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Abstract:

• In this paper control charts for the simultaneous monitoring of the means and the
variances of multivariate nonlinear time series are introduced. The underlying tar-
get process is assumed to be a constant conditional correlation process (cf. [3]).
The new schemes make use of local measures of the means and the variances based
on current observations, conditional moments, or residuals. Exponential smoothing
and cumulative sums are applied to these characteristic quantities. Distances between
these quantities and target values are measured by the Mahalanobis distance. The in-
troduced schemes are compared via a simulation study. As a measure of performance
the average run length is used.

Key-Words:

• statistical process control; multivariate CUSUM charts; multivariate EWMA charts;

conditional correlation model.

AMS Subject Classification:

• 62L10, 62M10, 62P20, 91B84.



132 Robert Garthoff, Iryna Okhrin and Wolfgang Schmid



Control Charts for Multivariate Nonlinear Time Series 133

1. INTRODUCTION

Nowadays, the methods of statistical process control (SPC) are frequently

used in order to detect changes in model parameters of multivariate time series.

Many applications can be found in various scientific fields, e.g. engineering, eco-

nomics, medicine, and environmental sciences. The main idea of SPC is to detect

deviations of an observed process from a predefined target process as soon as

possible after their occurrence. The most important tools of SPC are control

charts. A control chart consists of the control statistic and the control limits.

The data are sequentially examined. If at a certain point of time the control

statistic lies within the control limits, we conclude the process is still in control

and the procedure continues at the next point of time. If the control statistic

exceeds the control limit, the algorithm stops and the process is considered to be

out of control.

In current literature on SPC the underlying multivariate process is assumed

to consist of independent random vectors and the parameter of interest is chosen

to be the mean vector of the process (cf. [4, 14, 12, 13, 8]). Mean charts for

multivariate time series are considered in [17, 11, 1]. In [10] multivariate control

charts for nonlinear autocorrelated processes are introduced using the support

vector regression approach.

The monitoring of the covariance matrix of multivariate time series is dis-

cussed only in a few papers. In [15, 16] several types of exponentially weighted

moving average (EWMA) charts are proposed. The underlying process is as-

sumed to be either a multivariate Gaussian process or a multivariate GARCH

process in the sense of [5].

However, in the present paper the aim is to jointly monitor the means and

the variances of multivariate time series. The target process is assumed to be

a constant conditional correlation (CCC) model (cf. [3]). A CCC process is a

multivariate nonlinear time series turning out to be quite attractive for practical

purposes. Although the amount of parameters is not too high, the model is still

sufficiently flexible.

Subsequently, we introduce several new control charts. They are based on

combining local measures for the means and the variances of the target process

or the residual process, e.g. current observations and conditional variances with

an EWMA recursion or a cumulative sum (CUSUM). In order to avoid the curse

of dimensionality variances are monitored using the squared Euclidean distance

of present observations and residuals from their in-control mean as well as the

trace of the conditional covariance matrix. These schemes seem to be very useful

even for higher dimensions. Via an extensive Monte Carlo study the charts are

compared with schemes proposed in [6]. In order to assess the performance of

the schemes the average run length (ARL) is applied.
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The paper is structured as follows. In Sect. 2 we describe the CCC model

and the modeling of the out-of-control process. In Sect. 3 characteristic quantities

are presented. Their in-control means as well as their in-control covariances are

derived. In Sect. 4 multivariate EWMA and CUSUM type schemes based on

the former characteristic quantities are described. In Sect. 5 the results of the

simulation study are presented. Finally, we draw a conclusion in Sect. 6.

2. THE MODEL

Below, the target process is denoted by {Yt} and the observed process by

{Xt}. Next, we describe the modeling of both processes.

2.1. Modeling dynamics of the conditional covariance matrix

The p-dimensional target process {Yt} assumed to be a nonlinear CCC

model is given by

(2.1) Yt = µ + Σ
1/2
t εt .

Hence, εt is assumed to be an independent and normally distributed random

sequence with zero mean and a covariance matrix equal to the identity matrix.

