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Abstract:

• This article reviews current state of the art of ROC surface analysis and illustrates
its use through an application on a pancreatic cancer diagnostic marker. Receiver
Operating Characteristic (ROC) surfaces have been studied in the literature essen-
tially only during the last decade and are considered as a natural generalization of
ROC curves in three-class diagnostic problems. This article presents the definition,
construction, modelling, and utility of the ROC surface while trying to provide an ex-
tensive reference list in the topic. It describes methodology for inference based on the
Volume Under the ROC surface (VUS) and methodology for decision making through
the selection of optimal cut-off points using the notion of the generalized Youden in-
dex as the optimality criterion of choice. It ends with a discussion regarding future
directions for research in this field of knowledge.
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1. INTRODUCTION

Receiver Operating Characteristic (ROC) curve analysis has been an active

area of research since the early 1950s. The ROC curve depicts the quality of a

diagnostic marker in a two-class classification problem. It illustrates the trade-off

between sensitivity and specificity as the cut-off point for decision making varies

through possible values of the diagnostic marker. Put more formally, suppose

that, in a two-class classification problem, a diagnostic marker results in mea-

surements X1 ∼ F1 from the first class under study and X2 ∼ F2 from the second

class under study. Suppose that, in general, values from X2 are larger than val-

ues from X1 but X1 and X2 are not perfectly separated, i.e. there is an amount

of overlap between measurements from the two-classes.1 A cut-off point c is se-

lected for decision making which will result in the fractions of specificity, defined

as spec(c) = P (X1 ≤ c), and sensitivity, defined as sens(c) = P (X2 > c). The

fractions of sensitivity (or else True Positive Fraction, TPF) and specificity (True

Negative Fraction, TNF) vary as the cut-off point c varies. The ROC curve is de-

fined as the graph depicting (1 − P (X1 ≤ c), P (X2 > c)) = (1 − spec(c), sens(c))

in the unit square [0, 1] × [0, 1], as c varies. Equivalently, the ROC curve is

the graph of the function ROC(t) = 1 − F2(F
−1
1 (1 − t)), where t ∈ [0, 1]. The

Area Under the ROC Curve (AUC) is equivalent to P (X1 < X2) and it is the

most widely used index for the quantification of the performance of a diagnostic

marker in the two-class setting. A useful diagnostic marker will result in an ROC

curve with AUC close to 1. A diagnostic marker with AUC close to 0.5 will,

in general, be considered as uninformative. The AUC takes on values in [0.5, 1]

if the condition that measurements from X1 are in general smaller than those

from X2 actually holds. The non-parametric estimate of the AUC is equivalent

to the Wilcoxon–Mann–Whitney statistic (Pepe, 2003). Formal assessment of

the quality of a diagnostic marker based on the AUC consists of testing the null

hypothesis, H0 : AUC = 0.5 versus the alternative of interest through the statis-

tic z = {(AUC − 0.5)/se(AUC)} ∼ N(0, 1), where se(AUC) is the standard error

of AUC, estimated, e.g., using the bootstrap. If H0 is rejected, the diagnostic

marker under study is considered to be useful and a cut-off point c must be chosen

for decision-making purposes. Use of the maximum of the Youden index (J) is a

widely adopted approach for cut-off point selection. The Youden index is defined

as J = maxc{sens(c) + spec(c)− 1} = maxc{F1(c)−F2(c)}, as a result, the value

of c that maximizes J is chosen. ROC curve analysis is presented in detail in a

number of well-written books, such as Pepe (2003) and Zhou et al. (2011).

Notions of ROC curve analysis have been extended to accommodate prob-

lems of three-class and multiple-class classification. The ROC surface has been

proposed as a natural generalization of the ROC curve for the assessment of di-

agnostic markers in three-class classification problems. The ROC surface was

1However, we do not impose any type of stochastic ordering by X1 < X2.
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introduced by Scurfield (1996). The Volume Under the ROC Surface (VUS) was

proposed as an index for the assessment of the diagnostic accuracy of the marker

under consideration. Unfortunately, the latter article received very little atten-

tion probably because it only described the theoretical construction of the ROC

surface and did not provide any related application. A similar construction was

proposed independently, a few years later though, by Mossman (1999) which was

implemented in Mathematica by Heckerling (2001). Inference regarding the VUS,

based on Mossman’s construction, using non-parametric statistics, was studied

by Dreiseitl et al. (2000). The ROC surface construction, and the generalization

of this construction in multiple-class classification problems, in a non-parametric

context, was proposed in Nakas and Yiannoutsos (2004). Interestingly, the latter

construction unifies the approaches of Mossman and Scurfield in a natural way

and thus offered the framework and the theoretical basis for extending ROC curve

analysis concepts in multiple-class classification problems. This construction has

been reinvented at least a couple of times later on (e.g. Xiong et al., 2006; Li and

