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Abstract:

• This paper reviews different approaches for determining the epidemic period from
influenza surveillance data. In the first approach, the process of differenced incidence
rates is modeled either with a first-order autoregressive process or with a Gaussian
white noise process depending on whether the system is in an epidemic or a non-
epidemic phase. The second approach allows us to directly model the process of the
observed cases via a Bayesian hierarchical Poisson model with Gaussian incidence
rates whose parameters are modeled differently, depending on the epidemic phase
of the system. In both cases transitions between both phases are modeled with a
hidden Markov switching model over the epidemic state. Bayesian inference is carried
out and both models provide the probability of being in epidemic state at any given
moment. A comparison of both methodologies with previous approaches in terms
of sensitivity, specificity and timeliness is also performed. Finally, we also review a
web-based client application which implements the first methodology for obtaining
the posterior probability of being in an epidemic phase.
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1. INTRODUCTION

Influenza is an infectious disease that affects the upper and/or lower parts

of the respiratory tract and is caused by the influenza virus. Influenza spreads

around the world in seasonal epidemics, resulting in severe infections and the

deaths of hundreds of thousands worldwide annually, and millions in pandemic

years (good descriptions about its impact can be found in Simonsen et al. [52],

Fleming et al. [16], and Monto [36]). This propensity for causing large scale

seasonal epidemics and pandemics has clearly turned influenza surveillance into

a challenging issue in public health practice.

Prospective local and national influenza surveillance systems can provide

important and timely information to health service providers on the circulation

of the influenza virus in a population. The emergence of the A-H1N1 influenza

virus in 2009 and its subsequent rapid global spread was a clear and real example

of the need of having good surveillance infrastructures available. But at the same

time it has also focused attention on surveillance capabilities worldwide (Lipsitch

et al., [31]). In particular, it has shown the need for sentinel surveillance systems

that could strengthen a country’s capacity for seasonal, novel, and pandemic

influenza detection and prevention (Ortiz et al. [44]).

There are several surveillance information sources that make it possible

to track influenza virus activity such as real-time internet surveys [58], queries

[14], microblogging [30], over the counter sales [33], prescription pharmaceutical

sales [45], absenteeism registers [13], syndromic/sentinel surveillance [21], labo-

ratory test isolations [43], emergency room visit rates [10], hospital admissions

[8], pneumonia and influenza mortality rates [48], etc. Nevertheless, there is no

such thing as the“best” surveillance information source. As Cheng et al. [5] state,

“each method only captures a portion of infections within the community with

different timeliness and specificity”. On one hand, laboratory test results are

highly specific, but take days or even weeks and only capture a small fraction of

the infected population. In contrary, data may be collected instantly from the

internet, typically from searching engines or social networks, as Broniatowski et

al. [2], Gesualdo et al. [18], Li and Cardie [30] or Grover and Aujla [22] do with

Twitter data, or Google Flutrends does with Google queries (Ginsbert et al. [19]).

A discussion about the role of internet data sources in disease surveillance can

be found in Milinovich et al. [35]. However, these sources of information provide

just indirect measures of the influenza incidence levels in the population so their

accuracy may be sometimes poor. Nevertheless, the high amount and the imme-

diate availability of the data from this non-conventional sources make its analysis

particularly interesting.

No matter what kind of data the surveillance system uses, there is always

the need for an algorithm that, applied to the data, could quickly detect meaning-

ful increases in reported influenza incidence. This would make it possible health
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services to get prepared for the incipient outbreak, which could have a great im-

pact on the number of lives saved, outbreak management and the effective setting

of prevention measures. This has made the statistical literature to pay consider-

able attention to early detection methods for influenza, or infectious diseases in

general.

Methods based on historical limit are the most widely used for detecting

the onset of influenza epidemics and with longer tradition in the epidemiologic

literature. These methods are based on the model of Shewhart [50], where a

warning is triggered when the difference between the current observation and

a theoretical mean of the process surpasses a determined threshold, usually set

using the estimated standard error. One way to determine this theoretical mean

and threshold is to consider a window of observations of times t−m, ..., t− 1 from

the present year and/or t − m, ..., t + m times from previous years and compute

some central estimator and standard error for the observations in these windows,

as Stroup et al. [55] or Farrington et al. [15] do. Another option would be using

all non epidemic data as training, fitting a regression model which includes time

trend and Fourier periodical terms as proposed by Serfling’s method [49], the

approach used for influenza surveillance by the Center for Disease Control and

Prevention (CDC) of the United States (Muscatello et al. [38]). This approach or

modifications are also used in other works like Costagliola et al. [11], Simonsen

et al. [52] and Boyle et al. [1].