Further, µ denotes the overall mean vector which is independent of time. The

matrix Σt = Cov(Yt | It−1) = Et−1

[

(Yt − µ) (Yt − µ)′
]

denotes the conditional co-

variance matrix of {Yt} conditioned on the information set It−1. It−1 is equal to

the smallest σ-algebra generated by Yt−1, Yt−2, ... . As a consequence,

(2.2) Yt | It−1 ∼ Np (µ,Σt) ,

i.e. the conditional distribution of Yt = (Y1t, ..., Ypt)
′ is a normal distribution.

The CCC model is introduced in [3] where the conditional correlation ma-

trix is assumed to be time invariant. The conditional covariance matrix of Yt is

given by

(2.3) Σt = Dt RDt =
(

σit ̺ij σjt

)

i,j=1,...,p

with σ2
it = Var(Yit | It−1) for i = 1, ..., p and Dt = diag(σ1t, ..., σpt). The condi-

tional variances of Yit usually follow a GARCH model (cf. [2])

(2.4) σ2
it = ωi +

Mi
∑

m=1

αim (Yi,t−m − µi)
2 +

Ni
∑

n=1

βin σ2
i,t−n ∀ i ∈ {1, ..., p} .



Control Charts for Multivariate Nonlinear Time Series 135

The conditional correlation matrix R = (̺ij)i,j=1,...,p of Yt is assumed to be time

invariant and positive definite.

A unique weakly stationary solution of (2.1), strictly stationary and ergodic

as well, exists if the polynomials fulfill the condition

(2.5) 1 −
Mi
∑

m=1

αimzm −
Ni
∑

n=1

βinzn 6= 0 for |z| ≤ 1

with i = 1, ..., p (cf. [9]). Moreover, E(Yt) = µ and

(2.6) Var(Yit) =
ωi

1 −
Mi
∑

m=1
αim −

Ni
∑

n=1
βin

∀ i ∈ {1, ..., p} .

2.2. Modeling the out-of-control behavior

We are faced with a sequential problem where we check at each point of

time t whether a shift in mean or variances has occurred or not. The respective

decision problem is therefore

H0,t : E(Xt) = µ ∧ Cov(Xt) = Σ

against(2.7)

H1,t : E(Xt) 6= µ ∨ Cov(Xt) 6= Σ

where Σ = Cov(Yt). The relationship between the target process {Yt} and the

observed process {Xt} is given by

(2.8) Xt =

{

Yt for t < τ
µ + a + ∆(Yt − µ) for t ≥ τ

.

The parameters a ∈ R
p\{0} and ∆ = diag(d1, d2, ..., dp) 6= Ip, where Ip denotes

the identity matrix of dimension p × p, are unknown. Here we focus on the

detection of increases in variances. For that reason we assume that di ≥ 1 for

i = 1, ..., p. The position of the change point is denoted by τ ∈ N ∪ {∞}. If a

change is present, i.e. τ < ∞, the process is said to be out of control. Hence,

changes in mean or in variances can be observed. On the contrary, τ = ∞ means

that the change point never occurs and therefore the process is in control.

3. CHARACTERISTIC QUANTITIES

In order to monitor the means and the variances of a multivariate process

we need several local measures for these characteristics. We reduce the number of
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characteristic quantities because we monitor the sum of variances. Since we are

exclusively interested in detecting increases of variances, the following procedures

can be applied. Below, the characteristic quantities are denoted by Tt. We derive

several properties of these quantities in this section (see Propositions 3.1 to 3.3).

In order to shorten the paper we do not present the proofs here. They can be

found in [7]. Further, the notation µ = (µi)i=1,...,p, Σt = (σij,t), Σ = (σij), and

σ2
i = σii = Var(Yit), i = 1, ..., p, is used.

3.1. Characteristics based on current observations and residuals

As already mentioned, current observations are local measures for the mean

vector. To monitor the covariance matrix we can use the squared Euclidean

distance between Xt and µ. This leads to

(3.1) T
(1)
t =

(

Xt − µ
(Xt − µ)′ (Xt − µ)

)

.