Fine, 2008), however, in Xiong et al. (2006) the parametric framework is studied

extensively supplementing the work in Nakas and Yiannoutsos (2004). Given the

theoretical basis for the ROC surface, several articles appeared in the literature

during the last 10 years generalizing notions from ROC curve analysis. ROC sur-

faces are overviewed in the textbook on ROC analysis by Krzanowski and Hand

(2009).

In the following sections the ROC surface analysis literature will be re-

viewed and unified, and an illustration offering insight on the use of ROC surfaces

will be described. The Discussion in Section 5 will constitute an effort to provide

guidance for future research to the interested reader.

2. ROC SURFACE ANALYSIS

2.1. Description of the problem

To define formally the general three-class classification problem, suppose

that n1 measurements from Class 1, denoted by X1, follow a distribution with

cumulative distribution function F1 (i.e. X1 ∼ F1), and similarly for n2 measure-

ments from Class 2, X2 ∼ F2, and for n3 measurements from Class 3, X3 ∼ F3.

A decision rule that classifies subjects in one of these classes can be defined using

two ordered threshold points c1 < c2. Specifically, suppose that the ordering of

interest is X1 < X2 < X3. The researcher’s goal is the assessment of the quality

of a diagnostic marker in classifying correctly subjects from the three ordered

classes.
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2.2. Definition

The construction of the ROC surface is based on the following algorithm:

Decide for Class 1 when a measurement is less than c1, for Class 2 when it is be-

tween c1 and c2, for Class 3 otherwise. This decision rule will result in three True

Class Fractions (TCFs) and six False Class Fractions (FCFs). Then, TCF1 =

P (X1 ≤ c1), TCF2 = P (c1 < X2 ≤ c2), and TCF3 = P (X3 > c2). Also, FCF12 =

P (c1 ≤ X1 ≤ c2) and the remaining five possible FCFij , i, j = 1, 2, 3, i 6= j are de-

fined accordingly. Varying c1, c2 in the union of the supports of F1, F2, and F3,

(TCF1, TCF2, TCF3) can be plotted in a three-dimensional coordinate system to

produce the ROC surface in the unit cube. The True Class Fractions take values

in [0, 1] with corner coordinates {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Thus, the ROC sur-

face is the 3-dimensional plot in the unit cube depicting (F1(c1), F2(c2)− F2(c1),

1 − F3(c2)), for all cut-off points (c1, c2), with c1 < c2. The functional form of

the ROC surface is ROCs(TCF1, TCF3) = F2(F
−1
3 (1−TCF3))−F2(F

−1
1 (TCF1))

(Nakas and Yiannoutsos, 2004). It can be seen that this is a generalization of the

ROC curve in three dimensions since projecting the ROC surface to the plane

defined by TCF2 versus TCF1, i.e. setting TCF3 = 0, the ROC curve between

Classes 1 and 2 is produced, i.e. ROC(TCF1) = 1 − F2(F
−1
1 (TCF1)). The latter

is the equivalent construction of the ROC curve depicting (TCF1(c1), TCF2(c1))

instead of (FCF12(c1), TCF2(c1)). Similarly, the projection of the ROC surface to

the plane defined by the axes TCF2, TCF3, yields the ROC curve between Classes

2 and 3, i.e. ROC(TCF3) = F2(F
−1
3 (1 − TCF3)), the latter being the functional

form of TCF2 versus TCF3 analogous to specificity versus sensitivity rather than

the other way around. For reasons of brevity, a pictorial representation will be

provided in Section 4.

2.3. The Volume Under the ROC Surface (VUS)

The Volume Under the ROC Surface (VUS) is equal to P (X1 < X2 < X3).

