: normal

distributional assumption and skew-normal distributional assumption. The re-

sults of this simulation study are presented in Tables 1 to 3 for the rate of miss-

ingness 10%, 30% and 50%, respectively. The relative bias and mean square error

of parameter θ are defined as

Rel.Bias(θ) =
1

N

N
∑

i=1

(

θ̂i

θ
− 1

)

, MSE(θ) =
1

N

N
∑

i=1

(

θ̂i − θ
)2

,

where θ̂i is the estimate of θ for the ith sample and N = 500. These tables

show that when real data have skew-normal distribution, some parameters of

joint modeling under normal assumption are estimated with some biases. These

parameters are variance of error term of longitudinal model, variance of random

effects and coefficients of random effects of survival model. For comparison of

the performance of two models results of relative bias and mean square error of

estimators are considered. Based on results given in Tables 1–3, we can conclude

that skew-normal model leads to better inference in general. Also, these tables

show that increasing of sample size in skew-normal scenario is an effective measure

in decreasing standard errors, relative bias and MSE of the parameters.
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6. HIV DATA SET

As an illustrative example of our Bayesian joint modeling, we use a lon-

gitudinal study on 467 HIV patients. Data were collected by Goldman et al.

(1996). HIV infection results in a progressive destruction of immune function,

which may be indicated by a decrease of CD4 (Stevens et al., 2006). A count of

CD4 cells of a person gives a general measure of the health of him/her immune

system, and is a good measurement of immunosuppression. A normal CD4 cell

count is more than 500 cells per cubic millimeter (mm3) of blood. If one has a

CD4 count of fewer than 300, one will be diagnosed as having AIDS, therefore,

CD4 count measurement is an important index which provides a way of gauging

the progression from HIV to acquired immune deficiency syndrome (AIDS) for

prognostic purposes. Thus, in this study, the CD4 count measurements over time

are chosen as response variable.

This study is done for comparing the efficacy and safety of two alternative

antiretroviral drugs, namely didanosine (ddI) and zalcitabine (ddC). The patients

met another entry conditions which is AIDS diagnosis or two CD4 counts of 300

or fewer, also they randomly assigned to receive either ddI or ddC, and CD4 cell

counts were recorded at study entry and again at the 2, 6, 12, and 18 months.

Another variable which is recorded in this study is time to death.

Before this Guo and Carlin (2004), Rizopoulos (2010) and some other au-

thors had suggested that, for analysing this data set, a square root transformation

for CD4 counts be used instead of Gaussian model. Figure 1 shows histogram

and q-q plot of
√

CD4 which shows that there are right skewness
√

CD4 even

after root transformation. We have used the same transformation in our analy-

sis, but under skew-normal distribution assumption for the error term. Figure 2

presents the subject-specific profile for fifty randomly selected individuals given

each drug. Panels of this figure show a sharply increasing degree of missing data

over time due to death, dropout, and missed clinic visits. In this figure the pro-

files of those individuals who remain and those of individuals who do not remain

are indicated using gray and black colors, respectively. This figure underlines

that those who do not remain had smaller
√

CD4 than others. Figure 3 presents

Kaplan–Meier survival curve estimates for both treatment groups. The plot sug-

gests longer survival times in the ddC group compared to the ddI group, from

month 6 onwards.

We have used a skew-normal JM of longitudinal and time to event data for

analysing the data set. The linear mixed effect model with random intercept and

slope is:

yij = β11 + β12 tij + β13 tij Drugi + β14Genderi

+ β15PrevOIi + β16Stratumi + b1i + b2i tij + σeεij .
(6.1)
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For the time to event process, we have used a Cox proportional hazard model,

the hazard function for this model is given by

h(ti) = h0(ti) exp
{

β21 + β22Drugi + β23Genderi

+ β24PrevOIi + β25Stratumi + ρ1b1i + ρ2 b2i

}

.
(6.2)

In models (6.1) and (6.2) the vector of random effects bi = (b1i, b2i)
′ is shared

between two models. Also, we consider normal and skew-normal distribution as-

sumptions on the longitudinal mixed model. Random effects are assumed to have

a bivariate normal distribution, that is, bi∼N2(0,D) and εij∼SN
(

−
√

2
π

δe, σ
2
e , δe

)

.