Further, the in-control mean vector and the in-control covariance matrix have

to be derived. If {Yt} is a weakly stationary process with the mean µ and the

covariance matrix Var(Yt) = Σ = (σij),

E
(

Tt
(1)

)

=





0
p
∑

i=1
σ2

i



 for t < τ and E
(

Tt
(1)

)

=





a
p
∑

i=1
d2

i σ
2
i



 for t ≥ τ .

Apparently, the quantity T
(1)
t reflects changes in the mean and the variances of

{Yt} but no changes in the covariances of {Yt}. If values smaller than 1 are

permitted for di, values larger and smaller than 1 might overlap. As a conse-

quence, a change in
∑p

i=1 d2
i σ

2
i is not observed. Since we only consider increases

in variances, we avoid this problem. Next, the underlying target process is a CCC

process.

Proposition 3.1. Assume that (2.1) and (2.2) hold and that E(Y 4
it) < ∞

for all i and t. Then

Covτ=∞

(

T
(1)
t

)

=

(

Σ 0
0′ a1t

)

and Covτ=∞

(

T (1)
s , T

(1)
t

)

=

(

Op×p 0
c1,st b1,st

)

for s < t where

a1t =

p
∑

i=1

p
∑

j=1

[

Eτ=∞

(

σ2
itσ

2
jt + 2σ2

ij,t

)

− σ2
i σ2

j

]

,

b1,st =

p
∑

i=1

p
∑

j=1

[

Eτ=∞

(

Xis − µi

)2
σ2

jt − σ2
i σ2

j

]

and

c1,st = Eτ=∞

[

(Xs − µ)

p
∑

i=1

σ2
it

]

.
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These quantities can be explicitly calculated only for less complex pro-

cesses, otherwise they have to be estimated via a simulation study. However,

in order to apply these results the underlying process has to be strictly station-

ary. Then these quantities do not depend on t. Note that Covτ=∞

(

T
(1)
s , T

(1)
t

)

=
[

Covτ=∞

(

T
(1)
t , T

(1)
s

)

]

′

so that the covariances can be computed for s > t as well.

Another simple characteristic quantity is based on the transformed observed

process ηt = (ηit)i=1,...,p. In this case the respective mean and the covariance

matrix of the residual vector are monitored. The residual vector is given by

(3.2) ηt = Σ
−1/2
t (Xt − µ) =

{

εt , t < τ ,

Σ
−1/2
t a + Σ

−1/2
t ∆Σ

1/2
t εt , t ≥ τ .

Note that ηt |Σt ∼ Np

(

Σ
−1/2
t a, Σ

−1/2
t ∆Σt ∆Σ

−1/2
t

)

. Thus, E
(

ηt

)

= E
(

Σ
−1/2
t

)

a .

The characteristic quantity based on residuals is given by

(3.3) T
(2)
t =

(

ηt

η′tηt

)

.

In the following proposition we compute the in-control mean and the in-control

covariance matrix.

Proposition 3.2. Assume that (2.1) and (2.2) hold and that R is positive

definite. Then

Eτ=∞

(

Tt
(2)

)

=

(

0
p

)

as well as

Covτ=∞

(

T
(2)
t

)

=

(

I 0
0′ 2p

)

and Covτ=∞

(

T (2)
s , T

(2)
t

)

= O(p+1)×(p+1)

for s 6= t.

The application of control charts to residuals is much easier than the appli-

cation to the original process, because ηt is independent and normally distributed

with zero mean and a covariance matrix equal to the identity matrix as long as

the process is in control. In the out-of-control state the process ηt is neither

independent nor identically distributed. In Proposition 3.2 only the existence of

the first two moments of the target process is required while in Proposition 3.1

the first four moments are needed.

3.2. Characteristics based on the conditional variances

Regarding characteristics based on conditional variances we compute the

trace of Σt at each point of time t. The characteristic quantity referring to the
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trace of the conditional covariance matrix is given by

(3.4) T
(3)
t =

(

Xt − µ
tr(Σt)

)

=





Xt − µ
p
∑

i=1
σ2

it



 .

Note that Eτ=∞

(
∑p

i=1 σ2
it

)

=
∑p

i=1 E
[

Var
(

Yit | It−1

)]

=
∑p

i=1 σ2
i . Thus, the quan-

tity is able to detect changes in variances of the target process. The derivation of

the in-control mean vector and the in-control covariance matrix of T
(3)
t is straight

forward.

