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Abstract:

• In Kamps [7] generalized order statistics (gos) have been introduced as a unifying
theme for several models of ascendingly ordered random variables (rv’s). The main
aim of this paper is to study the limit joint distribution function (df) of any two
statistics in a wide subclass of the gos model known as m-gos. This subclass contains
many important practical models of gos such as ordinary order statistics (oos), order
statistics with non-integer sample size, and sequential order statistics (sos). The
limit df’s of lower-lower extreme, upper-upper extreme, lower-upper extreme, central-
central and lower-lower intermediate m-gos are obtained. It is revealed that the
convergence of the marginals m-gos implies the convergence of the joint df. Moreover,
the conditions, under which the asymptotic independence between the two marginals
occurs, are derived.
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1. INTRODUCTION

Generalized order statistics have been introduced as a unified distribu-

tion theoretical set-up which contains a variety of models of ordered rv’s. Since

Kamps [7] had introduced the concept of gos as a unification of several models of

ascendingly ordered rv’s, the use of such concept has been steadily growing along

the years. This is due to the fact that such concept includes important well-known

concepts that have been separately treated in statistical literature. Theoretically,

many of the models of ordered rv’s contained in the gos model, such as oos, or-

der statistics with non-integral sample size, sos, record values, Pfeifer’s record

model and progressive type II censored order statistics (pos). These models can

be applied in reliability theory. For instance, the sos model is an extension of

the oos model and serves as a model describing certain dependencies or interac-

tions among the system components caused by failures of components and the

pos model is an important method of obtaining data in lifetime tests. Live units

removed early on can be readily used in other tests, thereby saving cost to the

experimenter. The concept of gos enables a common approach to structural simi-

larities and analogies. Known results in submodels can be subsumed, generalized,

and integrated within a general framework. Kamps [7] defined gos by first defin-

ing what he called uniform gos and then using the quantile transformation to

obtain the general gos X(r, n, m̃, k), r = 1, 2, ..., n, based on a df F , which are

defined by their probability density function (pdf)

f
(m̃,k)
1,2,...,n:n(x1, x2, ..., xn) =

=





n
∏

j=1

γj









n−1
∏

j=1

(

1−F (xj)
)γj−γj+1−1

f(xj)





(

1−F (xn)
)γn−1

f(xn) ,

where F−1(0) ≤ x1 ≤ ... ≤ xn ≤ F−1(1), γn = k > 0, γr = k + n− r +
∑n−1

j=r mj ,

r = 1, 2, ..., n− 1, and m̃ = (m1, m2, ...,mn−1) ∈ R
n−1. Particular choices of the

parameters γ1,γ2, ...,γn lead to differentmodels, e.g., m-gos (γr= k+(n−r)(m+1),

r = 1, 2, ..., n− 1), oos (k = 1, γr = n− r + 1, r = 1, 2, ..., n− 1) and sos (k = αn,

γr = (n− r + 1)αr, r = 1, 2, ..., n− 1)1.

Nasri-Roudsari [10] (see also Barakat [2]) has derived the marginal df of

the rth m-gos, m 6= −1, in the form Φ
(m,k)
r:n (x) = IGm(x)(r,N − r + 1), where

Gm(x) = 1− (1− F (x))m+1 = 1− F̄m+1(x), Ix(a, b) = 1
β(a,b)

∫ x
o t

a−1(1− t)b−1dt

denotes the incomplete beta ratio function and N = k
m+1 + n− 1. By using the

well-known relation Ix(a, b) = 1−Ix̄x(b, a), where x̄ = 1−x, the marginal df of the

(n− r+ 1)th m-gos, m 6= −1, is given by Φ
(m,k)
n−r+1:n(x) = IGm(x)(N −Rr + 1, Rr),

where Rr = k
m+1 + r − 1. Moreover, by using the results of Kamps [7], we can

write explicitly the joint pdf of the rth and sth m-gos m 6= −1, 1 ≤ r < s ≤ n,

1See, for instance, Kamps ([7]).
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as:

f (m,k)
r,s:n (x, y) =

Cs−1,n

Γ(r) Γ(s− r) F̄
m(x) gr−1

m (F (x))

×
(

gm(F (y))− gm(F (x))
)s−r−1

F̄ γs−1(y) f(x) f(y) ,(1.1)

−∞ < x < y <∞ ,

where Cs−1,n =
∏s
j=1 γj . In the present paper we develop the limit theory for

gos, by revealing the asymptotic dependence structural between the members

of gos, with fixed and variable ranks. Namely, the limit joint df of the m-gos

X(r, n,m, k) and X(s, n,m, k), when m 6= −1, is derived in the following three

cases:

(1) Lower extremes, where r, s are fixed w.r.t. n and upper extremes,

where r̀ = n− r + 1, s̀ = n− s+ 1, where r, s are fixed w.r.t. n.

(2) Central case, where r, s→∞ and r
N → λ1,

s
N → λ2, where 0 < λ1 <

λ2 < 1, asN →∞ (or equivalently, as n→∞). A remarkable example

of the central oos the pth sample quantile, where rn = [np], 0 < p < 1,

and [x] denotes the largest integer not exceeding x.

(3) Intermediate case, where r, s→∞ and r
N ,

s
N → 0, as N →∞ (or

equivalently, as n→∞). The intermediate oos have many appli-

cations, e.g., in the theory of statistics, they can be used to esti-

mate probabilities of future extreme observations and to estimate

tail quantiles of the underlying distribution that are extreme relative

to the available sample size, see Pickands [12]. Many authors, e.g.,

Teugels [14] and Mason [9] have also found estimates that are based,

in part, on intermediate order statistics.

Everywhere in what follows the symbols (−→n ) and (
w−→n ) stand for con-

vergence, as n→∞ and the weak convergence, as n→∞.

2. THE JOINT df OF EXTREME m-gos

The following two lemmas, which are originally derived by Nasri-Roudsari

[10] and Nasri-Roudsari and Cramer [11] (see also Barakat [2]), extend the well-

known results concerning the asymptotic theory of extreme oos to the extreme

m-gos. These lemmas can be easily proved by applying the following asymptotic

relations, due to Smirnov [13]:

Γr(nAn)− δ1n ≤ IAn(r, n− r + 1) ≤ Γr(nAn)− δ2n ,

if nAn ∼ A <∞, as n→∞, and

1− Γr(nĀn)− δ2n ≤ IAn(n− r + 1, r) ≤ 1− Γr(nĀn)− δ1n ,
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if nĀn ∼ Ā <∞, as n→∞, where Γr(x) = 1
Γ(r)

∫ x
0 t

r−1e−tdt is the incomplete

gamma function (Gamma df with parameter r), δin > 0, δin−→n 0, i = 1, 2, and

0 < An < 1.

Lemma 2.1. Let m > −1 and r ∈ {1, 2, ..., n}. Then, there exist normal-

izing constants cn > 0 and dn, for which

(2.1) Φ(m,k)
r:n (cnx+ dn) = IGm(cnx+dn)(r,N − r + 1)

w−→n Φ(m,k)
r (x) ,

where Φ
(m,k)
r (x) is nondegenerate df if, and only if, there exist normalizing con-

stants αn > 0 and βn, for which Φ
(0,1)
r:n (αnx+ βn)

w−→n Γr(Vj,β(x)), β > 0. In this

case Φ
(m,k)
r (x) = Γr(Vj,β(x)), j ∈ {1, 2, 3}, where V1(x) = V1;β(x) = ex, ∀ x;

V2;β(x) =

{

(−x)−β , x ≤ 0 ,

∞, x > 0 ;
V3;β(x) =

{

0, x ≤ 0 ,

xβ , x > 0 .

