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Abstract:

• This paper provides an accessible methodology for approximating the distribution of
a general linear combination of non-central chi-square random variables. Attention
is focused on the main application of the results, namely the distribution of positive
definite and indefinite quadratic forms in normal random variables. After explaining
that the moments of a quadratic form can be determined from its cumulants by means
of a recursive formula, we propose a moment-based approximation of the density func-
tion of a positive definite quadratic form, which consists of a gamma density function
that is adjusted by a linear combination of Laguerre polynomials or, equivalently, by
a single polynomial. On expressing an indefinite quadratic form as the difference of
two positive definite quadratic forms, explicit representations of approximations to its
density and distribution functions are obtained in terms of confluent hypergeometric
functions. The proposed closed form expressions converge rapidly and provide accu-
rate approximations over the entire support of the distribution. Additionally, bounds
are derived for the integrated squared and absolute truncation errors. An easily
implementable algorithm is provided and several illustrative numerical examples are
presented. In particular, the methodology is applied to the Durbin–Watson statistic.
Finally, relevant computational considerations are discussed. Linear combinations of
chi-square random variables and quadratic forms in normal variables being ubiquitous
in statistics, the distribution approximation technique introduced herewith should
prove widely applicable.
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1. INTRODUCTION

The distribution of linear combinations of chi-square random variables and

that of quadratic forms in normal vectors have already received a lot of atten-

tion in the statistical literature. Box (1954) considered a linear combination of

chi-square variables having even degrees of freedom. Some representations of the

density function of linear combinations of chi-square variables were derived by

Mathai and Saxena (1978). Various representations of the distribution function

of a quadratic form are available, and several procedures have been proposed for

computing percentage points and preparing tables. Gurland (1948, 1953, 1956),

Pachares (1955), Ruben (1960, 1962), Shah and Khatri (1961), and Kotz et al.

(1967a,b) among others, have given representations of the distribution function of

quadratic forms in terms of MacLaurin series and the distribution function of chi-

square variables. Gurland (1956) and Shah (1963) considered respectively central

and non-central indefinite quadratic forms, but as pointed by Shah (1963), the

expansions obtained are not practical. Press (1967) provided infinite series repre-

sentations of the density and distribution functions of an indefinite quadratic form

in normal variables. Other representations of the exact density and distribution

functions of indefinite quadratic forms have been given by Imhof (1961), Davis

(1973) and Rice (1980). As pointed out in Mathai and Provost (1992), a wide

array of statistics can be expressed in terms of quadratic forms in normal random

vectors. For example, one may consider the lagged regression residuals developed

by De Gooijer and MacNeill (1999) and discussed in Provost et al. (2005), or

certain change point test statistics derived by MacNeill (1978). Hillier (2001)

expressed the density function of a ratio of quadratic forms in normal random

variables in terms of top-order zonal polynomials involving difference quotients

of the characteristic roots of the matrix in the numerator quadratic form. The

sample serial correlation coefficient as defined in Anderson (1990) and discussed

in Provost and Rudiuk (1995) as well as the sample innovation cross-correlation

function for an ARMA time series whose asymptotic distribution was derived by

McLeod (1979) have such a structure.

Monte Carlo simulations, whereby artificial data are generated and sam-

pling distributions and moments then are estimated, can be implemented more

easily on an extensive array of models. These simulations may, however, result

in some limitations such as sampling variations and simulation inadequacies, and

their results may be specific to the set of parameter values assumed in the sim-

ulations. Hendry and Harrison (1974), Dempster et al. (1977), Hendry (1979),

and Hendry and Mizon (1980) among others, have attempted to cope with these

issues. On the other hand, the analytical approach derives results which hold

over the entire parameter space but may find some limitations in terms of simpli-

fications on the model, which are imposed to render the problem tractable. The

analytical approach has been applied to various statistics involving quadratic
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forms. Examples in this area include certain heteroscedastic models studied by

Taylor (1977, 1978), the first-order autoregressive process considered by Sawa

(1978) and Phillips (1977, 1978), the regression models analyzed by Dwivedi and

Srivastava (1979), a linear model with unknown covariance structure studied by

Yamamoto (1979), as well as the Bayesian analysis of simultaneous equations

models carried out by Zellner (1971) and Dreze (1976).