An unbiased non-parametric estimator of VUS is given by

V̂US =
1

n1n2n3

n1∑

i=1

n2∑

j=1

n3∑

k=1

I(X1i, X2j , X3k) ,

where I(X1, X2, X3) equals one if X1, X2, X3 are in the correct order and zero

otherwise (Dreiseitl et al., 2000). The definition of I(X1, X2, X3) can be adapted

to adjust for the presence of ties. Specifically, when ties are present, define:

I(X1, X2, X3) = 1/2 if X1 = X2 < X3 or if X1 < X2 = X3 and I(X1, X2, X3) = 1/6

if X1 = X2 = X3, and I(X1, X2, X3) = 0 (or 1 if perfectly ordered) otherwise.
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The expected value of VUS will be then

P (X1 < X2 < X3) +
1

2
P (X1 < X2 = X3)

+
1

2
P (X1 = X2 < X3) +

1

6
P (X1 = X2 = X3) .

The VUS takes the value 1/3! = 1/6 when the three distributions completely

overlap and the value one when the three classes are perfectly discriminated in

the correct order. Parametric approaches for the estimation of VUS have been

discussed in Xiong et al. (2006). Kang and Tian (2013) offer an extensive study

comparing possible parametric and non-parametric approaches for the estimation

of VUS in terms of bias and root mean square error.

In several situations in practice researchers may wish to limit the study of

the ROC surface to a clinically relevant range of measurement values. In such

cases the partial VUS has been defined in Xiong et al. (2006). The partial VUS

generalizes the notion of the partial AUC in the two-class problem (see e.g. Zhou

et al., 2011).

2.4. ROC surface modelling

Restate the functional form of the ROC surface, by writing TCF1 = p1 and

TCF3 = p3, as follows:

(2.1)

ROCs(p1, p3) =





F2

(
F−1

3 (1−p3)
)
− F2

(
F−1

1 (p1)
)
, if F−1

1 (p1) ≤ F−1
3 (1−p3) ,

0 , otherwise .

Then, VUS is defined as

VUS =

∫ 1

0

∫ 1−F3(F−1

1
(p1))

0
ROCs(p1, p3) dp3 dp1 .

2.4.1. Empirical and non-parametric estimation

The empirical estimator of the ROC surface can be obtained by replacing

the distribution functions in the definition of the ROC surface with their empirical

counterparts. The empirical, non-parametric estimator of the ROC surface is

R̂OCs(p1, p3) =





F̂2

(
F̂−1

3 (1−p3)
)
− F̂2

(
F̂−1

1 (p1)
)
, if F̂−1

1 (p1) ≤ F̂−1
3 (1−p3) ,

0 , otherwise ,
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where F̂1, F̂2 and F̂3 are the empirical distribution functions for the measurements

from the three classes.

Most recently, kernel approaches for the estimation of the ROC surface have

been studied (Kang and Tian, 2013). Specifically, F1, F2, and F3, can be modeled

through Gaussian kernel estimators of the form Fi(t) = 1/niΣ
ni

j=1Φ{(t − Xij)/hi},

for i = 1, 2, 3. For the bandwidth hi, which controls the amount of smoothing,

Kang and Tian (2013) have considered hi = {4/(3ni)}
1/5 min(SDi, IQRi/1.349);

here, SDi and IQRi are the standard deviation and interquartile range, respec-

tively, for the Xi measurements.

Bayesian non-parametric estimation of the ROC surface based on Finite

Polya Tree (FPT) prior distributions for the three-classes was studied by Inácio

et al. (2011). The model is specified hierarchically and involves the specification

of independent FPT prior distributions for Fi, for i = 1, 2, 3, conditional on a set

of hyperparameters, i.e.

Fi | ci, θi ∼ FPTJi
(Fθi

, ci) , i = 1, 2, 3 .

Suppose, that the Fi are centered at Fθi
= N(µi, σi), where θi = (µi, σi). The

mixing parameters µi have independent normal prior distributions N(aµi
, bµi

),

whereas σi have independent gamma prior distributions Γ(aσi
, bσi

). Hyperpa-

rameters are considered fixed. The levels of the finite Polya trees are set equal

to Ji, and are used to determine the level of detail that is accommodated by the

model; mathematical subtleties on the model can be found in Inácio et al. (2011).