Proposition 3.3. Assume that (2.1) and (2.2) hold and that R is positive

definite then

Eτ=∞

(

Tt
(3)

)

=





0
p
∑

i=1
σ2

i



 .

If additionally E(Y 4
it) < ∞ for all i and t,

Covτ=∞

(

T
(3)
t

)

=

(

Σ 0
0′ a3t

)

and Covτ=∞

(

T (3)
s , T

(3)
t

)

=

(

Op×p 0
c3,st b3,st

)

for s < t, where

a3t =

p
∑

i=1

p
∑

j=1

[

Eτ=∞

(

σ2
itσ

2
jt

)

−σ2
i σ2

j

]

,

b3,st =

p
∑

i=1

p
∑

j=1

[

Eτ=∞

(

σ2
isσ2

jt

)

− σ2
i σ2

j

]

and c3,st = c1,st.

As in the case of present observations these quantities can be explicitly de-

termined only for special cases. For more general processes they can be estimated

using a simulation study if the underlying target process is strictly stationary.

4. CONTROL SCHEMES FOR MULTIVARIATE TIME SERIES

In this section we propose several new control charts. They are obtained

applying univariate or multivariate EWMA recursions and cumulative sums to

the characteristic quantities considered in Sect. 3. The control statistics are based

on the Mahalanobis distance between the weighted characteristics and the corre-

sponding in-control means.

Since these control statistics are distance measures, the charts are one-

sided. Therefore, the charts give a signal if the control statistic exceeds the
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control limit. The first signal occurs at a certain point of time which is said to

be the run length. The control limit is usually chosen such that the in-control

expectation of the run length is equal to a pre-specified value A. In practice A

is frequently chosen to be equal to 500. Below, the quantity Tt stands for one of

the characteristic quantities T
(i)
t for i ∈ {1, 2, 3}.

4.1. Multivariate EWMA charts

Here we follow the procedure in [15, 16]. We apply a multivariate EWMA

(MuE) recursion to Tt. This leads to

(4.1) Zt = (I − Λ) Zt−1 + Λ Tt for t ≥ 1 .

Hence, Λ = diag(λ1, λ2, ..., λp, λp+1) is a diagonal matrix of smoothing parameters

of dimension (p+1)× (p+1). It is assumed that 0 < λi ≤ 1 for i ∈ {1, ..., p, p+1}.

We presume that the starting value is equal to the target value such that Z0 =

Eτ=∞(Tt). The mean vector of the considered quantity Zt is then

(4.2) Eτ=∞(Zt) = Eτ=∞(Tt) .

Introducing Covτ=∞(Tt−i, Tt−j) = Γ(j − i) and assuming Λ = λ Ip+1 the respec-

tive limit of the covariance matrix for t → ∞ simplifies to

(4.3) lim
t→∞

Covτ=∞(Zt) =
λ

2 − λ

[

Γ(0) +
∞

∑

v=1

(1 − λ)v
[

Γ(v) + Γ(v)′
]

]

.

Since {Yt} is assumed to be a strictly stationary CCC model with existing fourth

moments, the quantities T
(1)
t and T

(3)
t are weakly stationary. Since Covτ=∞(ηs, ηt)

= O(p+1)×(p+1) for s 6= t in the case Λ = λ Ip+1, the respective limit equals

(4.4) lim
t→∞

Covτ=∞

(

Z
(2)
t

)

=
λ

2 − λ

(

Ip 0
0′ 2p

)

.

Eventually, the control statistic equals the Mahalanobis distance between Zt and

its in-control mean. This leads to

(4.5) Tt =
[

Zt − Eτ=∞(Zt)
]

′
[

Covτ=∞(Zt)
]

−1 [

Zt − Eτ=∞(Zt)
]

.

In order to implement a less time-consuming procedure one may use the asymp-

totic covariance matrix instead of the exact one

(4.6) Tt =
[

Zt − Eτ=∞(Zt)
]

′

{

lim
t→∞

[

Covτ=∞(Zt)
]

}

−1
[

Zt − Eτ=∞(Zt)
]

.