These approaches have some drawbacks in practice (Rath et al. [47]). Firstly,

a predefinition of epidemic and non-epidemic periods is needed for most of them

in order to characterize the observations of the non-epidemic phase, when that

division is precisely the final outcome that we want to draw. Secondly, time obser-

vations are treated as completely independent values, when we would expect that

their temporal arrangement could induce some kind of dependence. Thirdly, the

baseline (non-epidemic) period is often estimated with national data that maybe

does not properly fit if we are mostly interested in a local influenza surveillance

system. Finally, Goddard et al. [20] also point out as a fourth drawback that the

use of temporally fixed threshold values to describe the levels of influenza activity

can be misleading due to time trends in consultations for influenza. Specifically,

they pointed out a decline in the number of influenza-related consultations in

recent years that could reduce the sensitivity of these methods.

Le Strat and Carrat [28] pioneered the use of hidden Markov models to

segment time series of influenza indicators into epidemic and non-epidemic phases.

Hidden Markov models are a particular case of Markov switching models, which

are stochastic models that consider a set of non observed variables Zt (hidden

states, usually Zt = 0 for the non epidemic state and Zt = 1 for the epidemic

state) and a set of observed values yt (observations), one for each time unit

t ∈ {1, ..., T}, so that {Zt} is a Markov chain

(1.1) P (Zt|Z1, ..., Zt−1, pij) = P (Zt|Zt−1, pij)
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where pij are the transition probabilities, and the observations yt are dependent

on previous observations, usually through an autoregressive process. The present

state Zt affects both the present observation yt through the transition probabil-

ities p(yt|yt−1). The conditional relationships in a Markov switching model are

represented in Figure 1.

yt−1 yt yt+1

Zt−1 Zt Zt+1

Figure 1: Diagrams of the conditional dependencies
in a Markov switching model.

Hidden Markov models are usually formulated with an added restriction,

so that the value of the observed variable at each time yt is only dependent on

the hidden state for that time, given the past observations and the present and

past states

P (yt|Z1, ..., Zt, y1, ..., yt−1, θ) = P (yt|Zt, θ)

where θ are the remaining parameters of the model.

Le Strat and Carrat’s approach has two advantages, the first being that the

method can be applied to historical data without the need to previously distin-

guish between epidemic and non-epidemic periods in the data. The second one is

considering observations as dependent on the past observations and states or, at

least, on the last epidemic state, whereas Serfling’s method assumes marginal in-

dependence of the data [47]. In subsequent papers, Rath et al. [47], Madigan [32]

and Sun and Cai [56] further developed that modeling. Nevertheless, we find also

convenient to mention some other contributions beyond Markov Switching mod-

els such Cowling et al. [12], Griffin et al. [21] and Boyle et al. [1] who use models

based on statistical quality control and time series methods like CUSUM, EWMA

or auto-regressive processes, Frisen et al. [17] who search for change points on the

monotony of the process, Shmueli [51] who uses wavelet-based methods or Nuño

and Pagano who adjust one or several Gaussian peaks in different locations for

each year [42]. Three comprehensive reviews of statistical algorithms for the de-

tection of infectious disease outbreaks can be found in Le Strat [27], Burkom [3]

and Unkel et al. [57].

Bayesian methodology provides a unified theory for handling uncertainty

in very different areas such as statistical inference, forecasting, decision-making



46 R. Amorós, D. Conesa, M.A. Martinez-Beneito and A. López-Qúılez

under uncertainty, analysis of expert systems, etc. This ability to deal with un-

certainties is what makes Bayesian analysis a very advisable tool for many issues

that arise in the decision-making process of a surveillance system. Specifically,

Bayesian analyses enable to quantify whatever feature of interest of any variable

in the model by means of its posterior distribution. In our setting, this makes the

Bayesian methodology to be perfectly suited for quantifying the probability of

being in an epidemic phase at any given moment. Bayesian studies are not new

in surveillance literature, but in recent years there has been increasing interest

in them (see for example Mugglin et al. [37], Cooper et al. [9], Sebastiani et al.

[48], Niemi et al. [40], Zhou and Lawson [61], Charland et al. [4] and Neill and

Cooper [39]).