2.4.2. Parametric estimation

Under the assumption of normality for F1, F2, and F3 (i.e. X1 ∼ N(µ1, σ
2
1),

X2 ∼ N(µ2, σ
2
2), X3 ∼ N(µ3, σ

2
3)), Xiong et al. (2006) used the model in (2.1) to

describe the general framework of the ROC surface and the VUS. The parametric

form of the ROC surface is

ROCs(p1, p3) =
{

Φ
(
β1 + β2Φ

−1(1−p3)
)
− Φ

(
β3 + β4Φ

−1(p1)
)}

× 1{β3+β4Φ−1(p1)≤β1+β2Φ−1(1−p3)}(p1, p3) ,

where 1 denotes the indicator function, Φ is the distribution function of the

standard normal, and β = (β1, β2, β3, β4)
T specifies the parameters of the ROC

surface. If the normality assumption is valid, the components of β may be ex-

pressed as functions of the means and variances of the three normal distributions

which model F1, F2, and F3, as follows:

β1 =
µ3 − µ2

σ2
, β2 =

σ3

σ2
, β3 =

µ1 − µ2

σ2
, β4 =

σ1

σ2
.
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Kang and Tian (2013) have considered the use of the Box–Cox transformation for

non-normally distributed data prior to the use of the parametric normal model

and have compared with the kernel approach they proposed in terms of the bias

and accuracy of the estimation of the VUS (see §2.4.1).

Under the Bayesian parametric paradigm, in order to find estimates for

the beta parameters, a Markov Chain Monte Carlo approach is needed. A

Metropolis–Hastings algorithm or a Gibbs sampler can be employed. The use

of the Metropolis–Hastings algorithm with uninformative normal priors for the

means and uninformative gamma prior distributions for the standard deviations

is recommended in Inácio et al. (2011). However, studies focusing on Bayesian

parametric approaches for the ROC surface have not appeared in the literature

yet.

2.4.3. Semi-parametric estimation

Semi-parametric estimation of the ROC surface was studied by Li and Zhou

(2009) generalizing the results of the two-class case in Hsieh and Turnbull (1996)

and by Nze Ossima et al. (2013), generalizing the results of the two-class case

in Gönen and Heller (2010). The estimation of the ROC surface of a diagnos-

tic marker with continuous measurements given covariate information has been

considered in Li et al. (2012). Specifically, suppose that the measurements of

the diagnostic marker under study can be modeled through the following general

regression model for a set of p covariates, Z = (Z1, ..., Zp)
T,

(2.2) g(Xi) = ZTβi + σi ε , i = 1, 2, 3 ,

where g is a strictly monotone increasing function, βi = (βi1, ..., βip)
T are the

regression coefficients for Class i, σi is a class-specific scale parameter, and ε is

the error following a common distribution function G with support (−∞,∞) for

all three classes. Then, the construction of the ROC surface is based on the rule:

Decide for Class 1 when the diagnostic marker’s measurement estimate from (2.2)

is less than c1, for Class 2 when it is between c1 and c2, for Class 3 otherwise.

2.5. Inference based on the VUS

Formal assessment of the diagnostic accuracy of a marker in a three-class

classification problem via its VUS can be based on testing the null hypothesis

H0 : VUS = 1/6 versus the alternative of interest. The test statistic is

(2.3) Z1 =
V̂US − 1/6√

var(V̂US)

∼ N(0, 1) .
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The V̂US is the non-parametric estimate of VUS. Then, Z1 is normally distributed

based on results from U-statistics theory (Pepe, 2003). Variance of V̂US can be

estimated by using U-statistics methodology or the bootstrap (Nakas and Yian-

noutsos, 2004). The bootstrap approach consists of sampling with replacement

n1, n2, n3 subjects from the initial samples from X1, X2, X3 respectively, and

calculating the VUS for each of the b replications of this procedure. The boot-

strap estimate of the variance of VUS is the sample variance of the b bootstrap

VUSs (Nakas and Yiannoutsos, 2004). Properties of non-parametric estimators

of the variance of V̂US have been studied by Guangming et al. (2013). Based

on Z1, 95% confidence intervals for VUS can be constructed in a straightforward

fashion. Wan (2012) proposed an empirical likelihood confidence interval for the

non-parametric estimate of VUS.

The parametric approach for confidence interval construction for VUS is

studied in Xiong et al. (2006). Confidence intervals are constructed based on

the Delta method, otherwise the bootstrap can be used, where for each bootstrap

replication the parametric VUS is calculated. Non-parametric predictive inference

for the ROC surface and the VUS is developed in Coolen-Maturi et al. (2013).

Regarding the comparison of VUSs, consider the case where two markers

(A and B) are measured on the same n = n1 + n2 + n3 specimens which are

classified by a gold standard procedure into three ordered disease classes. Let

(XA
1 , XA

2 , XA
3 ) and (XB

1 , XB
2 , XB

3 ) be the values for markers A and B, respectively.