On the contrary, the Mahalanobis EWMA (MaE) chart scheme is based

on the Mahalanobis distance of the vector Tt from its in-control mean Eτ=∞(Tt).

The control statistic is specified as

(4.7) Zt = (1 − λ)Zt−1 + λTt for t ≥ 1
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where

(4.8) Tt =
[

Tt − Eτ=∞(Tt)
]

′
[

Covτ=∞(Tt)
]

−1 [

Tt − Eτ=∞(Tt)
]

.

The quantity λ ∈ (0, 1] is said to be the memory parameter. The starting value

Z0 is chosen to be equal to the in-control expectation of Tt, i.e. Z0 = Eτ=∞(Tt) =

p + 1.

4.2. Multivariate CUSUM control schemes

In [14] two multivariate control schemes based on the cumulative sum of

{Xt} are introduced. We extend this approach to the CCC model. Regarding

the first multivariate CUSUM (MC1) chart the cumulative sum is determined be-

fore computing the respective standardized distance which represents a quadratic

form. The cumulative sum is specified as

(4.9) St−nt,t =
t

∑

i=t−nt+1

[

Ti − Eτ=∞(Ti)
]

, t ≥ 1 .

Accordingly, the relevant control statistic is based on a suitable norm of the

cumulative sum given by

(4.10) ‖St−nt,t‖Γ(0) =
√

S′

t−nt,t Γ(0)−1 St−nt,t .

The control statistic is equal to the norm of the cumulative sum subtracted by a

reference value

(4.11) MC 1t = max
{

0 , ‖St−nt,t‖Γ(0) − k nt

}

, t ≥ 1 .

Thus, k ≥ 0 is said to be the reference parameter. Further, the quantity nt

denotes the number of observations since the last restart given by

(4.12) nt =

{

nt−1 + 1 , MC1t−1 > 0 ,

1 , MC1t−1 = 0 ,

where t ≥ 1 with MC 10 = 0.

Regarding the second multivariate CUSUM (MC2) control chart we have

to determine the cumulative sum after computing the standardized distance, the

Mahalanobis distance of the quantity Tt from its in-control mean

(4.13) D2
t =

[

Tt − Eτ=∞(Tt)
]

′

Γ(0)−1
[

Tt − Eτ=∞(Tt)
]

.

Eventually, the control statistic of the second multivariate CUSUM scheme equals

(4.14) MC 2t = max
{

0 , MC2t−1 + D2
t − (p + 1) − 2 k2

}

where k ≥ 0 and MC 20 = 0.
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5. COMPARISON STUDY

We intend to jointly monitor the mean vector and the variances of a bivari-

ate nonlinear process. Initially, a CCC model must be chosen for a simulation

study. Via a Monte Carlo simulation explicitly dominated control schemes should

be identified. Eventually, the detection speed of the control schemes presented in

the previous section should be evaluated. As a performance measure for control

charts the ARL is used. In order to compute the ARLs we implement a program

written in C++. The solutions are obtained using the bisection algorithm where

106 Monte Carlo replications are submitted for each algorithm iteration. This

algorithm is interrupted when the numerical error of the ARL is less than ±10−6

or the change in the control limits does not exceed ±10−6.

5.1. Configuration of the Monte Carlo study

First of all, we need to calibrate the considered control charts such that the

ARL in the in-control state is equal to a pre-specified value A. Here we choose

A = 120, i.e. we consider approximately a half a year on the capital market.

In the following section we want to focus on charts based on residuals. The

control limits do not depend on the parameters of the underlying target process

but only on the smoothing parameter for EWMA type charts and the reference

value for CUSUM type schemes. Therefore, the calculation of the control de-

sign appears to be much easier for these schemes. In this comparison study

we choose the smoothing parameter λ ∈ {0.1, 0.2, ..., 1.0} and the reference value

k ∈ {0.0, 0.1, ..., 1.0}. Here we present our results for the target process with

(5.1) σ2
1t = 0.2 + 0.2 Y 2

1,t−1 + 0.1 σ2
1,t−1

(5.2) σ2
2t = 0.1 + 0.1 Y 2

2,t−1 + 0.2 σ2
2,t−1 .