A novel and accessible moment-based approach is proposed in this paper

for approximating the density function of positive definite quadratic forms in

normal random variables in terms of a gamma density function and a linear

combination of Laguerre polynomials, which is re-expressed as a single polynomial

so that analytic expressions could also be worked out for the case of indefinite

quadratic forms. The resulting closed form density and distribution functions

converge rapidly and provide accurate approximations over the entire support of

the distribution.

Existing expansions that are expressed in terms of rescaled chi-square den-

sity functions and Laguerre polynomials such as those discussed in Kotz et al.

(1967a,b) for the case of positive definite quadratic forms, were derived by making

use of a different technique. As in the case of Edgeworth-type expansions whose

leading terms are Gaussian density or distribution functions, such representations

cannot converge as quickly as the proposed expansion, which is more appropri-

ately based on a gamma density function whose first two moments match those

of the target distribution. It should also be pointed out that the saddlepoint

approximation and Imhof’s formula, which incidentally is not closed form, need

to be recalculated at each point of the distribution. Moreover, as can be seen for

instance from Huzurbazar (1999), Figure 2, the saddlepoint approximation may

not be accurate throughout the entire range of the distribution.

As will be explained, the results also apply to ratios of certain quadratic

forms. Such ratios arise for example in regression theory, linear models, analysis

of variance and time series.

A representation of non-central indefinite quadratic forms, which relies on

the spectral decomposition theorem, is derived in Section 2; a formula for de-

termining their moments in terms of their cumulants is provided as well. A

so-called Laguerre polynomial approximation of the density function of a pos-

itive definite quadratic form, which is expressed as the product of a gamma

density function and a single polynomial, is introduced in Section 3; explicit rep-

resentations of the resulting density and distribution functions of an indefinite

quadratic form are also given. We note that the expansions are expressed in

terms of Laguerre polynomials (or their coefficients) since their associated weight

functions are proportional to gamma density functions, which are suitable for

approximating the distribution of positive linear combinations of chi-square ran-

dom variables. An algorithm describing the methodology is provided in Section 4.
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Several numerical examples, including an application of the proposed technique

to the Durbin–Watson statistic, are presented in Section 5. Finally, certain com-

putational considerations are discussed in Section 6.

2. THE MOMENTS OF A LINEAR COMBINATION OF CHI-

SQUARE RANDOM VARIABLES

Since linear combinations of possibly non-central chi-square random vari-

ables can be expressed in terms of quadratic forms, we shall provide a represen-

tation of the moments of the latter in this section. These moments are required

in order to implement the proposed density approximation methodology.

Indefinite quadratic forms in normal random variables can be expressed in

terms of standard normal variables as follows. Let X ∼ N p(µ, Σ) where Σ is a

positive definite covariance matrix. On letting Z ∼ Np(0, I), where I is a p× p

identity matrix, one has X = Σ
1
2 Z + µ where Σ

1
2 denotes the symmetric square

root of Σ. Then, the quadratic form Q = X′AX where A is a p×p real symmetric

matrix and X′ denotes the transpose of X can be expressed as follows:

Q =
(

Z + Σ− 1
2 µ

)′
Σ

1
2AΣ

1
2
(

Z + Σ− 1
2 µ

)

(2.1)

=
(

Z + Σ− 1
2 µ

)′
P P ′ Σ

1
2AΣ

1
2 P P ′

(

Z + Σ− 1
2 µ

)

where P is an orthogonal matrix that diagonalizes Σ
1
2AΣ

1
2 , that is, P ′Σ

1
2AΣ

1
2P =

diag(λ1, ..., λp), λ1, ..., λp being the eigenvalues of Σ
1
2AΣ

1
2 (or equivalently those

of AΣ) in decreasing order. Let vi denote the normalized eigenvector of Σ
1
2AΣ

1
2

corresponding to λi (such that Σ
1
2AΣ

1
2 vi = λivi and vi

′vi = 1), i = 1, ..., p, and

P = (v1, ...,vp). Letting U = P ′Z, one has U ∼ Np(0, I) since P is an orthogonal

matrix, and then, according to the spectral decomposition theorem,

Q = (U + b)′ diag(λ1, ..., λp) (U + b)(2.2)