In this model, yij is the squared root of the jth CD4 count measurement on the

ith individual in the trial, j = 1, 2, ..., 5 and i = 1, 2, ..., 467. Genderi is a gender

indicator (0= female, 1 =male), also other three explanatory variables are Drugi

(0 =ddC, 1 =ddI), PrevOIi, previous opportunistic infection, (1 =AIDS diag-

nosis, 0 =no AIDS diagnosis), and Stratumi (1=AZT failure, 0 =AZT intoler-

ance).

In Bayesian MCMC implementation, we ran two parallels MCMC chains

with different starting values for 100, 000 iterations each. Then, we discarded

the first 20, 000 iterations as pre-convergence burn-in and retained 80, 000 for the

posterior analysis. Let βk = (βk1, ..., βkpk
)′ where k = 1, 2, p1 = 6, p2 = 5. In

all models, we consider βk ∼ Npk
(0, 10000Ipk

), σ2
e ∼ IΓ(0.1, 0.1), ρk ∼ N(0, 100),

D ∼ IW2(100I2, 2) and δe ∼ N(0, 100). For the piecewise baseline hazard func-

tion [hl, l = 1, 2, 3, 4 (the number of piecewise baseline=4)] the gamma(1, 1)

prior distribution is considered for each piece (hi, i = 1, 2, 3, 4). Hyperparameters

are chosen such that the priors of the parameters tend to be weakly informa-

tive. We have considered joint modeling of equations (7)–(8) under two different

distribution assumptions.

After checking Gelman–Rubin diagnosis test for convergence, Bayesian pa-

rameter estimates including posterior mean, standard deviation and 95% highest

posterior density of all parameters are given in Table 4. According to DIC, EAIC,

EBIC and LPML criteria the skew-normal model has a better fit to these data.

This table shows that time and previous opportunistic infection are two signifi-

cant covariates in longitudinal model, also skewness parameter of error term is

significant, where the more time and previous opportunistic infection, the less

CD4 count measurements. In survival model ρ1 and ρ2 are significant which

shows that two models are dependent. Also, Table 4 shows that skewness param-

eter is significant and ignoring this parameter and using normal model leads to

overestimating of variance of the error in longitudinal model.

An important criterion for finding the influential observations is Kullback–

Leibler divergence criterion between π(θ|Z) and π(θ|Z(−i)), i = 1, 2, ..., n, where

Z and Z(−i) are all data and the data set without its ith individual, respectively.
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It is defined by

Ki =

∫

π(θ|y, t) log

(

π(θ|y, t)

π
(

θ|y(−i), t(−i)
)

)

dθ .

This can be approximated by: (Christensen et al., 2011; page 341)

Ki = log





1

m

m
∑

j=1

1

L
(

θj |yi, ti
)



− 1

m

m
∑

j=1

log

(

1

L
(

θj |yi, ti
)

)

.

An observation with large Ki is considered as an influential observation. Figure 4

shows Kullback–Leibler divergence for both skew-normal and normal models.

This figure shows that the skew-normal model detects some individuals as influ-

ential observations, but normal model does not detect any. Individuals 131 and

353 have large values of the response in the second observed time in comparison

with the largest value in this time. These individuals have observed survival times

12.23 and 12.53, respectively. There is so much increase in CD4 count measure-

ments at 3th to 4th observed time for individuals 188 and 245. Other individuals

detected in Figure 3 are 417, 171 and 319. Except observation 417 who is died at

time 10.60, the other individuals dropped out from the study at times 17.33 and

15.97, respectively, where the length of the period of the study is equals to 18.

The longitudinal measurements for individuals 417 and 171 are close to the lowest

value of the CD4 measurements at each time of the study.

Also, a sensitivity analysis is performed to see the modification of posterior

distribution with respect to changes in the hyperparameters of prior distributions

of σ2
e . For this purpose, we assume σ2

e = 1
τ2
e
, where τ2

e ∼ Γ(ǫ, ǫ) (see Gelman,

2006) and Var(τ2
e ) = 1

ǫ
= 10k, k = −3,−2, ..., 2, 3. Sensitivity of the posterior

mean of all parameters for different values of k is investigated. This shows that

our inferences, containing the results of posterior means, standard deviations and

DIC value, are not sensitive to the change of value of k after k = 1 (the results

are not given here to save space).