Our main goal in this paper is to review two alternative approaches to

influenza surveillance that avoid some of the above-mentioned disadvantages

and take advantage of the ability to quantify epidemic probabilities of Bayesian

methodology. The first proposal is to use a Markov switching model in order to

determine the epidemic and non-epidemic periods from influenza surveillance data

(Martinez-Beneito et al. [34]). This approach differs from those hidden Markov

models previously mentioned in the sense that it models the series of differenced

incidence rates rather than the series of incidence rates. The new differenced

series is detrended, allowing us to take advantage of autoregressive (stationary)

modeling to analyze the data. In particular, depending on whether the system is

in an epidemic or a non-epidemic phase, the differenced series are, respectively,

modeled either with a first-order autoregressive process or with a Gaussian white

noise process. The transition between the phases of the disease is considered

to follow a Markovian process. The Bayesian paradigm is used to estimate the

probability of being in an epidemic phase at any given moment, which is the key

to detecting influenza epidemics at their onset.

Two features of this model have proved to be very convenient in the in-

fluenza surveillance context. The first one is the use of Markov switching models

to segment the time series of influenza into epidemic and non-epidemic phases.

The second is the use of the variability of data as main tool to distinguish be-

tween both epidemic and non-epidemic phases. Thus, the underlying hypothesis

of this model is that non-epidemic dynamics are characterized by small, time-

independent random changes (since, supposedly, there is no underlying active

process) meanwhile, in epidemic dynamics, changes are greater and possibly cor-

related.

Nevertheless, although the variability of data may enable to distinguish

both dynamics, incorporating the magnitude of the incidence rates and not just

their differences could also be very advantageous because this magnitude would

also inform on the state of the illness (low incidence clearly meaning a non-

epidemic phase). This could increase the capability of the method to distinguish

between both epidemic and non-epidemic phases and so it could be easier to
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determine the onset of epidemics. As a result, we also review here an enhanced

version of that modeling (Conesa et al. [7]) that also incorporates the magnitude of

the incidence rates. Moreover, this proposal directly models the weekly observed

counts as a Poisson distribution depending on the incidence rates, thus these

incidence rates are not considered deterministic quantities but, on the contrary,

(random) variables in a Bayesian model. As a consequence, this proposal also

takes into account the uncertainty in the available incidence rates.

The remainder of this paper is organized as follows. In Sections 2 and 3

we present, respectively, the model based on the differenced rates and on the

observed cases. In Section 4 we describe the results obtained when applying the

proposed methodologies in a particular setting related to sentinel surveillance

data. That section also includes a validation of the performance of both models

compared with other existing methodologies. Section 5 describes fludetweb, a

web-based implementation of the first methodology for obtaining the posterior

probability of being in an epidemic phase. Finally, in Section 6 we present some

concluding remarks and some lines of development of the current methodology.

2. MODELING OF THE DIFFERENCED INCIDENCE RATES

We first review the modeling introduced by Martinez-Beneito et al. [34].

This model performs a segmentation of the differenced incidence rates series into

epidemic and non-epidemic phases by using a Markov switching model. Specifi-

cally, let Y = {Yi,j , i = 1, ..., I; j = 1, ..., J} denote the set of differences between

the rates of weeks i + 1 and i in year j. We consider a set of retrospective years

so that the system has previous information about epidemic periods before ob-

serving it in the current year. The underlying idea of Markov switching models is

to associate each Yi,j with a random variable Zi,j that determines the conditional

distribution of Yi,j given Zi,j . In this case, each Zi,j is an unobserved random vari-

able that indicates which phase the system is in (1, epidemic; 0, non-epidemic).

The unobserved sequence of Zi,j follows a first order two-state Markov chain with

transition probabilities:

P(Zi+1,j = l|Zi,j = k) = Pk,l

where k, l ∈ {0, 1}, i ∈ {1, ..., I − 1} and j ∈ {1, ..., J}. This Markovian feature

enables epidemic, respectively non-epidemic, weeks to be followed by epidemic,

respectively non-epidemic, weeks with a high probability if the data required

it. This performance could not be achieved with an independent modeling of the

Zi,j ’s and it makes the epidemic/non-epidemic state to be more robust to sudden,

although slight, changes in the differenced series.

The next step is to model the behavior of the differenced series for both

epidemic and non-epidemic periods. It seems reasonable to assume no underlying
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process beyond Gaussian noise for the non-epidemic period since, supposedly, no

underlying mechanism should be inducing dependence among the observations.

On the other hand, the epidemic phase should show greater variability, and pos-

sibly dependent observations. Therefore, the conditional distribution of Yi,j is

modeled either as a Gaussian white noise process or as an autoregressive process

of order 1, depending on whether the system is in, respectively, non-epidemic or

epidemic phase, i.e.