To compare VUSA and VUSB via their non-parametric, empirical estimates,

Dreiseitl et al. (2000) proposed a U-statistics approach. Specifically, the null

hypothesis H0 : VUSA = VUSB is tested by calculating

Z2 =
V̂US

A
− V̂US

B

√
var

(
V̂US

A)
+ var

(
V̂US

B)
− 2 cov

(
V̂US

A
, V̂US

B) ,

and then comparing this value to a standard normal distribution. The variance

and covariance of V̂US can be estimated using the estimators provided in Dreiseitl

et al. (2000). Alternatively, the bootstrap can be used to test H0 as in Nakas and

Yiannoutsos (2004). Xiong et al. (2007) have studied the parametric analogue

for the comparison of VUSs based on the results in Xiong et al. (2006), while

Tian et al. (2011) consider the parametric approach using notions of generalized

pivots. Inference for specific TCFs is studied in Dong et al. (2011, 2013).

2.6. The ROC umbrella

The notion of the ROC surface has been generalized to accommodate cases

with umbrella or tree orderings (i.e. X1 < X3 > X2 or X2 > X1 < X3, respec-
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tively) between the three classes under study by Nakas and Alonzo (2007). The

ROC surface and VUS reviewed in the previous sections are not applicable when

such orderings are of interest. Specifically, these approaches do not allow one to

assess the ability of a marker to differentiate two disease classes from a third dis-

ease class without requiring a specific monotone order for the three disease classes

under study. The derivation of an ROC surface for the ordering X2 > X1 < X3

is reviewed here, however, the derivation is analogous for the other ordering.

Using the fact that (X2 > X1 < X3) = (X1 < X2 < X3)∪ (X1 < X3 < X2),

or equivalently P (X2 > X1 < X3) = P (X1 < X2 < X3) + P (X1 < X3 < X2), the

construction of two ROC surfaces (say A and B) corresponding to the orderings

X1 < X2 < X3 and X1 < X3 < X2, respectively, is possible. These are the plots

of the points:
(
TCFA

1 (c1, c2), TCFA
2 (c1, c2), TCFA

3 (c1, c2)
)

and
(
TCFB

1 (c1, c2),

TCFB
2 (c1, c2), TCFB

3 (c1, c2)
)
, respectively, with (c1, c2) ∈ R2 and c1 < c2.

The umbrella ordering can be viewed however on a single graph in the unit

cube by plotting on the same axes defined by x = TCFA
1 , y = TCFA

2 , z = TCFA
3 ,

in turn (
TCFA

1 (c1, c2), TCFA
2 (c1, c2), TCFA

3 (c1, c2)
)

and (
1 − TCFB

1 (c1, c2), 1 − TCFB
2 (c1, c2), 1 − TCFB

3 (c1, c2)
)

,

with (c1, c2) ∈ R2 and c1 < c2. It can be shown that surfaces A, B thus con-

structed on a single graph, are disjoint.

The resulting umbrella ROC graph is a diagnostic plot for the visual assess-

ment of the degree of separation in the given ordering of the three populations

based on the samples. The volume under surface A plus the volume over surface

B can be used for inference. We refer to this summary measure as the um-

brella volume (UV). UV is equivalently the sum of the volumes under the ROC

surfaces A and B corresponding to the monotone orderings X1 < X2 < X3 and

X1 < X3 < X2, respectively. The umbrella ROC graph contains both ordered

ROC surfaces.

The non-parametric unbiased estimator of the volume of the umbrella ROC

graph P (X2 > X1 < X3) is:

ÛV =
1

n1n2n3

n1∑

i=1

n2∑

j=1

n3∑

k=1

IU (X1i, X2j , X3k) ,

where IU (X1, X2, X3) equals one if X2 > X1 < X3 and zero otherwise; the UV

varies from zero to one and is equal to P (X1 < X2 < X3)+P (X1 < X3 < X2) =

1/6 + 1/6 = 1/3 when the three distributions completely overlap and equals one

when the three classes are perfectly discriminated in the given ordering.
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In practice, ties may occur between measurements in the three disease

classes, in which case IU (X1, X2, X3)=1 if X1 < X2 = X3, IU (X1, X2, X3)=1/2 if

X1 = X2 < X3 or if X1 = X3 < X2, and IU (X1, X2, X3)=1/6 if X1 = X2 = X3.