Moreover, cn and dn may be chosen such that cn = αψ(n) and dn = βψ(n), where

ψ(n) = n(m+ 1). Finally, (2.1) holds if, and only if, NGm(cnx+ dn)−→n Vj,β(x)
(note that N ∼ n, as n→∞).

Lemma 2.2. Let m > −1 and r ∈ {1, 2, ..., n}. Then, there exist normal-

izing constants an > 0 and bn, for which

(2.2) Φ
(m,k)
n−r+1:n(anx+ bn) = IGm(anx+bn)(N −Rr + 1, Rr)

w−→n Φ̂(m,k)
r (x) ,

where Φ̂
(m,k)
r (x) is nondegenerate df if, and only if, there exist normalizing con-

stants α̂n > 0 and β̂n, for which Φ
(0,1)
n−r+1:n(α̂nx+ β̂n)

w−→n 1− Γr(Ui,α(x)), α > 0.

In this case Φ̂
(m,k)
r (x) = 1−ΓRr(Um+1

i,α (x)), i ∈ {1, 2, 3}, where U1(x) = U1;α(x) =

e−x, ∀ x;

U2;α(x) =

{

∞, x ≤ 0 ,

x−α, x > 0 ;
U3;α(x) =

{

(−x)α, x ≤ 0 ,

0, x > 0 .

Moreover, an and bn may be chosen such that an = α̂φ(n) and bn = β̂φ(n), where

φ(n) = n
1

m+1 . Finally, (2.2) holds if, and only if, NḠm(anx+ bn)−→n Um+1
i,α (x).

We need the following three lemmas proved in the Appendix and individu-

ally express interesting and practically useful facts. These lemmas provide us with

the asymptotic lower and upper bounds for the joint df’s of extreme gos. There-

fore, they can be applied to estimate the error committed by the replacement of

the exact joint df’s of extreme gos by their limiting (see Remark 2.1). Through-

out Lemma 2.3, we assume that 1 ≤ r < s ≤ n, while we assume 1 ≤ s < r ≤ n
and 1 ≤ r, s ≤ n, s̀ = n− s+ 1 in Lemma 2.4 and Lemma 2.5, respectively.
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Lemma 2.3. Let cn > 0 and dn be suitable normalizing constants, for

which the limit relations Φ
(m,k)
r:n (xn)

w−→n Γr(Vj,β(x)) and Φ
(m,k)
s:n (yn)

w−→n Γs(Vj,β(y)),
j ∈ {1, 2, 3}, hold, where xn = cnx+ dn and yn = cny+ dn. Then the normalized

joint df Φ
(m,k)
r,s:n (xn, yn) of the rth and sth m-gos, m 6= −1, satisfies the relations

(1− σN )

(r − 1)!

∫ NGm(xn)

0
Γs−r

(

NGm(yn)− u
)

ur−1e−u du ≤

≤ Φ(m,k)
r,s:n (xn, yn)(2.3)

≤ (1 + ρN )

(r − 1)!

∫ NGm(xn)

0
Γs−r(NGm(yn)− u)ur−1e−udu , ∀x ≤ y ,

where ρN , σN −→n 0.

Lemma 2.4. Let an > 0 and bn be suitable normalizing constants, for

which the limit relations Φ
(m,k)
r̀:n (xn)

w−→n 1−ΓRr(Um+1
i,α (x)) and Φ

(m,k)
s̀:n (yn)

w−→n 1−
ΓRs(Um+1

i,α (y)), i ∈ {1, 2, 3}, hold, where xn = anx+ bn, yn = any + bn and r̀ =

n− r + 1 < n− s+ 1 = s̀. Then the joint df of the r̀th and s̀th m-gos, m 6= −1,

satisfies the relation

C̀n
(N +Rs)Rr

∫ (N+Rs)

(N+Rs)
Ḡm(xn)
Gm(xn)

∫ φ

(N+Rs)
Ḡm(yn)
Gm(yn)

e−φθRs−1 ×

×
(

1 +
θ

N +Rs

)−Rr

(φ− θ)Rr−Rs−1 dθ dφ ≤(2.4)

≤ Φ
(m,k)
r̀,s̀:n (xn, yn)

≤ 1− ΓRr

(

NḠm(xn)
)

− 1

Γ(Rr)

∫ N

NḠm(xn)
INḠm(yn)

t

(Rs, Rr−Rs) tRr−1 e−t dt ,

where C̀n =
Γ(N+1)

Γ(N−Rr+1) Γ(Rr−Rs) Γ(Rs)
.

Lemma 2.5. Let an, cn > 0 and bn, dn be suitable normalizing constants,

for which the limit relations Φ
(m,k)
r:n (xn)

w−→n Φ
(m,k)
r (x) = Γr(Vj,β(x)), j ∈ {1, 2, 3},

and Φ
(m,k)
s̀:n (yn)

w−→n Φ̂
(m,k)
s (y) = 1−ΓRs(Um+1

i,α (y)), i ∈ {1, 2, 3}, hold, where xn=

cnx+ dn and yn = any + bn. Then, for all large n and for all x and y, for which

Vj,β(x) <∞, i.e., Φ
(m,k)
r (x) < 1 and Ui,α(y) <∞, i.e., Φ̂

(m,k)
s (y) > 0, respectively,

the joint df of the rth and s̀th m-gos, m 6= −1, satisfies the relation

Φ(m,k)
r:n (xn)Φ

(m,k)
s̀:n (yn) ≤ Φ

(m,k)
r,s̀:n (xn, yn)

(2.5) ≤ Γr
(

NGm(xn)
)

(

ΓRs(N)− ΓRs

(

NḠm(yn)
)

)

.

The first inequality of (2.5) holds for all x, y.
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Theorem 2.1. Under the conditions of Lemma 2.3, 2.4 and 2.5, we get

respectively

(2.6) Φ(m,k)
r,s:n (xn, yn)

w−→n











Γs
(

Vj,β(y)
)

, x ≥ y ,
1

(r−1)!

∫ Vj,β(x)

0
Γs−r

(

Vj,β(y)− u
)

ur−1e−u du , x ≤ y ,

(2.7)

Φ
(m,k)
r̀,s̀:n (xn, yn)

w−→n























1− ΓRs

(

Um+1
i,α (y)

)

, x ≥ y ,

1− ΓRr

(

Um+1
i,α (x)

)

− 1

Γ(Rr)
×

×
∫∞
Um+1

i,α (x) IUm+1
i,α

(y)

t

(Rs, Rr−Rs) tRr−1e−t dt , x ≤ y ,

and

(2.8) Φ
(m,k)
r,s̀:n (xn, yn)

w−→n Φ(m,k)
r (x) Φ̂(m,k)

s (y) = Γr
(

Vj,β(x)
)

[

1−ΓRs

(

Um+1
i,α (y)

)

]

.

Proof: By noting that Φ
(m,k)
r,s:n (xn,yn)=Φ

(m,k)
s:n (yn), if y≤x, the relation (2.6)

follows by applying Lemmas 2.1 and 2.3. In view of (2.2), (1.1) and the condition

of Lemma 2.4, the relation (2.7) follows in the case of y ≤ x. On the other hand,

since both of the lower and upper bounds of (2.4) are equivalent to (as n→∞)

1−ΓRr(NḠm(xn))− 1
Γ(Rr)

∫ N
NḠm(xn)INḠm(yn)

t

(Rs, Rr−Rs) tRr−1e−tdt, then the re-

lation (2.7) in the case x ≤ y, follows by applying Lemmas 2.2 and 2.4. Finally,

by combining Lemmas 2.1, 2.2 and 2.5, the relation (2.8) follows immediately.