=

p
∑

j=1

λj(Uj + bj)
2

where diag(λ1, ..., λp) is a diagonal matrix whose diagonal elements are λ1, ..., λp,

b = P ′Σ− 1
2 µ with b = (b1, ..., bp)

′, U = (U1, ..., Up)
′, and Uj + bj are indepen-

dently distributed N (bj , 1) random variables, j = 1, ..., p. Thus,

Q =
r

∑

j=1

λj (Uj + bj)
2 −

p
∑

j=r+θ+1

|λj | (Uj + bj)
2(2.3)

≡ Q1 −Q2 ,

where r is the number of positive eigenvalues of AΣ and p− r− θ is the number of

negative eigenvalues of AΣ, θ being the number of null eigenvalues. Consequently,
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a non-central indefinite quadratic form, Q, can be expressed as a difference of

independently distributed linear combinations of independent non-central chi-

square random variables having one degree of freedom each. This will be referred

to as a general linear combination of such variables. It should be noted that the

chi-square random variables are central whenever µ = 0. When A ≥ 0, Q is a

positive semidefinite quadratic form, and Q∼Q1 as defined in Equation (2.3).

We note that if A is not symmetric, it suffices to replace this matrix by (A+A′)/2,

which results in the same quadratic form. Accordingly, it will be assumed without

any loss of generality that the matrices of the quadratic forms being considered

are symmetric.

As shown in Mathai and Provost (1992), the sth cumulant of X′AX where

X ∼ N p(µ, Σ) is

k(s) = 2s−1s!
(

tr(AΣ)s/s + µ′(AΣ)s−1Aµ
)

,(2.4)

tr(·) denoting the trace of (·). It should be noted that tr(AΣ)s =
∑p

j=1 λ
s
j where

the λj ’s, j=1, ..., p, are the eigenvalues of AΣ. The moments of a random variable

can be obtained from its cumulants by means of a recursive relationship that is

derived for instance in Smith (1995). Accordingly, the hth moment of X′AX is

given by

µ(h) =

h−1
∑

i=0

(h− 1)!

(h− 1 − i)! i!
k(h− i)µ(i) ,(2.5)

where k(s) is as specified by Equation (2.4).

One can make use of Equation (2.5) to determine the moments of the pos-

itive definite quadratic forms, Q1 ≡ W′
1A1W1 and Q2 ≡ W′

2A2W2, appearing in

Equation (3) whereA1=diag(λ1,...,λr), A2 =diag(|λr+θ+1|, ..., |λp|), W1∼Nr(b1,I)

with b1 = (b1, ..., br)
′, and W2 ∼ N p−r−θ(b2, I) with b2 = (br+θ+1, ..., bp)

′, the

bj ’s being as defined in Equation (2.2).

Since an indefinite quadratic form is distributed as the difference of two

positive definite quadratic forms, its density function can be obtained via the

transformation of variables technique. For the problem at hand, letting hQ(q),

fQ1(q1) and fQ2(q2) respectively denote the approximate densities of Q, Q1 and

Q2, the approximate density function of the indefinite quadratic form Q is given

by

(2.6) hQ(q) =

{

hP (q) for q ≥ 0 ,

hN (q) for q < 0 ,

where

hP (q) =

∫ ∞

0
fQ1(q + x) fQ2(x) dx ,(2.7)
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hN (q) =

∫ ∞

−q
fQ1(q + x) fQ2(x) dx ,(2.8)

and hP (q) and hN (q) are explicitly given in the next section.

3. LAGUERRE POLYNOMIAL DENSITY APPROXIMANTS

In order to approximate the distribution of a positive definite quadratic

form, it is appropriate to make use of an approximation that is based on Laguerre

polynomials since their associated weight function is proportional to a gamma

density function with parameters α ≡ ν + 1 and β = 1. Accordingly, letting Y be

a gamma-type random variable whose exact raw moments are denoted by µY (h),

h = 0, 1, ..., d, we first approximate the distribution of X = Y/β where β, the

second parameter of the gamma approximation, which can be easily obtained by

matching moments, is given by

β =
µY (2)

µY (1)
− µY (1) .(3.1)

Similarly, the shape parameter ν in the weight function is determined as follows:

ν =
µ2

Y (1)

µY (2) − µ2
Y (1)

− 1 .(3.2)

Let Lν
i (x) denote the ith degree Laguerre polynomial with parameter ν, that is,

Lν
i (x) =

i
∑

k=0

d ν
i,k x

k(3.3)

where

d ν
i,k =

(−1)i−k Γ(i+ ν + 1)

(i− k)! k! Γ(ν + k + 1)
.(3.4)

As explained in Provost and Ha (2009), on equating
∫ ∞
0 Lν

i (y)f(y) dy to
∫ ∞
0 Lν

i (y)

fYd
(y) dy for h= 0, 1, ..., d , where f(y) is the exact density function being approx-

imated and fYd
(x) denotes the representation of the approximate density function

given in Equation (3.19) (which, incidentally, is equivalent to assuming that the

first d moments of the approximate distribution coincide with those of the target

distribution), one can determine the coefficients of the Laguerre polynomials by

making use of their orthogonality property. Then, by collecting the coefficients of

each monomial xk in the resulting representation, one can express the dth degree

Laguerre polynomial density approximant as

gXd
(x) = cν wν(x)

d
∑

k=0

ξν,k x
k ,(3.5)
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where

cν = 1/Γ(ν + 1) ,(3.6)

wν(x) = xνe−x ,(3.7)

and the coefficients ξν,k can be obtained as

ξν,k =















































1 +
d

∑

i=2

ην
i d

ν
i,k , for k = 0 ;

d
∑

i=2

ην
i d

ν
i,k , for k = 1 ,

d
∑

i=k

ην
i d

ν
i,k , for k = 2, ..., d ,

(3.8)

with

ην
i =

i!

Γ(ν + i+ 1)

i
∑

k=0

d ν
i,k µX(k)(3.9)

and

µX(k) = µY (k)/βk .(3.10)

Thus, the representation of the approximate density function given in Equation

(3.5) can be viewed as a mixture of d+ 1 gamma densities with parameters ν +

k+ 1 and 1. The density function of the random variable Y can then be obtained

from gXd
(x) as specified in Equation (3.5) via the transformation Y = βX as

fYd
(y) = gXd

(y/β)/β .(3.11)

This form of the approximate density function lends itself more readily to alge-

braic manipulations than that specified in Equation (3.19), which may be some-

what simpler to evaluate.

The corresponding approximate cumulative distribution function of Y eval-

uated at c0 > 0 is then

FYd
(c0) =

∫ c0

0
gXd

(y/β)/β dy

=

∫ c0/β

0
gXd

(x) dx

(3.12)

=

∫ c0/β

0
cν wν(x)

d
∑

k=0

ξν,k x
k dt

=
d

∑

i=0

ξν,i
Γ(ν + i+ 1) − Γ(ν + i+ 1, c0/β)

Γ(ν + 1)
,
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where

Γ(a, θ) =

∫ ∞

θ
ta−1e−t dt(3.13)

denotes the incomplete gamma function. Conditions ensuring that the proposed

approximants, whether applied to quadratic forms or random variables having an

asymptotic chi-square distribution, will converge to their exact density functions,

are available in Alexits (1961, p. 304).

The density functions of Q1 and Q2 as defined in Equation (2.3) can be ap-

proximated from their respective moments which can be determined in Equation

(2.5). The density of an indefinite quadratic form Q = Q1 −Q2, where Q1 and

Q2 are positive definite quadratic forms, can then be approximated by making

use of Equation (2.6) where fQ1(·) and fQ2(·) respectively denote the Laguerre

polynomial density approximants of Q1 and Q2, which are available from Equa-

tion (3.11). Explicit representations of hP (q) and hN (q) as specified by Equations