The expected value of UV will then be

P (X1 < X2 < X3) + P (X1 < X3 < X2) + P (X1 < X2 = X3)

+
1

2
P (X1 = X2 < X3) +

1

2
P (X1 = X3 < X2) +

1

6
P (X1 = X2 = X3) .

Comparison of umbrella ROC volumes in a non-parametric framework has been

studied in Alonzo and Nakas (2007), while the umbrella ROC has not been studied

in the parametric framework yet. Alonzo et al. (2009) provide a comparison of

tests for restricted orderings in the three-class case, illustrating the usefulness of

ROC surfaces and ROC umbrellas in different applied contexts.

2.7. The ROC manifold

For the k-class problem, with k > 3, based on a single diagnostic marker, an

ROC manifold may be constructed as described in Nakas and Yiannoutsos (2004).

Using k − 1 ordered decision thresholds cj , j = 1, ..., k − 1, with c1 < ··· < ck−1,

define a decision rule as in the three-class case given above. Then k TCFs are

defined in a k-dimensional space. The ROC manifold is produced by varying the

k − 1 ordered decision thresholds. The Hypervolume Under the ROC Manifold

(HUM) is

HUM = P
{

(X1 < X2) ∩ ··· ∩ (Xk−1 < Xk)
}

.

The HUM will vary from 1/k! to 1, taking the value 1/k! for a completely unin-

formative marker and the value 1 when the k populations are perfectly separated.

A non-parametric unbiased estimate of HUM is

ĤUM =
1

n1···nk

n1∑

i1=1

···

nk∑

ik=1

I(X1i1 , ..., Xkik) ,

where the ni, for i = 1, ..., k, are the sample sizes from the k populations and

the function I(X1, ..., Xk) is defined in analogy to the three-class case. The ROC

manifold and HUM have not been studied in a parametric framework yet. Theo-

retical extensions relating to the general k-class problem are studied in Davidov

and Herman (2012).
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2.8. Other topics in three- and k-class ROC methodology

Computational aspects regarding the calculation of the VUS or HUM when

computational complexity is an issue have also appeared in the literature (Waege-

man et al., 2008a,b; Clémençon et al., 2013). Alternative approaches for the gen-

eralization of the ROC curve in three- and multiple-class classification problems

have been proposed by Yang and Carlin (2000), Hand and Till (2001), Wan and

Zhang (2009) and Yang and Zhao (2010). These approaches, however, address

specific research questions in the sense that they do not offer a complete theo-

retical framework for the generalization of ROC curve analysis and will not be

studied further in this review. Generalizations of ROC analysis notions when

the gold standard is continuous-scale rather than categorical has been studied by

Obuchowski (2006) and by Shiu and Gatsonis (2012).

In the two-class case, considerable amount of research has been conducted

to address issues where no gold standard is available for the characterization of the

true status of the subjects in the study, or when the gold standard information

is available for a fraction of the subjects in the study, i.e., in the presence of

verification bias (see e.g. Pepe, 2003; Zhou et al., 2011). Only a few papers have

appeared that introduce these notions in ROC surface analysis (Chi and Zhou,

2009; Wang et al., 2011; Kang et al., 2013b). Bantis et al. (2013) have used a

cubic spline smoothing approach to model the ROC surface when measurements

are subject to a limit of detection.

Theoretical properties of the ROC surface and ROC manifold that span

beyond the scopes of the current article have been studied in Scurfield et al.

(1998), He and Frey (2006), He et al. (2006), Everson and Fieldsend (2006),

Edwards and Metz (2007), Sahiner et al. (2008), He and Frey (2008), He and

Frey (2009), He et al. (2010), Schubert et al. (2011), Edwards and Metz (2012),

and Edwards (2013).

3. THE GENERALIZED YOUDEN INDEX

3.1. Definition

A three-class Youden index has been recently proposed for the assessment

of accuracy and cut-off point selection in the three-class setting (Nakas et al.,

2010, 2013). Specifically, define:

J3 = max
c1,c2

{
TCF1 + TCF2 + TCF3 − 1

}

= max
c1,c2

{
F1(c1) + F2(c2) − F2(c1) − F3(c2)

}
.

(3.1)
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This is a constrained optimization problem with c1 < c2. This latter condition

will always be true if a usual stochastic order of the form P (X1 > x) ≤ P (X2 > x)

≤ P (X3 > x) holds. The pair of cut-off points c1, c2 that corresponds to J3 is

considered optimal and can be used in practice for decision making in the three-

class case. As in the two-class setting, weights can be added to the definition of J3

to reflect the relative importance of the three TCFs.