Remark 2.1. One of the referees of the paper suggests a dexterous short

proof of Theorem 2.1 based on the result of Cramer [5]. Namely, we get with

the notations of Cramer [5] for two lower gos Xt = X(t, n,m, k), t = r, s, r < s

(Zj are iid standard exponential rv’s; u(x) = − log(1−F (x)); and γj,n= k+(m+1)

(n−j))

P
(

Xr≤xn, Xs≤yn
)

= P

(

r
∑

j=1

Zj
γj,n
≤ u(xn) ,

s
∑

j=1

Zj
γj,n
≤ u(yn)

)

= P
(

Λr,n≤n(m+1)u(xn) , Λr,n+∆r,s,n≤n(m+1)u(yn)
)

,

where Λr,n = n(m+ 1)
r
∑

j=1

Zj

γj,n
converges to a Gamma distribution with param-

eter r and ∆r,s,n converges to a Gamma distribution with parameter s− r + 1.

Moreover, Λr,n and ∆r,s,n are independent for any n. Provided that F is in the

domain of attraction of a minimum-stable distribution we get that n(m+1)u(xn)

(n(m+ 1)u(yn)) converges appropriately to some function V(x) (V(y)). Hence,

the limit df is of the type P (Λr≤V(x), Λr+∆s−r+1≤V(y)), where Λr and ∆s−r+1
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are independent gamma distributed rv’s with parameters given above, respec-

tively. This proves the result in (2.6). Similar arguments can be used in proving

(2.7) and (2.8). Although, this short method directly results the limit joint df’s,

but our lengthy method provides more informative results (Lemmas 2.3–2.5),

which enable us to estimate the error committed by the replacement of the exact

joint df’s of extreme gos by their limiting. Actually, in view of the slow rate of

convergence of oos (and consequently the gos) (cf. Arnold et al. [1], Page 216),

Lemmas 2.3–2.5 are of a remarkable practically importance.

Example 2.1 (The limit df’s of the generalized range and midrange).

Under the conditions of Lemma 2.5 the left and the right extremem-gos, is asymp-

totically independent. Therefore, if there exist normalizing constants an, cn > 0

and bn, dn, for which an/cn −→n c > 0 and the limit relations Φ
(m,k)
r̀:n (anx+ bn)

w−→n
1−ΓRr(Um+1

i,α (x)), i∈{1, 2, 3}, and Φ
(m,k)
r:n (cnx+ dn)

w−→n Γr(Vj,β(x)), j∈{1, 2, 3},
hold, then in view of Lemma 2.9.1 in Galambos [6], the generalized quasi-ranges

R(r, n,m, k) = X(r̀, n,m, k)−X(r, n,m, k) and the generalized quasi-midranges

M(r, n,m, k) = 1
2

(

X(r̀, n,m, k) +X(r, n,m, k)
)

, r=1, 2, ..., satisfy the relations

P
(

R(r, n,m, k) ≤ anx+bn−dn
) w−→n

[

1− ΓRr(Um+1
i,α (x))

]

⋆
[

1− Γr(Vj,β(−cx))
]

and

P
(

2M(r, n,m, k) ≤ anx+bn+dn)
w−→n
[

1− ΓRr(Um+1
i,α (x))

]

⋆
[

Γr(Vj,β(cx))
]

,

respectively, where the symbol ⋆ denotes the convolution operation.

3. LIMIT df’s OF THE JOINT CENTRAL m-gos

Consider a variable rank sequence r = rn
−→n ∞ and

√
n
(

r
n − λ

)−→n 0,

where 0 < λ < 1. Smirnov [13] showed that if there exist normalizing constants

αn > 0 and βn such that

(3.1) Φ(0,1)
r:n (αnx+ βn) = IF (αnx+βn)(r, n−r+1)

w−→n Φ(0,1)(x;λ) ,

where Φ(0,1)(x;λ) is some nondegenerate df, then Φ(0,1)(x;λ) must have one and

only one of the types N (Wi;β(x)), i = 1, 2, 3, 4, where N (·) denotes the standard

normal df,

W1;β(x) =

{

−∞ , x ≤ 0 ,

cxβ , x > 0 ,
W2;β(x) =

{

−c |x|β , x ≤ 0 ,

∞ , x > 0 ,

W3;β(x) =

{

−c1|x|β , x ≤ 0 ,
c2x

β , x > 0 ,
W4;β(x) = W4(x) =











−∞ , x ≤ −1 ,

0 , −1 < x ≤ 1 ,

∞ , x > 1 ,
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and β, c, c1, c2 > 0. In this case we say that F belongs to the λ-normal domain

of attraction of the limit df Φ(0,1)(x;λ), written F ∈ Dλ(Φ(0,1)(x;λ)). Moreover,

(3.1) is satisfied with Φ(0,1)(x;λ) = N (Wi;β(x)), for some i ∈ {1, 2, 3, 4} if, and

only if,
√
n
F (αnx+ βn)− λ

Cλ
−→n Wi,β(x) ,

where Cλ =
√

λ(1− λ). It is worth to mention that the condition
√
n
(

r
n − λ

)

−→n 0 is necessary to have a unique limit law for any two ranks r, r′, for which

lim
n→∞

r
n = lim

n→∞
r′

n (see Smirnov [13]).

Barakat [2], in Theorem 2.2, characterized the possible limit laws of the

df Φ
(m,k)
n−r+1:n(x). The following corresponding lemma characterizes the possible

limit laws of the df Φ
(m,k)
r:n (x). The proof of this lemma follows by using the same

argument which is applied in the proof of Theorem 2.2 of Barakat [2].

Lemma 3.1. Let r = rn be such that
√
n
(

r
n−λ

)−→n 0, where 0 < λ < 1.

Furthermore, let m1 = m2 = ... = mn−1 = m > −1. Then, there exist normaliz-

ing constants an > 0 and bn for which

(3.2) Φ(m,k)
r:n (anx+ bn)

w−→n Φ(m,k)(x;λ) ,

where Φ(m,k)(x;λ) is a nondegenerate df if, and only if,

√
n
Gm(anx+ bn)− λ

Cλ
−→n W (x) ,

where Φ(m,k)(x;λ)=N (W (x)). Moreover, (3.2) is satisfied for some nondegener-

ate df Φ(m,k)(x;λ) if, and only if, F ∈ Dλ(m)(N (Wi;β(x))), for some i ∈ {1, 2, 3, 4},
where λ(m) = 1− λ̄

1
m+1

and λ̄ = 1−λ. In this case we have W (x) =
C⋆

λ(m)

C⋆
λ

(m+1) ·
·Wi;β(x), where C⋆λ = Cλ

λ̄
(note that, when m = 0, we get W (x) = Wi;β(x)).