Y1,j |(Z1,j = 0) ∼ N(0, σ2
0,j)

Y1,j |(Z1,j = 1) ∼ N(0, σ2
1,j)

Yi,j |(Zi,j = 0) ∼ N(0, σ2
0,j) i ∈ {2, ..., I}, j ∈ {1, ..., J},(2.1)

Yi,j |(Zi,j = 1) ∼ N(ρYi−1,j , σ
2
1,j) i ∈ {2, ..., I}, j ∈ {1, ..., J},

where the first subindex of the variance σ2
k,j represents whether the system is

in the epidemic phase (k = 1) or not (k = 0). This model assumes a different

variance for each season in order to reflect that the variability in any of the phases

is not necessarily the same in different years, as a consequence of differences in

the shape of the corresponding epidemic waves. Note also that the conditional

distribution of the first difference of rates cannot be modeled as an autoregressive

process as there is no previous value to condition on.

Once the model is determined, the following step is to estimate its param-

eters. Martinez-Beneito et al. [34] propose using the following prior distributions

for the parameters involved in the model:

ρ ∼ Unif(−1, 1) θlow = λ[1]

P1,1 ∼ Beta(0.5, 0.5) θmid1 = λ[2]

P0,0 ∼ Beta(0.5, 0.5) θmid2 = λ[3](2.2)

σ0,j ∼ Unif(θlow, θmid1) θsup = λ[4]

σ1,j ∼ Unif(θmid2, θsup)

where {λ[1], λ[2], λ[3], λ[4]} corresponds to the ordered sequence of the variables

{λ1, λ2, λ3, λ4} which follow as prior distribution:

(2.3) λj ∼ Unif(a, b) j = 1, ..., 4 ,

where a and b are hyperparameters to be fixed by the modeler, typically express-

ing vague prior knowledge.

Expressions (2.1) and (2.2) contain all the knowledge about the system but

they do not yield analytical estimates. Therefore, Markov Chain Monte Carlo

(MCMC) methods are necessary, WinBUGS [54] being an option for carrying out

the inference. See Martinez-Beneito et al. [34] for more details on the specific

implementation of this model.
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3. DIRECT MODELING OF THE OBSERVED COUNTS

The key for developing a method that could be adapted to most kinds

of surveillance data is to use a common feature to all of them. This feature is

that most surveillance system are usually feed of counting incidence data. In

fact, most of the available surveillance data consist of time series of daily/weekly

rates directly obtained by transforming time series of observed cases (such as

the number of daily/weekly deaths due to influenza, the number of daily/weekly

hospital admissions, etc.). Attending to this comment, Conesa et al. [7], model

the weekly observed cases, which are subjected to sampling variation that should

be taken into account in our proposal, instead of directly modeling the rates. In

particular, if Oi,j denotes the number of observed cases of influenza during week i

in season j, they model Oi,j by means of a Poisson distribution whose parameter

is a function of the incidence rate ri,j of the week i in season j via the following

hierarchical structure:

Oi,j ∼ Poisson(νi,j)

νi,j = f(ri,j)(3.1)

ri,j ∼ N (Ri,j(Zi,j), σ
2
j (Zi,j)) .

The function in the second line in (3.1) depends on the type of data we are

working with. For instance, when working with sentinel data in which data are

formed by the weekly percentage of patients with influenza, the function in the

second line in (3.1) will be:

(3.2) f(ri,j) =
Ni,j · ri,j

100
,

where Ni,j represents the total number of patients seen in the corresponding week.

The rates now are modeled again as a Normal distribution with both mean

and variance depending on Zi,j , an unobserved random variable that indicates

which phase the system is in (1, epidemic; 0, non-epidemic). As in the previous

model, this is the idea of a Markov switching model in which the unobserved

sequence of Zi,j follows a two-state Markov chain of first order with transition

probabilities:

(3.3) P (Zi+1,j = l|Zi,j = k) = Pk,l k, l ∈ {0, 1} ,

with P0,1 = 1 − P0,0 and P1,0 = 1 − P1,1 for suitable probabilities P0,0 and P1,1.

The model assumes constant but different variances for each phase of each

season: {σ2
j (0), σ2

j (1) : j = 1, ..., J}. Moreover, the variance of the epidemic phase

will be assumed higher than that in the non-epidemic phase. As already men-

tioned, non-epidemic dynamics are characterized by small random changes while
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in epidemic dynamics the changes are greater. This will help once again to sep-

arate the series in 2 different periods. Different variances are assumed for each

season in order to reflect the different features of the different epidemic seasons

since, for example, some years have higher and steeper incidence peaks in contrast

to other years with flatter epidemic waves.