7. CONCLUSION

In this paper, we have used a multivariate skew-normal distribution family,

which includes normal distribution, for analysing skew longitudinal responses

in joint modeling of longitudinal and survival times. We have used Bayesian

approach and WinBUGS software for implementing the proposed model. We

have performed some simulation studies to investigate the performance of the

proposed method. Also, the proposed method is used for analysing a real HIV

data set. Our analysis shows that these data set are severely skew, and the

skew-normal model has a better performance than normal model based on the
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DIC, EAIC, EBIC and LPML criteria. The program codes for analysing the

data set are available under request from the authors. If a data set includes

outliers and skew longitudinal responses a joint model with assumption of skew-

normal/independent distribution for responses may be defined to analyse the

data.
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Figure 1: Histogram and q-q plot of
√

CD4 in HIV data set.
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Figure 2: Profiles of
√

CD4 measurements over time for all individuals from
each drug, bold black lines are mean profile for all observed indi-
viduals on each drug, gray color indicates those individuals who
remain and black color represents those who do not remain.
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Figure 3: Kaplan–Meier estimates of the probability of survival
for individuals on each drug.

Figure 4: Kullback–Leibler divergence for the skew-normal and normal models.
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Table 4: Bayesian parameter estimates, posterior means (standard de-
viations, s.d.), and 95% HPDs for analysing the HIV data set
using skew-normal distribution (Skew-normal model) and the
normal distribution for error (Normal model).

Skew-normal model Normal model

parameters mean(s.d.) 95% HPD mean(s.d.) 95% HPD

Intercept (β11) 10.351(0.591) (9.186,11.589) 10.589(0.713) (9.212,11.921)
Time (β12) -0.362(0.048) (-0.461,-0.274) -0.352(0.052) (-0.451,-0.241)

Time × Drug (β13) 0.019(0.071) (-0.119,0.148) 0.023(0.072) (-0.119,0.172)
Gender (β14) -0.021(0.583) (-1.209,1.198) -0.255(0.673) (-1.506,1.093)
PrevOI (β15) -4.516(0.429) (-5.459,-3.749) -4.642(0.517) (-5.704,-3.661)
Stratum (β16) -0.194(0.422) (-0.974,0.651) -0.127(0.451) (-0.938,0.818)
Intercept (β21) -4.769(0.699) (-6.168,-3.402) -4.767(0.713) (-5.975,-3.171)

Drug (β22) 0.423(0.296) (-0.141,1.003) 0.373(0.292) (-0.213,0.939)
Gender (β23) -0.498(0.407) (-1.292,0.326) -0.295(0.449) (-1.146,0.568)
PrevOI (β24) 2.271(0.358) (1.603,2.992) 2.230(0.389) (1.502,2.964)
Stratum (β25) 0.098(0.281) (-0.441,0.674) 0.076(0.288) (-0.467,0.626)

ρ1 -0.314(0.044) (-0.405,-0.229) -0.299(0.042) (-0.381,-0.216)
ρ2 -3.722(0.448) (-4.711,-2.903) -3.865(0.422) (-4.633,-3.026)
d11 15.281(1.195) (13.078,17.710) 16.131(1.192) (13.940,18.591)
d12 -0.033(0.155) (-0.340,0.271) -0.040(0.156) (-0.346,0.262)
d22 0.468(0.037) (0.399,0.547) 0.472(0.039) (0.401,0.554)
δe 2.674(0.422) (1.457,3.062) – –
σ2

e 0.706(0.570) (0.071,2.244) 3.052(0.175) (2.742,3.410)
h1 0.146(0.088) (0.038,0.376) 0.119(0.077) (0.028,0.325)
h2 0.519(0.271) (0.158,1.183) 0.439(0.244) (0.127,1.082)
h3 1.397(0.706) (0.431,3.142) 1.207(0.643) (0.369,2.881)
h4 1.819(0.931) (0.545,4.069) 1.623(0.862) (0.488,3.827)

Model Comparison Criteria

DIC 6734.76 9425.89
EAIC 5290.922 8810.331
EBIC 5306.314 8165.494
LPML -3004.761 -3952.432

d11, d12 and d22 are distinct elements of the matrix D.