We assume that in this section in all time that r = rn, s = sn −→n ∞ and√
n( rn − λ1),

√
n( sn − λ2)−→n 0, where 0 < λ1 < λ2 < 1. Moreover, we assume

that there are suitable normalizing constants an, cn > 0 and bn, dn, for which

Φ
(m,k)
r:n (anx+ bn)

w−→n Φ(m,k)(x;λ1) and Φ
(m,k)
s:n (cny + dn)

w−→n Φ(m,k)(y;λ2), where

Φ(m,k)(x;λ1) and Φ(m,k)(y;λ2) are nondegenerate df’s. Let Φ
(m,k)
r,s:n (x, y) be the

joint df’s of rth and sth m-gos, m 6= −1, in view of (1.1) we get Φ
(m,k)
r,s:n (x, y) =

Φ
(m,k)
s:n (y), y ≤ x, and

Φ(m,k)
r,s:n (x, y) = C⋆n

∫ F (x)

0

∫ F (y)

ξ
ξ̄m η̄γs−1

(

1− ξ̄m+1
)r−1

(3.3)
×
(

ξ̄m+1 − η̄m+1
)s−r−1

dη dξ , x ≤ y ,

where C⋆n = (m+1)2 Γ(N+1)
Γ(N−s+1) (r−1)! (s−r−1)! . The following lemma proved in the Appendix

is an essential tool in studying the limit df of the joint central m-gos.
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Lemma 3.2. Let λi = i
N+1 , νi = 1− λi, τi =

√

λiνi

N+1 , i = r, s, 0 < Rrs =
√

λr(1−λs)
λs(1−λr) < 1, U

(1)
n (x) = Gm(xn)−λr

τr
, U

(2)
n (y) = Gm(yn)−λs

τs
, xn = anx+ bn and

yn = cny + dn. Then
∣

∣

∣

∣

∣

Φ(m,k)
r,s:n (xn, yn)−

∫ U
(1)
n (x)

−∞

∫ U
(2)
n (y)

−∞
Wr,s(ξ, η) dξ dη

∣

∣

∣

∣

∣

−→n 0

uniformly with respect to x and y, where Wr,s(ξ, η) = 1

2π
√

1−R2
rs

e
− (ξ2+η2−2ξηRrs)

2(1−R2
rs) .

Lemma 3.2 directly yields the following interesting theorem.

Theorem 3.1. The convergence of the two marginals Φ
(m,k)
r:n (xn) and

Φ
(m,k)
s:n (yn) to nondegenerate df’s Φ(m,k)(x;λ1) = N (W (x)) and Φ(m,k)(y;λ2) =

N (W̃ (y)), respectively, are necessary and sufficient condition for the convergence

of the joint df Φ
(m,k)
r,s:n (xn, yn) to the nondegenerate limit

Φ(m,k)(x, y;λ1, λ2) =
1

2π
√

1−R2

∫ W (x)

−∞

∫ W̃ (y)

−∞
e
− (ξ2+η2−2ξηR)

2(1−R2) dξ dη ,

where R =
√

λ1(1−λ2)
λ2(1−λ1) . Moreover, in view of Lemma 3.1, we deduce that the

convergence of the joint df Φ
(m,k)
r,s:n (xn, yn), as well as the convergence of the two

marginals Φ
(m,k)
r:n (xn) and Φ

(m,k)
s:n (yn), occurs if, and only if, with the same nor-

malizing constants, we have F ∈ Dλ1(m)(N (Wi;β)) and F ∈ Dλ2(m)(N (Wj;β′)), for

some i, j ∈ {1, 2, 3, 4}, where λt(m) = 1− λ̄
1

m+1

t and λ̄t = 1− λt, t = 1, 2. In this

case we have W (x) =
C⋆

λ1(m)

C⋆
λ1

(m+ 1)Wi;β(x) and W̃ (y) =
C⋆

λ2(m)

C⋆
λ2

(m+ 1)Wj;β′(y),

where C⋆λt
=

Cλt

λ̄
, t = 1, 2.

4. LIMIT df’s OF THE JOINT INTERMEDIATE m-gos

Chibisov [4] studied a wide class of intermediate oos, where r = rn =

ℓ2nα(1 + ◦(1)), 0 < α < 1, and he showed that if there are normalizing constants

αn > 0 and βn such that

(4.1) Φ(0,1)
r:n (αnx+ βn) = IF (αnx+βn)(r, n− r + 1)

w−→n Φ(0,1)(x) ,

where Φ(0,1)(x) is a nondegenerate df, then Φ(0,1)(x) must have one and only one

of the types N (Vi(x)), i = 1, 2, 3, where V1(x) = x, ∀x, and

(4.2) V2(x) =

{

−β ln |x| , x ≤ 0 ,

∞ , x > 0 ,
V3(x) =

{

−∞ , x ≤ 0 ,

β ln |x| , x > 0 ,
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where β is some positive constant. In this case F belongs to the domain of at-

traction of the df Φ(0,1)(x), written F ∈ D(Φ(0,1)(x)). Moreover, (4.1) is satisfied

with Φ(0,1)(x) = N (Vi(x)), for some i ∈ {1, 2, 3} if, and only if,

(4.3)
nF (αnx+ βn)− rn√

rn

−→n Vi(x) .

Wu [15] generalized the Chibisov result for any nondecreasing intermediate rank

sequence and proved that the only possible types for the limit df of the interme-

diate oos are those defined in (4.2).

Barakat [2], in Lemma 2.2 and Theorem 2.3, characterized the possible

limit laws of the df of the upper intermediate m-gos. The following corresponding

lemma characterizes the possible limit laws of the df of the lower intermediate

m-gos. The proof of this lemma follows by using the same argument which is

applied in the proof of Lemma 2.2 and Theorem 2.3 of Barakat [2].

Lemma 4.1. Let m1 = m2 = ... = mn−1 = m > −1, and let rn be a non-

decreasing intermediate rank sequence. Then, there exist normalizing constants

an > 0 and bn such that

(4.4) Φ(m,k)
rn :n (anx+ bn)

w−→n Φ(m,k)(x) ,

where Φ(m,k)(x) is a nondegenerate df if, and only if,
NGm(anx+bn)−r

N√
r
N

−→n V (x),

where Φ(m,k)(x) = N (V (x)). Furthermore, let r⋆
n

be a variable rank sequence de-

fined by r⋆
n

= r
θ−1(N)

, where θ(n) = (m+ 1)N (remember that N = k
m+1 +n− 1,

then θ(n) = n, if m = 0, k = 1, i.e., in the case of oos). Then, there exist normal-

izing constants an > 0 and bn for which (4.4) is satisfied for some nondegenerate

df Φ(m,k)(x) if, and only if, there are normalizing constants αn > 0 and βn for

which Φ
(0,1)
r⋆
n
:n(αnx+ βn)

w−→n Φ(0,1)(x), where Φ(0,1)(x) is some nondegenerate df,

or equivalently
nF (αnx+βn)−r⋆

n√
r⋆
n

−→n Vi(x), i ∈ {1, 2, 3}, and Φ(0,1)(x) = N (Vi(x)).

In this case, we can take an = αθ(n) and bn = βθ(n). Moreover, Φ(m,k)(x) must

has the form N (Vi(x)), i.e., V (x) = Vi(x).

In this section we consider the limit df of the two intermediate m-gos ηr=
X(r,n,m,k)−bn

an
and ζs=

X(s,n,m,k)−dn

cn
, where r

nα1
−→n l21,

s
nα2
−→n l22, 0<α1, α2<1,

l1, l2 > 0, and an, cn > 0, bn, dn are suitable normalizing constants. The main

aim of this section is to:

1 – Prove that the weak convergence of the df’s of ηr and ζs implies the

convergence of the joint df of ηr and ζs;

2 – Obtain the limit joint df of ηr and ζs and derive the condition under

which the two statistics ηr and ζs are asymptotically independent.
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We can distinguish the following distinct and exhausted two cases:

A) s− r −→n c, 0 ≤ c <∞ , and B) s− r −→n ∞ .

Remark 4.1. Under the condition A), we clearly have l1= l2, α1=α2 =α.