(2.7) and (2.8), respectively, can be obtained as follows. When q is positive, the

probability density function of Q is given by

hP (q) =

∫ ∞

0
fQ1(q + y) fQ2(y) dy

=

∫ ∞

0

(

γν1,β1(q + y)
d

∑

i=0

ξν1,i

(q + y

β1

)i
) (

γν2,β2(y)
d

∑

j=0

ξν2,j

( y

β2

)j
)

dy(3.14)

with γνℓ,βℓ
(z) = zνℓ e−z/βℓ/(βνℓ+1

ℓ Γ(νℓ + 1)), ℓ = 1, 2; νℓ and βℓ determined from

Equations (3.1) and (3.2), respectively, ℓ = 1, 2, the coefficients ξν1,i and ξν2,i

being as defined in Equation (3.8). Identities 3.384 3 and 9.220 4 from Gradshteyn

and Ryzhik (1980) yield

hP (q) =
d

∑

i=0

d
∑

j=0

ξν1,i ξν2,j

∫ ∞

0

(q + y

β1

)i( y

β2

)j
γν1,β1(q + y) γν2,β2(y) dy

=
d

∑

i=0

d
∑

j=0

ξν1,i ξν2,j e
−q/β1

βν1+i+1
1 βν2+j+1

2 Γ(ν1 +1)Γ(ν2 +1)

(

(β1 + β2

β1β2

)−1−i−j−ν1−ν2

× Γ
(

i+ j+ν1+ν2 +1
)

1F1

(

−i−ν1,−i− j−ν1−ν2, q(β1+β2)/(β1β2)
)

(3.15)

+
Γ
(

−1 − i− j − ν1 − ν2) Γ(j + ν2 + 1)

Γ(−i− ν1)
qi+j+ν1+ν2+1

× 1F1

(

j + ν2 + 1, i+ j + ν1 + ν2 + 2, q(β1 + β2)/(β1 β2)
)

)

,

where

1F1(a, b, z) =

∞
∑

k=0

Γ(a+ k) Γ(b) zk

Γ(a) Γ(b+ k) k!
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is Kummer’s confluent hypergeometric function. Similarly, when q is negative,

one has

hN (q) =

∫ ∞

−q

(

γν1,β1(q + y)
d

∑

i=0

ξν1,i

(q + y

β1

)i
)(

γν2,β2(y)
d

∑

j=0

ξν2,j

( y

β2

)j
)

dy

=

∫ ∞

0

(

γν1,β1(w)
d

∑

i=0

ξν1,i

( w

β1

)i
)(

γν2,β2(w− q)
d

∑

j=0

ξν2,j

(w− q

β2

)j
)

dw

=
d

∑

i=0

d
∑

j=0

ξν1,i ξν2,j

βi
1 β

j
2

∫ ∞

0
wi (w − q)j γν1,β1(w) γν2,β2(w − q) dw

=
d

∑

i=0

d
∑

j=0

ξν1,i ξν2,j e
q/β2

βν1+i+1
1 βν2+j+1

2 Γ(ν1 + 1)Γ(ν2 + 1)

(

(β1 + β2

β1 β2

)−1−i−j−ν1−ν2

(3.16)

× Γ
(

i+j+ν1+ν2+1
)

1F1

(

−j−ν2,−i−j−ν1−ν2,−q(β1+β2)/(β1β2)
)

+
Γ(−1 − i− j − ν1 − ν2) Γ(i+ ν1 + 1)

Γ(−j − ν2)
(−q)i+j+ν1+ν2+1

× 1F1

(

i+ ν1 + 1, i+ j + ν1 + ν2 + 2, −q(β1 + β2)/(β1 β2)
)

)

.

We note that the series representations given in Equations (3.15) and (3.16) do

not converge when ν1 or ν2 are integer-valued. In this case, one would have to

evaluate the integral representations by numerical integration.

The corresponding cumulative distribution function is then obtained by

integration. The approximate cumulative distribution function for the negative

part of Q is given by

HN (y) =

∫ y

−∞
hN (q) dq

=
d

∑

i=0

d
∑

j=0

ξν1,i ξν2,j

βν1+i+1
1 βν2+j+1

2 Γ(ν1 +1)Γ(ν2 +1)

(

(β1 + β2

β1 β2

)−1−i−j−ν1−ν2

× Γ(i+ j + ν1 + ν2 + 1)

×

∫ y

−∞
eq/β2

1F1

(

−j − ν2,−i− j − ν1 − ν2,−q(β1 + β2)/(β1 β2)
)

dq(3.17)

+
Γ(−1 − i− j − ν1 − ν2) Γ(i+ ν1 + 1)

Γ(−j − ν2)