The next step is to model the mean of the rates in both states. Note that

Ri,j(0) and Ri,j(1) represent the level of magnitude of the incidence in case of

being, respectively, at non-epidemic or epidemic phase. The model at every week

decides which of them (jointly with the corresponding variance) fits better to the

new observed data. The first and easiest way to model both means is to consider

them as independent but constant. This modeling can be denoted as AR0-AR0,

i.e. two order 0 (independent) autoregressive processes, these terms representing

respectively the non-epidemic and epidemic phases. A second option would be

to consider the mean of the rates as temporally dependent processes. In this

setting, it could be convenient to model the mean of the rates as a first order

autoregressive process. As a result, three more modelings could be considered

combining the AR0 and AR1 proposals, that is: AR0-AR1, AR1-AR0 and AR1-

AR1. In a similar way, we could think that the rates are related to rates from two

or more previous weeks. Then a suitable option would clearly be to consider the

mean of the rates as an autoregressive process of higher order. When dealing with

second order autoregressive processes, five more modelings could be considered,

that is AR2-AR0, AR2-AR1, AR2-AR2, AR1-AR2 and AR0-AR2. For simplicity,

here we just present the AR1-AR1 model, with both means (those corresponding

to non-epidemic and epidemic settings) being first order autoregressive processes,

i.e.:

Ri,j(0)|r1,j , ..., r(i−1),j = µ0 + ρ0 · (ri−1,j − µ0)
(3.4)

Ri,j(1)|r1,j , ..., r(i−1),j = µ1 + ρ1 · (ri−1,j − µ1)

with µ0 < µ1 in order to set the epidemic period as that having a higher expected

rate.

The specification proposed by Conesa et al. [7] for the prior distributions

of each of the parameters involved in this model is the following:

P0,0 ∼ Beta(0.5, 0.5) θlow = λ[1]

P1,1 ∼ Beta(0.5, 0.5) θmid1 = λ[2]

σj(0) ∼ Unif(θlow, θmid1) θmid2 = λ[3]

σj(1) ∼ Unif(θmid2, θsup) θsup = λ[4]

where {λ[1], λ[2], λ[3], λ[4]} corresponds to the ordered sequence of the variables

{λ1, λ2, λ3, λ4} which follow the non-informative prior distribution:

(3.5) λj ∼ Unif(0, c) j = 1, ..., 4 ,
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where c is usually high enough so that it does not condition the posterior distri-

bution of λ1, ..., λ4.

With respect to the parameters involved in the modeling of the mean of

the rates, that is, µ0 and µ1, they propose a slightly different structure than the

one used for the variance:

(3.6) µ0 = θ[1] , µ1 = θ[2] ,

where {θ[1], θ[2]} corresponds to the ordered sequence of the variables {θ1, θ2}

which follow the non-informative prior distribution:

(3.7) θj ∼ Unif(0, d) , j = 1, 2 ,

where d is again a hyperparameter chosen in a way that makes vague the former

distribution.

Finally, they also propose considering flat prior distributions for any of

the parameters of the autoregressive processes. Specifically, they choose uniform

distributions in the region where the processes are stationary. As an example,

the selection in the AR1-AR1 modeling would be:

(3.8) ρ0, ρ1 ∼ Unif(−1, 1) .

Again, expressions from (3.1) to (3.8) contain all the knowledge of the

system but these expressions do not yield analytical expressions for the posterior

distribution of the parameters. MCMC methods and WinBUGS are again a good

option for carrying out the inference. See Conesa et al. [7] for more details on

the specific implementation of this model.

4. COMPARING METHODOLOGIES ON SENTINEL SURVEIL-

LANCE DATA

One of the most popular kinds of influenza surveillance data comes from

sentinel systems. In spite of their limitations, these data have proved to be very

useful to follow up influenza during the last decade, rapid information transmis-

sion being one of their main advantages. Basically, sentinel systems are formed

by volunteer practitioners that, depending on the system, report in a weekly ba-

sis the percentage of patients with Influenza-like illness (ILI), usually defined as

fever plus acute respiratory symptoms such as cough and/or sore throat, from the

total number of patients seen, or just the number of consultations with patients

reporting ILI symptoms. Data are collected at least during the periods of non-

negligible influenza activity. Thus in Western countries in the temperate climate
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zone, data are typically collected in seasons (lasting around 30–35 weeks) that

extend over two consecutive years (as the epidemic activity usually extends across

both of them), while in other places data are collected throughout the year.