Moreover r
s
−→n 1. Finally, under the condition B) we have the following three

distinct and exhausted cases:

B1) α2 > α1, which implies r
s
−→n 0.

B2) α2 = α1 = α, l2 > l1, which implies r
s
−→n

l21
l22

.

B3) α2 = α1 = α, l2 = l1, which implies r
s
−→n 1.

The following, corresponding lemma (proved in theAppendix) to Lemma3.2,

characterizes the possible limit laws of the joint intermediate m-gos.

Lemma 4.2. Let Φ
(m,k)
r,s:n (xn, yn)=P (ηr<x, ζs<y), 0<Rrs=

√

λr(1−λs)
λs(1−λr)<1,

r
s
−→n R, Rrs−→n

√
R, 0≤R<1, xn= anx+ bn, yn= cny+dn, U

(1)
n (x)= Gm(xn)−λr

τr
,

U
(2)
n (y) = Gm(yn)−λs

τs
, λi = i

N+1 , τi =
√

λiνi

N+1 and νi = 1− λi, i = r, s. Then

∣

∣

∣

∣

∣

Φ(m,k)
r,s:n (xn, yn)−

1

2π
√

1−R2
rs

∫ U
(1)
n (x)

−∞

∫ U
(2)
n (y)

−∞
e
− (ξ2+η2−2ξηRrs)

2(1−R2
rs) dξ dη

∣

∣

∣

∣

∣

converges to zero uniformly with respect to x and y.

Lemma 4.2 leads to the following theorem.

Theorem 4.1. Let xn= anx+ bn, yn= cny+dn,
r
n ,

s
n
−→n 0, rs −→n R, and

Rrs −→n
√
R, 0 ≤ R < 1. Then the convergence of the two marginals Φ

(m,k)
r:n (xn)

and Φ
(m,k)
s:n (yn) to nondegenerate limit df’s Φ(m,k)(x) = N (V (x)) and Φ(m,k)(y) =

N (Ṽ (y)), respectively, are necessary and sufficient condition for the convergence

of the joint df Φ
(m,k)
r,s:n (xn, yn) to the nondegenerate limit

Φ(m,k)
r,s:n (xn, yn)

w−→n
1

2π
√

1−R

∫ V (x)

−∞

∫ Ṽ (y)

−∞
e
− (ξ2+η2−2ξη

√
R)

2(1−R) dξ dη .

Moreover, in view of Lemma 4.1, we deduce that the convergence of the joint df

Φ
(m,k)
r,s:n (xn, yn), as well as the convergence of the two marginals Φ

(m,k)
r:n (xn) and

Φ
(m,k)
s:n (yn), occurs if, and only if, there are normalizing constants αn, γn > 0 and

βn, δn for which Φ
(0,1)
r⋆
n
:n(αnx+ βn)

w−→n Φ(0,1)(x) = N (Vi(x)) and Φ
(0,1)
s⋆
n
:n(γny+ δn)

w−→n Φ(0,1)(y)=N (Vj(y)), for some i, j ∈{1, 2, 3}, where r⋆
n
= r

θ−1(N)
, s⋆

n
= s

θ−1(N)

and θ(n) = (m+1)N . In this case, we can take an=αθ(n), cn= γθ(n), bn=βθ(n)

and dn = δθ(n). Moreover, V (x) = Vi(x) and Ṽ (y) = Vj(y). Finally, the two

marginals are asymptotically independent if, and only if, r
s
−→n 0, i.e., R = 0.
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APPENDIX

Proof of Lemma 2.3: In (1.1), consider the transformation ξ = F (u),

η = F (v), we get

Φ(m,k)
r,s:n (xn, yn) =

(A.1)

= C⋆n

∫ F (xn)

0

∫ F (yn)

ξ
ξ̄m η̄γs−1 (1− ξ̄m+1)r−1 (ξ̄m+1− η̄m+1)s−r−1 dη dξ ,

where η̄ = 1− η, ξ̄ = 1− ξ and C⋆n =
Cs−1,n

(m+1)s−2 (r−1)! (s−r−1)!
. Again, by using the

transformation 1− ξ̄m+1 = z, 1− η̄m+1 = w, we get

(A.2) Φ(m,k)
r,s:n (xn, yn) = C⋆⋆n

∫ Gm(xn)

0

∫ Gm(yn)

z
(1−w)

γs−m−1
m+1 zr−1(w− z)s−r−1 dw dz ,

where C⋆⋆n = C⋆
n

(m+1)2
. On the other hand, we have γs−m−1

m+1 = N−s and

(r−1)! (s−r−1)!C⋆⋆n
(N−s)s =

∏s
j=1 γj

(N−s)s (m+1)s
=

∏s
j=1(N−j+1)

(N−s)s =

=

∏s
j=1(1− j−1

N )

(1− s
N )s

=

(

1 +
s2

N

(

1+ o(1)
)

)

(

1−
s
∑

j=2

j−1

N

(

1+ o(1)
)

)

=

= 1+
s2

N
− 1

N

(

s2− s
2

)

(

1+ o(1)
)

= 1+ ρN ,

where 0 < ρN = 1
2N (s2+s)(1+o(1))−→N 0. Therefore, by using the transforma-

tion w= θ
N−s , z= φ

N−s and the inequality (1−z)n≤e−nz, ∀ 0≤ z≤ 1 (cf. Lemma

1.3.1 in Galambos [6]), we get

Φ(m,k)
r,s:n (xn, yn) =

=
C⋆⋆n

(N−s)s
∫ (N−s)Gm(xn)

0

∫ (N−s)Gm(yn)

φ

(

1− θ

N−s

)N−s
φr−1(θ−φ)s−r−1 dθ dφ

≤ (1+ρN )

(r−1)! (s−r−1)!

∫ NGm(xn)

0

∫ NGm(yn)

φ
e−θφr−1(θ−φ)s−r−1 dθ dφ

=
(1+ρN )

(r−1)!

∫ NGm(xn)

0
Γs−r

(

NGm(yn)− u
)

ur−1 e−u du .

On the other hand, by using the transformation w
1−w = θ

N+r ,
z

1−z = φ
N+r in

(A.2), and noting that (r−1)! (s−r−1)!C⋆⋆
n

(N+r)s =
Qs

j=1(1−
j−1
N

)

(1+ r
N

)s =
(

1− rs
N (1 + o(1))

)(

1−
∑s

j=2
j−1
N (1+o(1))

)

= 1−
(

rs
N +

∑s
j=2

j−1
N

)(

1+o(1)
)

= 1− 1
N

(

rs+ s2−s
2

)(

1+o(1)
)

=
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1− σ⋆N , we get, by using the inequality e−nz ≤ (1 + z)−n, ∀ 0 ≤ z ≤ 1,

Φ(m,k)
r,s:n (xn, yn) =

=
C⋆⋆n

(N+r)s

∫ (N+r)Gm(xn)/Ḡm(xn)

0

∫ (N+r)Gm(yn)/Ḡm(yn)

φ
(θ − φ)s−r−1

× φr−1

(

1 +
θ

N+r

)−(N+r)(

1 +
θ

N+r

)2r−1(

1 +
φ

N+r

)−s
dθ dφ

≥ (1−σ⋆N )F̄ (m+1)s(xn)

(r−1)!(s−r−1)!

∫ NGm(xn)

0

∫ NGm(yn)

φ
(θ−φ)s−r−1φr−1

(

1+
θ

N+r

)−(N+r)

dθ dφ

≥ (1−σN )

(r−1)! (s−r−1)!

∫ NGm(xn)

0

∫ NGm(yn)

φ
(θ−φ)s−r−1φr−1 e−θ dθ dφ

=
(1−σN )

(r−1)!