×

∫ y

−∞
(−q)i+j+ν1+ν2+1 eq/β2

× 1F1

(

i+ ν1 + 1, i+ j + ν1 + ν2 + 2, −q(β1 + β2)/(β1 β2)
)

dq

)

=



An Approximation to the Distribution of a Linear Combination... 241

=

d
∑

i=0

d
∑

j=0

∞
∑

k=0

ξν1,i ξν2,j (β1 + β2)
k

βν1+k+i+1
1 βν2+k+j+1

2 Γ(ν1 +1)Γ(ν2 +1)

(

(β1 + β2

β1 β2

)−1−i−j−ν1−ν2

× Γ(1 + i+ j + ν1 + ν2)
Γ(−j + k − ν2) Γ(−i− j − ν1 − ν2)

Γ(−j − ν2) Γ(−i− j + k − ν1 − ν2) k!

×

∫ y

−∞
(−q)k eq/β2dq +

Γ(−1 − i− j − ν1 − ν2)

Γ(−j − ν2)

×
Γ(i+ k + ν1 + 1) Γ(i+ j + ν1 + ν2 + 2)

Γ(i+ j + k + ν1 + ν2 + 2) k!

∫ y

−∞
(−q)i+j+k+ν1+ν2+1 eq/β2 dq

)

(3.17)

=
d

∑

i=0

d
∑

j=0

∞
∑

k=0

ξν1,i ξν2,j (β1 + β2)
k

βν1+k+i+1
1 βν2+k+j+1

2 Γ(ν1 +1)Γ(ν2 +1)

(

(β1 + β2

β1 β2

)−1−i−j−ν1−ν2

× Γ(1+ i+ j+ν1+ν2)
Γ(−j+k−ν2) Γ(−i− j−ν1−ν2)β

k+1
2 Γ(k+1,−y/β2)

Γ(−j − ν2) Γ(−i− j + k − ν1 − ν2) k!

+
Γ(−1 − i− j − ν1 − ν2)

Γ(−j − ν2)

Γ(i+ k + ν1 + 1)Γ(i+ j + ν1 + ν2 + 2)

Γ(i+ j + k + ν1 + ν2 + 2) k!

× βi+j+k+ν1+ν2+2
2 Γ(i+ j + k + ν1 + ν2 + 2,−y/β2)

)

.

Similarly, the approximate cumulative distribution function for the positive part

of Q can be expressed as follows:

HP (y) = HN (0) +

∫ y

0
hP (q) dq

= HN (0) +
d

∑

i=0

d
∑

j=0

ξν1,i ξν2,j

βν1+i+1
1 βν2+j+1

2 Γ(ν1 + 1) Γ(ν2 + 2)

×

(

(β1 + β2

β1 β2

)−1−i−j−ν1−ν2

Γ(i+ j + ν1 + ν2 + 1)

×

∫ y

0
e−q/β1

1F1

(

−i− ν1, −i− j − ν1 − ν2, q(β1 + β2)/(β1 β2)
)

dq

+
Γ(−1 − i− j − ν1 − ν2) Γ(j + ν2 + 1)

Γ(−i− ν1)

×

∫ y

0
qi+j+ν1+ν2+1 e−q/β1

1F1

(

j+ν2+1, i+j+ν1+ν2+2, q(β1+β2)/(β1β2)
)

dq
)

(3.18)

= HN (0) +

d
∑

i=0

d
∑

j=0

∞
∑

k=0

ξν1,i ξν2,j

βν1+i+1
1 βν2+j+1

2 Γ(ν1 + 1)Γ(ν2 + 1)

×

(

(β1+β2

β1β2

)−1−i−j+k−ν1−ν2 Γ(1+ i+j+ν1+ν2)Γ(−i−ν1+k)Γ(−i−j−ν1−ν2)

Γ(−i−ν1) Γ(−i−j+k−ν1−ν2) k!

× βk+1
1

(

Γ(1 + k) − Γ(1 + k, y/β1)
)

+
Γ(−1 − i− j − ν1 − ν2)

Γ(−i− ν1)

Γ(j + k + ν2 + 1)Γ(i+ j + ν1 + ν2 + 2)

Γ(i+ j + k + ν1 + ν2 + 2) k!