In what follows we review a case study presented in Conesa et al. [7] in

order to check how these two methodologies can be applied in real settings. In

particular data analyzed in this example are retrieved from the North Carolina

Influenza Sentinel Surveillance Program. The dataset is formed by the weekly

percentage of ILI patients from the total number of seen patients. Information

about this system can be found in its website [41], which allows to export raw

data in standard format. In this system, sentinels also collect representative

samples for virus strain identification. As we mention later, this laboratory data

on influenza isolates can be very useful as a gold standard for validating the

performance of a method.

It is worth noting that the methodology introduced in Section 3 requires

the selection of the model that fits each phase better from the different options

introduced in the previous section. As a result, the first step must be to use a

model selection criterion. One option is to use DIC, a Bayesian model comparison

criterion introduced by Spiegelhalter et al. [53], based on the trade-off between

the fit of the data and the corresponding complexity of the model. In our expe-

rience, models with different structures in both phases tend to give more weight

to the phase with more structure. As a result we usually consider just models

with both phases having the same structure, in order to avoid decompensation

between phases. In this case, we have only analyzed those three options with the

same structure in both phases (AR0-AR0, AR1-AR1 and AR2-AR2). For this

data, results indicate that models AR1-AR1 and AR2-AR2 outperform (as they

have lower DIC, 2097.6 and 2095.9 respectively) the AR0-AR0 model (with DIC

2125.8). As a result the AR0-AR0 model can be discarded, the next step being

to choose between the remaining two models.

The assessment of models can be done using the measures proposed by

Cowling et al. [12] and Kleinman and Abrams [25]. These measures summarize

the information on sensitivity, specificity and timeliness for a detection method

and a particular data set in a unique value between 0 and 1, achieving 1 for a per-

fect performance. In particular, the measures used here are AUWROC1 and VUTROS1,

which weigh the information given by the ROC curve by the timeliness achieved

for each method, building a 3D ROC curve which height is a function of the time-

liness of detection and measuring the area left behind this curve, and VUTROS3

and VUTROCS, which construct several reference ROC curves restricted by different

maximum delay of detection and integrate the information from them all.

In order to perform this comparison we need to know approximately the real

epidemic periods in all the seasons. The approach used here to obtain the gold-

standard is that presented in Cowling et al. [12]. In particular, using laboratory
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data on influenza isolates from the North Carolina Sentinel Network, the period

between the first and last week in which the proportion of positive isolations for

influenza surpassed 30% of the maximum seasonal level has been taken as the

gold standard epidemic phase.

This criteria may also be used beyond the comparison of the AR1-AR1

and AR2-AR2 models to compare these proposals with alternative models in the

literature. In particular, here we present the results of applying those metrics to

the on-line results obtained with both models and those obtained using four alter-

native methods for the automatic detection of influenza, again using information

only from past weeks. The first approach is the widely-used method proposed

by Serfling [49], while the second one uses the depmix package [59] of R [46] to

reproduce Le Strat and Carrat’s [28] hidden Markov model. The third approach

is a simple regression method which is a slight modification of Stroup et al. [55]

and the last one is the model based on the differences of the rates (MBDR from

now on) presented in Section 2.

It is worth noting that this validation has been done using an on-line version

of all the models instead of the results obtained by applying them to the whole

data set. That is, by applying all models sequentially, starting from the fourth

season (in order to use at least three seasons as training data) and then predicting,

for each week, the probability of being in an epidemic phase by only taking into

account the information from past weeks (within the current season and all the

weeks from previous seasons). The reason for this is that the on-line version

reproduces the sequential arrival of data that is habitual in real situations.

Table 1 shows the values of the metrics AUWROC1, VUTROS1, VUTROS3 and

VUTROCS obtained when applying the selected models (AR1-AR1 and AR2-AR2)

and the four alternative methods to the North Carolina data set. As can be

appreciated, results indicate that both models perform better than the other

alternative methods, since the values of the four metrics are greater and closer

to 1. Moreover, the AR2-AR2 behaves substantially better and so it will be our

selection from now on for analyzing the North Carolina data set.

Table 1: Comparison of metrics AUWROC1, VUTROS1, VUTROS3
and VUTROCS when applying different early warning systems
(higher being better) to the North Carolina data set.