∫ NGm(xn)

0
Γs−r

(

NGm(yn)− u
)

ur−1e−u du ,

where σN = 1− (1− σ⋆N ) F̄ (m+1)s(xn)−→N 0 (note that F̄ (m+1)s(xn) ∼ 1).

The lemma is proved.

Proof of Lemma 2.4: We begin with the relation (A.1), after replacing

r and s by r̀ and s̀, respectively. By using the transformation ξ̄m+1= z, η̄m+1=w

and noting that n− r = N−Rr, n−s = N−Rs, γn−s+1 = (m+1)Rs and Cs̀−1,n=

CN−Rs,n = (m+ 1)N−Rs+1
∏N−Rs+1
j=1 (N − j+ 1) = (m+ 1)N−Rs+1 Γ(N+1)

Γ(Rs)
, we get

(A.3) Φ
(m,k)
r̀,s̀:n (xn, yn) = C̀n

∫ 1

Ḡm(xn)

∫ z

Ḡm(yn)
wRs−1(1−z)N−Rr(z−w)Rr−Rs−1dw dz ,

where C̀n = Γ(N+1)
Γ(N−Rr+1) Γ(Rr−Rs) Γ(Rs)

. Again by using the transformation w=
θ

N−Rr
, z = φ

N−Rr
and the inequality (1− z)n ≤ e−nz, ∀ 0 ≤ z ≤ 1, we get

Φ
(m,k)
r̀,s̀:n (xn, yn) ≤

≤ C̀n
(N−Rr)Rr

∫ (N−Rr)

(N−Rr)Ḡm(xn)

∫ φ

(N−Rr)Ḡm(yn)
e−φ θRs−1(φ−θ)Rr−Rs−1dθ dφ .

Now, by using Stirling’s formula (cf. Lebedev [8]), we have Γ(Rr−Rs) Γ(Rs) C̀n

(N−Rr)Rr
∼

e−Rr(1−Rr

N )−(N+ 1
2
) ∼ 1, as N→∞ (i.e., as n→∞), and noting that (N−Rr) ·

·Ḡm(xn) ∼ NḠm(xn), (N−Rr)Ḡm(yn) ∼ NḠm(yn), as N →∞, we get

Φ
(m,k)
r̀,s̀:n (xn, yn) ≤

1

Γ(Rr−Rs) Γ(Rs)

∫ N

NḠm(xn)

∫ φ

NḠm(yn)
e−φθRs−1(φ−θ)Rr−Rs−1dθ dφ

=
1

Γ(Rr)

∫ N

NḠm(xn)
φRr−1e−φ

(

1− INḠm(yn)
φ

(Rs, Rr−Rs)
)

dφ

= 1− ΓRr

(

NḠm(xn)
)

− 1

Γ(Rr)

∫ N

NḠm(xn)
INḠm(yn)

t

(Rs, Rr−Rs) tRr−1e−t dt .
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On the other hand, by using the transformation w
1−w = θ

N+Rs
, z

1−z = φ
N+Rs

in

(A.3) and the inequality e−nz ≤ (1 + z)−n, ∀ 0 ≤ z ≤ 1, we get

Φ
(m,k)
r̀,s̀:n (xn, yn) =

C̀n
(N+Rs)Rr

∫ ∞

(N+Rs)
Ḡm(xn)
Gm(xn)

∫ φ

(N+Rs)
Ḡm(yn)
Gm(yn)

θRs−1

×
(

1+
φ

N+Rs

)−(N+Rs)+2Rs−1(

1+
θ

N+Rs

)−Rr

(φ−θ)Rr−Rs−1dθ dφ

≥ C̀n
(N+Rs)Rr

∫ (N+Rs)

(N+Rs)
Ḡm(xn)
Gm(xn)

∫ φ

(N+Rs)
Ḡm(yn)
Gm(yn)

e−φθRs−1

×
(

1 +
θ

N+Rs

)−Rr

(φ−θ)Rr−Rs−1 dθ dφ .

The lemma is proved.

Proof of Lemma 2.5: The proof of the lower bound follows from the fact

that the gos are positively quadrant dependent (see Barakat [3]). To prove the

upper bound, in view of (1.1), we have

Φ
(m,k)
r,s̀:n (xn, yn) =

(A.4)

= Dn

∫ F (xn)

0

∫ F (yn)

ξ
ξ̄m η̄γn−s+1−1 (1− ξ̄m+1)r−1(ξ̄m+1− η̄m+1)n−s−rdη dξ ,

∀xn ≤ yn, whereDn =
Cn−s,n

(m+1)n−s−1 (r−1)! (n−s−r)! . Now, in view of the conditions of

the lemma, it is easy to show that ∀(x, y), for which Vj,β(x),Ui,α(y) <∞, we have

yn −→n ω(F ) = sup{x : F (x) < 1} > inf{x : F (x) > 0} = α(F )←−n xn. Therefore,

for all large n, the relation (A.4) holds, ∀x, y, for which Vj,β(x),Ui,α(y) <∞. Now,

by using the transformation 1− ξ̄m+1=v, η̄m+1=u and noting that γn−s+1−m−1
m+1 =

Rs−1, we get

Φ
(m,k)
r,s̀:n (xn, yn) =

Dn

(m+1)2

∫ Gm(xn)

0

∫ 1−v

Ḡm(yn)
uRs−1vr−1 (1−u−v)n−s−r du dv .

Therefore, by using the transformation u= w
N−Rs−r , v= z

N−Rs−r and the inequal-

ity (1−z)n ≤ e−nz, ∀ 0 ≤ z ≤ 1, we get

Φ
(m,k)
r,s̀:n (xn, yn) ≤ C̃n

∫ NGm(xn)

0

∫ N

(N−Rs−r)Ḡm(yn)
wRs−1zr−1e−(w+z) dw dz ,

where C̃n = Dn

(m+1)2 (N−Rs−r)Rs+r . On the other hand, by using Stirling’s formula,

we get

Γ(r) C̃n =
CN−Rs,n

(m+1)N−Rs+1 (N−Rs−r)Rs+r Γ(N−Rs−r+1)

=
Γ(N+1)

Γ(N−Rs−r+1) (N−Rs−r)Rs+r Γ(Rs)
∼ 1

Γ(Rs)
.

Therefore, since (N−Rs−r)Ḡm(yn) ∼ NḠm(yn), we get the upper bound of (2.5).

The lemma is proved.
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Proof of Lemma 3.2: For given ǫ > 0, choose T large enough to satisfy

the inequalities 1
T 2 < ǫ and N (−T ) < ǫ. If U

(1)
n (x) ≤ −T . Thus, for sufficiently

large n, we get 1− F̄m+1(xn) ≤ λr − τrT < 1. Therefore, after routine calcula-

tions, we can show that

Φ(m,k)
r:n (xn) =

1

β(r,N−r+1)

∫ 1−Fm+1
(xn)

0
ξr−1 (1−ξ)N−r dξ

≤ 1

β(r,N−r+1)

∫ λr−τrT

0
ξr−1(1−ξ)N−r dξ

≤ 1

β(r,N−r+1)

∫ 1

0

(ξ−λr)2
τ2
r T

2
ξr−1(1−ξ)N−rdξ

=
N+1

(N+2)T 2
<

1

T 2
< ǫ .