The constant conditional correlation ̺ equals 0.5. We take into account shifts in

the mean vector, shifts in the covariance matrix, as well as simultaneous shifts.

Although we study all three cases only one table referring to the joint monitoring

of means and variances is presented. Moreover, we choose a1 = a2 and d1 = d2.

The elements of the vector a take the values a1 ∈ {0.0, 0.25, ..., 2.0}. Further, the

scale transformation ∆ is specified by the parameter d1 ∈ {1.0, 1.1, ..., 1.4}.

5.2. Detection of changes in means and variances

The out-of-control ARLs for the considered process are given in Table 1.

The smallest out-of-control ARLs are printed in bold. The parameter values for
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each scheme and each type of change leading to the smallest out-of-control ARLs

are presented in parentheses.

Table 1: Out-of-control ARL of the CCC model based on an in-control
ARL equal to A = 120; ARLs refer to different shifts in means
and variances (m = 106, p = 2).

a1/d1 1.0 1.1 1.2 1.3 1.4

MuE 36.00 (0.3) 18.98 (0.3) 11.90 (0.3) 8.40 (0.3)
0.0 MaE 40.70 (0.1) 20.03 (0.1) 12.29 (0.1) 8.57 (0.1)

MC1 44.15 (0.4) 21.85 (0.4) 13.29 (0.5) 9.20 (0.5)
MC2 40.99 (0.2) 21.19 (0.4) 13.32 (0.6) 9.36 (0.7)

16.73 (0.1) 13.50 (0.2) 10.16 (0.2) 7.94 (0.2) 6.37 (0.3)
0.25 39.81 (0.1) 20.45 (0.1) 12.80 (0.1) 9.01 (0.1) 6.84 (0.1)

14.80 (0.3) 12.68 (0.3) 10.21 (0.4) 8.19 (0.5) 6.62 (0.5)
39.55 (0.2) 21.58 (0.4) 13.90 (0.5) 9.88 (0.6) 7.49 (0.7)

5.94 (0.2) 5.36 (0.2) 4.84 (0.2) 4.36 (0.3) 3.91 (0.3)
0.5 10.14 (0.1) 7.66 (0.1) 6.12 (0.1) 5.10 (0.1) 4.37 (0.1)

5.56 (0.5) 5.15 (0.5) 4.74 (0.5) 4.34 (0.6) 3.95 (0.6)
11.19 (0.5) 8.50 (0.6) 6.76 (0.7) 5.59 (0.8) 4.75 (0.8)

3.19 (0.3) 3.01 (0.3) 2.85 (0.3) 2.71 (0.3) 2.58 (0.3)
0.75 4.21 (0.1) 3.70 (0.1) 3.34 (0.1) 3.05 (0.1) 2.82 (0.1)

3.06 (0.7) 2.94 (0.7) 2.81 (0.7) 2.70 (0.7) 2.59 (0.7)
4.72 (0.8) 4.11 (0.8) 3.64 (0.9) 3.29 (1.0) 3.01 (1.0)

2.01 (0.3) 1.97 (0.4) 1.93 (0.4) 1.89 (0.4) 1.86 (0.4)
1.0 2.28 (0.1) 2.18 (0.1) 2.10 (0.1) 2.02 (0.1) 1.96 (0.1)

1.96 (0.9) 1.93 (0.9) 1.91 (0.8) 1.88 (0.9) 1.85 (0.9)
2.49 (1.0) 2.35 (1.0) 2.23 (1.0) 2.14 (1.0) 2.06 (1.0)

1.42 (0.4) 1.43 (0.4) 1.44 (0.4) 1.44 (0.4) 1.45 (0.4)
1.25 1.49 (0.1) 1.49 (0.1) 1.49 (0.1) 1.49 (0.1) 1.48 (0.1)

1.41 (1.0) 1.42 (1.0) 1.43 (1.0) 1.44 (1.0) 1.44 (1.0)
1.56 (1.0) 1.56 (1.0) 1.55 (1.0) 1.54 (1.0) 1.54 (1.0)