3.2. Properties

The generalized Youden index lends itself to a natural unification of the

two- and three-class analysis approaches. Denote by J3;(1,2,3) the J3 index cor-

responding to the ordering X1 < X2 < X3 and by J2;(i,j), the ordinary Youden

index corresponding to the ordering Xi < Xj , for i, j = 1, 2, 3. Then, by the

definitions of J2 and J3 above, it follows that

J3;(1,2,3) = max
c1,c2

{
F1(c1) − F2(c1) + F2(c2) − F3(c2)

}

= max
c1

{
F1(c1) − F2(c1)

}
+ max

c2

{
F2(c2) − F3(c2)

}

= J2;(1,2) + J2;(2,3) .

Thus, J3 is the sum of the Youden index for the two-class analysis of classes 1

and 2 and the Youden index for the two-class analysis of classes 2 and 3. This

result holds if weights are introduced in the definition of J3 since λ can be set to

one and ν∗ = ν/λ, µ∗ = µ/λ can be used instead of ν, µ in the definition of J+
3 .

Then, J+
3;(1,2,3) = maxc1,c2{ν

∗ ·TCF1 +µ∗ ·TCF2 +TCF3 − 1} = J+
2;(1,2) +J+

2;(2,3).

This result also holds whenever the ordering X1 < X2 < X3 is true, thus c1 < c2.

A counterexample, where the ordering is not true and, as a result, the property

does not hold, can easily be constructed. As a rule of thumb, pairwise AUCs for

adjacent classes can reveal the correct order, which in turn can be used for the

three-class analysis. From the property above it follows that J3 takes on values

in [0, 2]. To define J3 in [0, 1], Luo and Xiong (2013) proposed using J3/2.

3.3. Estimation

Note that J3 can be estimated non-parametrically by using the empiri-

cal distribution functions in the definition in (3.1), i.e. Ĵ3 = maxc1,c2{F̂1(c1) +

F̂2(c2)− F̂2(c1)− F̂3(c2)}, or parametrically based on distributional assumptions

for the data. Empirical non-parametric estimation of the generalized Youden

index has been considered in Nakas et al. (2010, 2013), while parametric esti-

mation based on normality assumptions has been described in Luo and Xiong

(2012, 2013). Luo and Xiong created an R-package (DiagTest3Grp) for the es-

timation of the VUS, generalized Youden index and respective optimal cut-off
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points under the parametric normal model, of which further details can be found

in Luo and Xiong (2012). Estimation and use of the generalized Youden index

for non-parametric predictive inference is studied in Coolen-Maturi et al. (2013).

3.4. Other measures of discrimination ability

The generalized Youden index can serve as an index of the discrimination

ability of a diagnostic marker for the purpose of selecting the cut-off points that

may be used for decision making, while the VUS is the measure of choice for the

evaluation of the discrimination ability of the marker under study per se. The

reason for the selective use of different measures of discrimination ability is the

interpretation of the measure itself. Other measures for the evaluation of the

discrimination ability of a marker rising from the definition of the ROC surface

has also been proposed in the literature (e.g. Van Calster et al., 2012a,b) but

have not received much attention from the research community. Use of a general

cost function for the selection of cut-off points in multiple-class diagnostic testing

has been studied in Skaltsa et al. (2012).

4. ILLUSTRATION OF ROC SURFACE ANALYSIS

CA19-9 is a standard pancreatic cancer diagnostic marker. Measurements

on 40 pancreatic cancer patients, 23 pancreatitis patients, and 40 healthy controls

were available. The dataset that is used here for illustrative purposes is part of the

dataset in Leichtle et al. (2013). Evaluation of CA19-9 in terms of its diagnostic

ability to differentiate between the three classes in the order

Controls < Pancreatitis < Cancer

is illustrated. Descriptive statistics are given in Table 1, while respective boxplots

are depicted in Figure 1.

Table 1: Descriptive statistics for CA 19-9 marker measurements
for the three classes under study.

Controls Pancreatits Cancer

mean 6.94 22.50 200.46

sd 4.74 30.88 237.85

median 6.60 8.51 111.60

min 0.6 2.5 0.6

max 20.67 121.80 971.50

N 40 23 40
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Figure 1: Boxplots of CA 19-9 marker measurements
for the three classes under study.