Since Φ
(m,k)
r,s:n (xn, yn) ≤ Φ

(m,k)
r:n (xn), then Φ

(m,k)
r,s:n (xn, yn) < ǫ. Similarly, if U

(2)
n (y) ≤

−T , we can prove that Φ
(m,k)
r,s:n (xn, yn) ≤ Φ

(m,k)
s:n (yn) < ǫ. On the other hand, we

have

∫ U
(1)
n (x)

−∞

∫ U
(2)
n (y)

−∞
Wr,s(ξ, η) dξ dη ≤ min

(

N
(

U (1)
n (x)

)

, N
(

U (2)
n (y)

)

)

< ǫ .

Therefore, if U
(1)
n (x) ≤ −T or U

(2)
n (y) ≤ −T , we get

∣

∣

∣

∣

∣

Φ(m,k)
r,s:n (xn, yn) −

∫ U
(1)
n (x)

−∞

∫ U
(2)
n (y)

−∞
Wr,s(ξ, η) dξ dη

∣

∣

∣

∣

∣

≤ 2 ǫ .

Now, if U
(1)
n (x) ≥ T , then 1− F̄m+1(xn) ≥ λr + τrT . Therefore, after routine

calculations, we get

1− Φ(m,k)
r:n (xn) ≤

1

β(r,N−r+1)

∫ 1

λr+τrT
ξr−1(1−ξ)N−r dξ

≤ 1

β(r,N−r+1)

∫ 1

0

(ξ−λr)2
τ2
r T

2
ξr−1(1−ξ)N−r dξ

=
N+1

(N+2)T 2
<

1

T 2
< ǫ .

Thus, we also get

(A.5) Φ(m,k)
s:n (yn)− Φ(m,k)

r,s:n (xn, yn) ≤ 1− Φ(m,k)
r:n (xn) < ǫ .

On the other hand, in view of our assumptions and Lemma 3.1, we get

N
(

U (2)
n (y)

)

−
∫ U

(1)
n (x)

−∞

∫ U
(2)
n (y)

−∞
Wr,s(ξ, η) dξ dη =

=

∫ ∞

U
(1)
n (x)

∫ U
(2)
n (y)

−∞
Wr,s(ξ, η) dξ dη(A.6)

≤ 1√
2π

∫ ∞

U
(1)
n (x)

e
−ξ2

2 dξ ≤ 1√
2π

∫ ∞

T
e

−ξ2

2 dξ < ǫ ,
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for sufficiently large n, and

(A.7)
∣

∣

∣Φ(m,k)
s:n (yn)−N

(

U (2)
n (y)

)

∣

∣

∣ < ǫ ,

for sufficiently large n. The relations (A.5), (A.6) and (A.7) show that when

U
(1)
n (x) ≥ T , we have |Φ(m,k)

r,s:n (xn, yn)−
∫ U

(1)
n (x)

−∞
∫ U

(2)
n (y)

−∞ Wr,s(ξ, η) dξ dη| < 3 ǫ. Sim-

ilarly, we can show that the last inequality holds for sufficiently large n, if

U
(2)
n (y) ≥ T . In order to complete the proof of the lemma, we have to con-

sider the case |U (1)
n (x)|, |U (2)

n (y)| < T . First, we note that, since Gm(xn)−→n λ1 <

λ2←−n Gm(yn), we have xn ≤ yn, for sufficiently large n. Therefore, for suffi-

ciently large n, Φ
(m,k)
r,s:n (xn, yn) is given by (3.3). Moreover, in this case we have

1− F̄m+1(xn) > λr − τrT ≥ 0 and 1− F̄m+1(yn) > λs − τsT ≥ 0. Thus,

Φ(m,k)
r,s:n (xn, yn) =

∫ 1−F̄m+1(xn)

0

∫ 1−F̄m+1(yn)

z
ϕ(m,k)
r,s:n (w, z) dw dz

=

∫ λr−τrT

0

∫ 1−F̄m+1(yn)

z
ϕ(m,k)
r,s:n (w, z) dw dz

(A.8)

+

∫ 1−F̄m+1(xn)

λr−τrT

∫ λs−τsT

z
ϕ(m,k)
r,s:n (w, z) dw dz

+

∫ 1−F̄m+1(xn)

λr−τrT

∫ 1−F̄m+1(yn)

λs−τsT
ϕ(m,k)
r,s:n (w, z) dw dz ,

where ϕ
(m,k)
r,s:n (w, z) = C⋆

n

(m+1)2
zr−1(1− w)N−s (w − z)s−r−1. We shall separately

consider, each of the integrals in the summation (A.8):

∫ λr−τrT

0

∫ 1−F̄m+1(yn)

z
ϕ(m,k)
r,s:n (w, z) dw dz ≤

≤
∫ λr−τrT

0

∫ 1

z
ϕ(m,k)
r,s:n (w, z) dw dz

(A.9)

=
C⋆n

(m+1)2

∫ λr−τrT

0

∫ 1

z
zr−1(1−w)N−s (w−z)s−r−1 dw dz

=
Γ(N+1)

Γ(N−r+1)Γ(r)

∫ λr−τrT

0
zr−1(1−z)N−r dz <

1

T 2
< ǫ ,

∫ 1−F̄m+1(xn)

λr−τrT

∫ λs−τsT

z
ϕ(m,k)
r,s:n (w, z) dw dz ≤

≤
∫ λs−τsT

0

∫ λs−τsT

z
ϕ(m,k)
r,s:n (w, z) dw dz(A.10)

=
Γ(N+1)

Γ(N−s+1) (s−1)!

∫ λs−τsT

0
ws−1(1−w)N−s dw <

1

T 2
< ǫ ,

and by using the transformation z = λr + ξ τr, w = λs + ητs, the third integral
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takes the form

∫ 1−F̄m+1(xn)

λr−τrT

∫ 1−F̄m+1(yn)

λs−τsT
ϕ(m,k)
r,s:n (w, z) dw dz =

= Ar,s:n

∫ U
(1)
n (x)

−T

∫ U
(2)
n (y)

−T
gr,s:n(ξ, η) dη dξ ,

where

Ar,s:n =
Γ(N+1) τr τs λ

r−1
r νN−s

s (λs−λr)s−r−1

Γ(N−s+1) (r−1)! (s−r−1)!

and

gr,s:n(ξ, η) =

(

1 +
ξ τr
λr

)r−1(

1 +
ητs− ξ τr
λs−λr

)s−r−1(

1− ητs
νs

)N−s
.

On the other hand, by using Stirling’s formula Γ(M+1) = e−M
√

2πM ·
·MM (1+ ◦(1)), as M →∞, we get

Ar,s:n =
(N+1)2 Γ(N+1) τr τs λ

r
r ν

N−s
s (λs−λr)s−r

Γ(N−s+1) r! (s−r)!

=
1+ ◦(1)

2π
√

(N+1) (s−r)
s(N−r+1)

=
1+ ◦(1)

2π
√

1−R2
rs

.

Also, it is easy to show that

gr,s:n(ξ, η) =

(

1+
ξτr
λr

)r(

1+
ητs− ξτr
λs−λr

)s−r(

1− ητs
νs

)N−s

×
[

(

1+
ξτr
λr

)−1(

1+
ητs− ξτr
λs−λr

)−1
]

=

(

1+
ξτr
λr

)r(

1+
ητs− ξτr
λs−λr

)s−r(

1− ητs
νs

)N−s
(A.11)

×
[

(

1− ξτr
λr

(

1 + o(1)
)

)(

1− ητs− ξτr
λs−λr

(

1 + ◦(1)
)

)

]

=

(

1+
ξτr
λr

)r(

1+
ητs− ξτr
λs−λr

)s−r(

1− ητs
νs

)N−s
(

1+ ρn(ξ, η)
)

,

where ρn(ξ,η)−→n 0, uniformly in any finite interval (−T,T ) of the value ξ and η.