1.14 (0.5) 1.16 (0.5) 1.18 (0.5) 1.20 (0.5) 1.21 (0.5)
1.5 1.16 (0.1) 1.18 (0.1) 1.20 (0.1) 1.21 (0.1) 1.23 (0.1)

1.15 (1.0) 1.17 (1.0) 1.18 (1.0) 1.20 (1.0) 1.22 (1.0)
1.18 (1.0) 1.21 (1.0) 1.22 (1.0) 1.24 (1.0) 1.25 (1.0)

1.04 (0.6) 1.05 (0.6) 1.06 (0.5) 1.08 (0.5) 1.09 (0.5)
1.75 1.04 (0.2) 1.05 (0.3) 1.07 (0.2) 1.08 (0.1) 1.09 (0.2)

1.04 (1.0) 1.05 (1.0) 1.07 (1.0) 1.08 (1.0) 1.09 (1.0)
1.05 (1.0) 1.06 (1.0) 1.08 (1.0) 1.09 (1.0) 1.11 (1.0)

1.01 (0.6) 1.01 (0.6) 1.02 (0.5) 1.03 (0.5) 1.03 (0.5)
2.0 1.01 (0.4) 1.01 (0.3) 1.02 (0.3) 1.03 (0.4) 1.03 (0.4)

1.01 (1.0) 1.01 (1.0) 1.02 (1.0) 1.03 (1.0) 1.04 (1.0)
1.01 (1.0) 1.02 (1.0) 1.02 (1.0) 1.03 (1.0) 1.04 (1.0)

Regarding Table 1 none of the introduced charts exclusively dominates all

the other schemes. For small changes in means and variances the MuE chart

provides the smallest out-of-control ARLs. For medium-sized changes, the MC1

chart turns out to be the best scheme. Finally, for larger changes again the MuE

scheme appears to be the best control chart. Since the deviations between MC1
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and MuE are small for larger changes, the MC1 control chart seems to be the

most suitable scheme.

Accordingly, the optimal values of the parameters λ and k increase with in-

creasing mean and variance changes. If we concentrate on the MC1 and the MC2

scheme, in many situations the optimal k is on the boundary k = 1.0. Conse-

quently, their performance could be improved choosing a higher upper bound for k.

Additionally, we compare these findings with the results in [6]. In that paper

we propose control charts where changes in means, variances, and covariances

are taken into account. The characteristic quantities of these schemes are of

dimension p(p + 3)/2. Neglecting covariances in the present approach we reduce

the dimension to p + 1. Nevertheless, the residual charts monitoring means and

variances provide smaller out-of-control ARLs. Consequently, the reduction of

the dimension does not lead to a loss of efficiency. In our study we analyze

processes up to dimension 5. The charts seem to be useful for higher dimensions

as well. However, further research is necessary in order to assess their behavior

for high-dimensional processes.

6. CONCLUSION

Multivariate nonlinear time series are very attractive for practical applica-

tions in finance because of their time dependent conditional covariance matrix.

In this paper we propose new control charts for the joint surveillance of the means

and the variances of such processes. Therefore, characteristic quantities based on

current observations and residuals as well as characteristics based on conditional

variances are introduced. Several multivariate EWMA and CUSUM schemes in

connection with these characteristic quantities are proposed. The dimension of

the characteristics is reduced compared to the schemes proposed in [6]. As a

consequence, these control charts can be applied to nonlinear processes with an

explicitly higher dimension. Since the schemes based on residuals are much eas-

ier to handle, we recommend the application of residual charts. First the control

design does not depend on the parameters of the target process. Therefore, the

control limits can be easily determined. Second the residual schemes can be ap-

plied assuming weaker conditions on the underlying process. Eventually, financial

processes usually do not fulfill conditions on higher moments.

Via a Monte Carlo simulation study we compare the detection speed of each

control scheme using the out-of-control ARL as a reliable indicator. In many cases

we find that the MC1 control chart appears to be the best chart for joint shifts

in means and variances.
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[15] Śliwa, P. and Schmid, W. (2005). Monitoring the cross-covariances of a mul-
tivariate time series, Metrika, 61, 89–115.
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