AUWROC1 VUTROS1 VUTROS3 VUTROCS

Serfling 0.612 0.553 0.349 0.698

depmix 0.608 0.556 0.341 0.682

Stroup 0.540 0.517 0.404 0.807

MBDR 0.601 0.544 0.356 0.713

AR1-AR1 0.676 0.595 0.412 0.824

AR2-AR2 0.726 0.649 0.420 0.840
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The results of applying the on-line version of the AR2-AR2 model can be

seen in Figure 2, which shows the weekly ILI incidence rates, the white, grey

and black dots indicating those weeks where the posterior probability of being

in an epidemic phase exceeds the values 0.25, 0.5 and 0.75, respectively. As

mentioned above, these probabilities have been sequentially obtained, starting

from the fourth season and only taking into account the information from past

weeks (within the current season and the all weeks from previous seasons). This

is the kind of graph that Health Authorities could use to raise the alarm at those

precise moments in which there is a high probability of being in an epidemic

phase. In particular, values exceeding 0.5 indicate that we are observing for

that week a higher probability of being in an epidemic phase than of being in a

non-epidemic one, and so an alarm could be triggered if considered convenient.
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Figure 2: On-line weekly results for the North Carolina data set from seasons 4 to 8.
Graphs show the influenza incidence rates in which the white, grey and
black dots indicate those weeks where the posterior probability of being in
an epidemic phase exceeds the values 0.25, 0.5 and 0.75 respectively.

5. FLUDETWEB

The complexity of disease surveillance methods has been progressively in-

creasing. In fact, most of the methods mentioned in the Introduction are not easy

to implement. On the contrary, most of them and, in general, the most advanced

surveillance systems require skilled personnel to implement, fine-tune and main-

tain them. These requirements have kept these new developments from common

usage. In order to resolve this issue, there has been a recent interest in enhancing

existing disease surveillance methodologies by using tools for presenting data and

information to users. Hauenstein et al. [23] describe in detail the processes and

tools (such as system architecture, web-based applications, etc.) needed to do so.

In this section, we review fludetweb (Conesa et al. [6]), an enhanced web

implementation of the MBDR, the surveillance methodology described in Sec-

tion 2. This implementation is available on-line at: http://www.geeitema.org/

meviepi/fludetweb/.
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Fludetweb’s implementation has been done using a thin client application

design for ease of user interaction with the program, that is through a web appli-

cation that could be accessed by any network-enabled device (PC’s, tablets, cell

phones, etc.) with a web browser. But moreover, the computational requirements

of the detection algorithm, which could need several minutes to return the results,

also motivated the use of a master-slave intranet architecture to take advantage

of other secondary available computers.

Figure 3 shows the internal architecture of the server and its connections

with the slaves and clients. The system has been implemented as a three-tier

architecture by separating its functions into three separate layers. The top tier

corresponds to the presentation layer and is responsible for interaction between

the user and the system through data and personal information querying, visual-

ization of results, etc. The second tier is the business logic tier, which is the core

of the system as it controls the running of the influenza surveillance algorithm.

The final layer is the data tier and it is responsible for data storage, not only

of the influenza rates but also of the user’s personal information, the availability

and state of slaves, IP addresses, assigned tasks, etc.

Figure 3: Internal architecture of the fludetweb implementation,
including its internal connections with slaves and clients.

In practice, users can introduce and edit their own data consisting of a

series of weekly influenza incidence rates. Users may also obtain estimates of
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the probability of being in an epidemic phase for the weeks of interest. The

estimation process is not immediate, so the system has been designed to respond

to requests from a multi-user environment on a first-come, first-served basis.

After completion of the process, the system returns the probability of being in

an epidemic phase jointly with a forecast of the probability of an increase in the

incidence rate during the following week. Fludetweb also provides two further

graphs. The first one shows the weekly rates of the last two seasons, indicating

whether the posterior probability of being in an epidemic phase in the analyzed

week is greater than 0.5 or not. The second graph shows all the weekly rates with

flags only for requested weeks. In particular, flags indicate whether the posterior

probability of being in an epidemic phase is greater than 0.5 or not. Its ease

of use and on-line availability should make fludetweb a valuable tool for public

health practitioners.

6. FURTHER LINES OF DEVELOPMENT

Our interest in this paper has been to review two possible methodologies for

detecting influenza epidemics at the very moment of their onset. Both modelings

can be used for any kind of surveillance data that show either epidemic periods,

describing an increase and a decrease of the epidemic curve, or non-epidemic

periods, where the data follows a random noise process. Both methodologies

provide the posterior probability of being in an epidemic phase, and so they can

be very useful for health authorities who could use them to raise the alarm at those

precise moments in which there is a high probability of being in, or even better

starting, an epidemic phase. We have also reviewed a web-based implementation

of the first methodology for obtaining the posterior probability of being in an

epidemic phase.