Furthermore, we have

r ln

(

1 +
ξτr
λr

)

= r

(

ξτr
λr
− ξ2τ2

r

2λ2
r

+
ξ3τ3

r

3λ3
r

+ ···
)

(A.12)

= ξ τr(N+1)− ξ2νr
2

+ ◦
(

T 3

√
r

)

,



Generalized Order Statistics 217

(s−r) ln

(

1 +
ητs− ξτr
λs−λr

)

=

(A.13)
= (ητs − ξτr) (N+1)− 1

2

(ητs− ξτr)2
λs−λr

(N+1) + ◦
(

T 3

√
s

)

and

(A.14) (N−s) ln

(

1− ητs
νs

)

= −ητs(N+1)− 1

2
η2λs + ◦

(

λ
3
2
s T 3

√
N

)

.

Therefore, by combining (A.11)–(A.14), as n→∞ (or equivalently as N →∞),

we get

ln gr,s:n(ξ, η) = r ln

(

1+
ξτr
λr

)

+ (s−r) ln

(

1+
ητs − ξτr
λs−λr

)

+ (N−s) ln

(

1− ητs
νs

)

∼ −ξ
2νr
2
− η2 τ2

s − 2 ξη τrτs + ξ2τ2
r

2(λs−λr)
(N+1)− 1

2
η2λs

= −ξ
2νr
2

(

1+
λr

λs−λr

)

− 1

2
η2λs

(

1+
νs

λs−λr

)

− 1

2

(

−2 ξη
τr τs
λs−λr

)

= −1

2

λs(1−λr)
λs−λr

(

ξ2 + η2 − 2 ξη

√

λr(1−λs)
λs(1−λr)

)

,

which implies gr,s:n(ξ, η) = e
−(ξ2+η2−2ξηRrs)

2(1−R2
rs)

(

1 + ◦(1)
)

. Therefore, for sufficiently

large n (or equivalently for large N), we get

∣

∣

∣

∣

∣

∫ 1−F̄m+1(xn)

λr−τrT

∫ 1−F̄m+1(yn)

λs−τsT
ϕ(m,k)
r,s:n (w,z) dw dz −

∫ U
(1)
n (x)

−T

∫ U
(2)
n (y)

−T
Wr,s(ξ, η) dξ dη

∣

∣

∣

∣

∣

< ǫ .

Since,

∫ −T

−∞

∫ U
(2)
n (y)

−T
Wr,s(ξ, η) dξ dη +

∫ U
(1)
n (x)

−∞

∫ −T

−∞
Wr,s(ξ, η) dξ dη < 2N (−T ) < 2 ǫ

and

∫ U
(1)
n (x)

−∞

∫ U
(2)
n (y)

−∞
Wr,s(ξ, η) dξ dη =

=

∫ U
(1)
n (x)

−∞

∫ −T

−∞
Wr,s(ξ, η) dξ dη +

∫ −T

−∞

∫ U
(2)
n (y)

−T
Wr,s(ξ, η) dξ dη

+

∫ U
(1)
n (x)

−T

∫ U
(2)
n (y)

−T
Wr,s(ξ, η) dξ dη ,

then
∣

∣

∣

∣

∣

∫ 1−F̄m+1(xn)

λr−τrT

∫ 1−F̄m+1(yn)

λs−τsT
ϕ(m,k)
r,s:n (w,z) dw dz −

∫ U
(1)
n (x)

−∞

∫ U
(2)
n (y)

−∞
Wr,s(ξ,η) dξ dη

∣

∣

∣

∣

∣

< 3 ǫ .
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By combining the last inequalitywith (A.9) and (A.10) we get, for sufficient large n,

the inequality

∣

∣

∣

∣

∣

Φ(m,k)
r,s:n (xn, yn) −

∫ U
(1)
n (x)

−∞

∫ U
(2)
n (y)

−∞
Wr,s(ξ, η) dξ dη

∣

∣

∣

∣

∣

< 5 ǫ ,

which proves the lemma in the case
∣

∣U
(1)
n (x)

∣

∣,
∣

∣U
(2)
n (y)

∣

∣ < T . This completes the

proof.

Proof of Lemma 4.2: Under the condition of the lemma (0 ≤ R < 1),

we consider only the cases B1) and B2). On the other hand, the proof is very

close to the proof of Lemma 3.2. Therefore, we only show the necessary changes

in the proof of Lemma 3.2. For given ǫ > 0, we choose T , large enough to

satisfy both of the inequalities 1
T 2 < ǫ, and N (−T ) < ǫ. In this case it is easy

to see that the proof of the two lemmas coincides in the cases U
(t)
n (·) ≤ −T

and U
(t)
n (·) ≥ T, t = 1, 2. Therefore, we only prove the lemma under the case

|U (1)
n (x)|< T and |U (2)

n (y)|< T . In this case we have 1− F̄m+1(xn) > λr− τrT ≥ 0

and 1− F̄m+1(yn) > λs − τsT ≥ 0. Thus, we get

Φ(m,k)
r,s:n (xn, yn) =

∫ λr−τrT

0

∫ 1−F̄m+1(yn)

z
ϕ(m,k)
r,s:n (w,z) dw dz

+

∫ 1−F̄m+1(xn)

λr−τrT

∫ λs−τsT

z
ϕ(m,k)
r,s:n (w,z) dw dz(A.15)

+

∫ 1−F̄m+1(xn)

λr−τrT

∫ 1−F̄m+1(yn)

λs−τsT
ϕ(m,k)
r,s:n (w,z) dw dz ,

where ϕ
(m,k)
r,s:n (w, z) = C⋆

n

(m+1)2
zr−1(1−w)N−s(w−z)s−r−1. We shall separately con-

sider, each of the integrals in the summation (A.15).

∫ λr−τrT

0

∫ 1−F̄m+1(yn)

z
ϕ(m,k)
r,s:n (w,z) dw dz ≤

∫ λr−τrT

0

∫ 1

z
ϕ(m,k)
r,s:n (w,z) dw dz =

=
Γ(N+1)

Γ(N−r+1) (r−1)!

∫ λr−τrT

0
zr−1(1−z)N−r dz <

1

T 2
< ǫ .

Since |U (1)
n (x)| < T , for large N , we get

(A.16) 1− F̄m+1(xn) < λr + τrT .

On the other hand, we have

(A.17)
λr + τrT

λs − τsT
−→n











0 , in the case B1) ,

l2l
l22
, in the case B2) .



Generalized Order Statistics 219

Therefore, for large N , the relations (A.16) and (A.17) imply the inequality

1− F̄m+1(xn) < λs − τsT , which in turn leads to the following estimate for the

2nd integral in (A.15):

∫ 1−F̄m+1(x)

λr−τrT

∫ λs−τsT

z
ϕ(m,k)
r,s:n (w,z) dw dz ≤

≤
∫ λs−τsT

0

∫ λs−τsT

z
ϕ(m,k)
r,s:n (w,z) dw dz

=

∫ λs−τsT

0

∫ w

0
ϕ(m,k)
r,s:n (w,z) dz dw

=
Γ(N+1)

Γ(N−s+1) (s−1)!

∫ λs−τsT

0
ws−1(1−w)N−s dw <

1

T 2
< ǫ .

It is easy to show that, under the cases B1) and B2), the mathematical treatments

of the third integral of the summation, as well as the remaining part of the proof,

is exactly the same as in the proof of Lemma 3.2. This completes the proof.
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