Frequentist and Bayesian non-parametric ROC surfaces are depicted in Fig-

ure 2. The empirical non-parametric VUS is equal to 0.528 (95% CI: 0.403, 0.654;

p < 0.001), while the VUS based on the Bayesian non-parametric approach is

equal to 0.550 (95% CI: 0.455, 0.652; p < 0.001). The generalized Youden index

J3 is 0.929, resulting in c1 = 8.40 and c2 = 25.60. The cut-off point c1 corre-

sponds to the diagnosis between pancreatitis patients and healthy controls, while

c2 discriminates between pancreatic cancer patients and pancreatitis patients.
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Figure 2: Non-parametric ROC surface for the CA 19-9 data (left panel) and
Bayesian non-parametric model from a different viewpoint (right panel).
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The corresponding TCF for healthy controls is equal to 80.00%. Regarding

pancreatitis patients TCF is just 30.40%, while for pancreatic cancer patients

TCF is 82.50%. Compare with the parametric approach that the DiagTest3Grp

R-package employs: VUS = 0.519 (95% CI: 0.385, 0.653; p < 0.001), J3 = 1.22 =

0.61×2, with c1 = 16.17 and c2 = 86.62, corresponding to the TCF triplet (0.974,

0.562, 0.684) respectively. Unfortunately, the aforementioned R-package does not

offer a graph for the ROC surface. However, the Shapiro–Wilk test rejects

the normality assumption for all three groups in the study (with p < 0.001).

Non-parametric approaches are thus considered as more reliable in our example.

Data analysis was conducted using R version 3.0.0 (R Foundation for

Statistical Computing, http://www.R-project.org), Matlab R2013a (MathWorks

Inc., Natick, MA), and Stata 11.2 (StataCorp LP, College Station, TX).

5. DISCUSSION

ROC surface analysis is a valuable tool for three-class classification prob-

lems as it generalizes ROC curve analysis in a natural way within the ROC

framework. The utility of ROC surface analysis is demonstrated by the numer-

ous applications that have already appeared in diverse scientific fields (e.g. Yu,

2012; Ratnasamy et al., 2008; Yiannoutsos et al., 2008; Abraham et al., 2009;

Wandishin and Mullen, 2009; Dalrymple-Alford et al., 2010; Tremont et al., 2011;

Dunngalvin et al., 2011; Bruña et al., 2012; Cianferoni et al., 2012; Coleman et al.,

2013; Migliaretti et al., 2013; Leichtle et al., 2013).

Until now, researchers have mainly dealt with geometric properties of the

ROC surface itself and with generalizations of theoretical findings from the two-

class case. Many issues remain to be resolved. Multiple-class classification within

the ROC framework and the notion of the ROC umbrella have only scantly been

dealt with. Based on the probabilistic properties of the VUS and UV, the claim

that the ROC surface and VUS can also be used for three-class analysis when the

classes are nominal instead of ordinal (e.g. Li and Fine, 2008) seems to be flawed.

As a result, theoretical developments for the robustification of the framework of

ROC surface analysis are still needed. Other topics of future research include fur-

ther generalizations from the two-class case. Specifically, issues of future research

include time-varying ROC surfaces and generalized linear modelling approaches

for the ROC surface along the lines presented in Pepe (2003). The study of pre-

dictive values in the three-class and multiple-class case is also of interest. An

initial attempt is presented in Yiannoutsos et al. (2008). Reclassification issues

have just started attracting the interest of researchers in the field. Li et al. (2013)

have extended the notions in Pencina et al. (2012) regarding the net reclassifi-

cation improvement and integrated discrimination improvement for the k-class
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case. Pepe and Thompson (2000) have studied the issue of combination of di-

agnostic markers in the two-class case via maximizing the area under the ROC

curve and have compared this approach with the combination of the diagnostic

markers measurements using logistic regression and linear discriminant analysis.

Zhang and Li (2011) and Kang et al. (2013a) have generalized these results for

ROC surface analysis by considering the combinations that maximize the VUS.

Currently there is ongoing research on this topic regarding different approaches

for VUS maximization using combinations of diagnostic markers.

The generalized Youden index is a simple, useful loss-function for the se-

lection of the optimal cut-off points that can be used for decision-making based

on a diagnostic marker of interest in the three-class case. Modelling approaches

summarized here and in Kang and Tian (2013), could be employed to develop

further practices for the choice of cut-off points after the construction of the

ROC surface. Non-parametric predictive inference methods also offer a valuable

framework for decision-making in three-class ROC analysis (Coolen et al., 2013;

Coolen-Maturi et al., 2013).

R-packages for the implementation of ROC surface analysis tools are of

great importance. Researchers interested in using ROC surface methodology

should be able to use the Comprehensive R Archive Network repository for their

research needs.
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