With respect to possible extensions of these proposals, a first improvement

could be to include a spatial component that would help us to raise geographically-

referenced alarms. Now, we would have as many time series as areal units in the

region of study and the goal would be to induce spatial dependence on these

series in order to take advantage of the information of neighboring series. As an

example Zou et al. [62] and Heaton et al. [24] propose to use, for the epidemic

phase, spatio-temporally correlated random effects, with every random effect be-

ing conditional dependent to its temporal and spatial neighbors. On the other

hand, they consider either a white noise or a spatially correlated process for the

non-epidemic phase. Finally, the transition probability between states for every

region is considered to depend on the number of neighbors in epidemic state.

Knorr-Held and Richardson [26], Watkins et al. [60], Li et al. [29] or Li and

Cardie [30] are just some other examples of studies addressing the incorporation

of a spatial component in outbreak detection studies.
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Spatio-temporal models improve traditional temporal outbreak detection

models by using a second source of information, that provided by neighboring

regions. A second alternative would be to incorporate complementary informa-

tion sources, not necessarily linked to other geographical locations. Thus, Nunes

et al. [43] consider a bivariate information source (for every week) instead of the

traditional univariate rates for distinguishing between epidemic and non-epidemic

periods. Thus, on one hand, they use for each week the number of laboratory-

confirmed cases of the previous week and, on the other hand, the number of re-

ported ILI cases of the current week. That is, we have two information sources in

this system one of higher quality (confirmed cases in the previous week) and a sec-

ond one corresponding to more recent data. This kind of analysis would be more

sensible than traditional univariate studies as they are based on a larger amount

of information in order to decide the current epidemic/non-epidemic state.

A particular case of multivariate data use is that of Twitter. Twitter is a

microblogging social network in which users publicly post short messages of less

than 140 characters that may also be geolocated. Several words or sets of words

related to influenza can be used to predict the onset, spread and decay of the

epidemic. Works like those of Li and Cardie [30] or Grover and Aujla [22] deal

with the necessary preprocessing of the raw data and the use of Markov chains

to model several phases like rising, stationarity and declining of the epidemic.

Flexibility is one of the main advantages of Bayesian hierarchical models.

These models can be easily adapted to any specific feature of any dataset, what

has made them particularly common in outbreak detection studies. Nevertheless,

the main drawback of Bayesian hierarchical models is that they usually resort

to (frequently slow) MCMC simulation to carry inference out. Although Win-

BUGS usually makes relatively easy the inference process, once a new weekly

observation arrives, we are forced to repeat the whole simulation with the new

(and all the previous) observation(s). This makes simulations to become progres-

sively slower as new observations are incorporated into the system. Sequential

MCMC methods, such as particle filters, would be a solution to this, avoiding to

run again the model each week with all historical and, obviously, the new data.

The incorporation of this kind of inference tools to influenza outbreak detection

problems could be very advantageous for a problem where the computing time is

a limitation if results want to be used for on-line epidemiological surveillance.

Finally, we would like to mention a general drawback of this kind of models.

Model selection is a delicate issue in outbreak detection studies. Most model se-

lection criteria are based on fit or predictive properties of models. Nevertheless,

in our particular case we would be mostly interested in some other particular

criteria such as sensitivity, specificity or timeliness in the detection of outbreaks.

As mentioned in this paper, several measures have been proposed in the litera-

ture (Cowling et al. [12] and Kleinman and Abrams [25]) paying specific atten-

tion to these aspects and, therefore, particularly suited for outbreak detection.
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Regretfully these methods depend on the availability of a gold standard, that

make it possible to assess the goodness of any particular method. Acceptable

gold standards are not generally available excepting maybe for very few publicly

accessible datasets. This makes model selection in this area a particularly cum-

bersome issue where more research (or more publicly accessible datasets for this

purpose) would be very welcome.
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[6] Conesa, D.; López-Qúılez, A.; Martinez-Beneito, M.A.; Miralles,

M.T. and Verdejo, F. (2009). FluDetWeb: an interactive web-based system
for the early detection of the onset of influenza epidemics, BMC Medical Infor-
matics and Decision Making, 9, 36.

[7] Conesa, D.; Martinez-Beneito, M. A.; Amorós, R. and López-Qúılez,
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