× βi+j+k+ν1+ν2+2
1

(

Γ(i+ j+k+ν1+ν2 +2) − Γ(i+ j+k+ν1+ν2 +2, y/β1)
)

)
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where

HN (0) =
d

∑

i=0

d
∑

j=0

∞
∑

k=0

ξν1,i ξν2,j (β1 + β2)
k

βν1+k+i+1
1 βν2+k+j+1

2 Γ(ν1 + 1)Γ(ν2 + 1)

×

(

(β1 + β2

β1 β2

)−1−i−j−ν1−ν2

Γ(1 + i+ j + ν1 + ν2)

×
Γ(−j + k − ν2) Γ(−i− j − ν1 − ν2) β

k+1
2 Γ(k + 1)

Γ(−j − ν2) Γ(−i− j + k − ν1 − ν2) k!

+
Γ(−1 − i− j − ν1 − ν2)

Γ(−j − ν2)

Γ(i+ k + ν1 + 1) Γ(i+ j + ν1 + ν2 + 2)

k!

× βi+j+k+ν1+ν2+2
2

)

.

Even though the sum over k has infinitely many summands, we observed

that fifty terms provide sufficient accuracy. In most cases of interest, a suitable

degree for a density approximation can be determined by a de visu inspection

of the density plots of approximants of successive degrees. More specifically, one

might be satisfied that an approximant of degree d+1 is adequate if no noticeable

differences are observed when comparing the plots of approximants of degrees d

and d+ 2. This criterion was applied to all the examples presented in Section 5.

Equivalently, one may wish to set a tolerance for the integrated absolute differ-

ence of approximants of successive degrees and select the number of terms to be

used in the approximation accordingly. If one wishes to determine the number

of terms required to obtain a satisfactory approximation for a specific percentile,

one could evaluate the percentile approximations for successive values of d un-

til convergence is observed or a preset tolerance value exceeds the difference of

two successive approximations. Since we are dealing with a sequence of approxi-

mants converging to the exact density function, the close proximity of successive

approximants indicates that convergence is nearly attained. Bounds for the inte-

grated absolute and squared truncation errors are obtained in the remainder of

this section. In light of Equation (3.19) of Provost (2005), the truncated density

function corresponding to that given in Equation (3.11) can be expressed as

fYd
(y) =

yνe−y/β

βν+1

d
∑

j=0

δν
jL

ν
j (y/β)(3.19)

with Lν
j (·) as defined in Equation (11) and

δν
j =

j
∑

k=0

(−1)k j! µX(j − k)

k! (j − k)! Γ(ν + j − k + 1)
.

Let FYd
(y) and FY (y) respectively denote the cumulative distribution func-

tions of Yd and Y and fY (y) denote the density function being approximated.
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Letting

δν
j =

j!

Γ(ν + j + 1)
ψν

j

where

ψν
j =

j
∑

k=0

(−1)k Γ(ν + j + 1) µX(j − k)

k! (j − k)! Γ(ν + j − k + 1)
,

a bound for the truncation error with respect to the probability density function

of Y can be determined as follows:

Ed(y) =
∣

∣fY (y) − fYd
(y)

∣

∣(3.20)

=
yνe−y/c

cν+1

∞
∑

j=d+1

j!

Γ(ν + j + 1)
|ψν

j | |Lj(ν, y/c)| ,

where according to Szegö (1975),

Lj(ν, y/c) ≤
(ν + 1)j

j!
ey/(2c)(3.21)

=
Γ(ν + 1 + j)

Γ(ν + 1) j!
ey/(2c) .

Thus,

Ed(y) ≤
yνe−y/(2c)

cν+1 Γ(ν + 1)

∞
∑

j=d+1

|ψν
j | ,(3.22)

and letting λd =
∑∞

j=d+1 |ψ
ν
j |, a bound for ed, the integrated absolute truncation

error, can be obtained as follows:

ed =

∫ ∞

0
Ed(y) dy

≤

∫ ∞

0
λd

yνe−y/(2c)

cν+1 Γ(ν + 1)
dy(3.23)

= 2ν+1λd

= 2ν+1
∞

∑

j=d+1

∣

∣

∣

∣

∣

j
∑

k=0

(−1)k Γ(ν + j + 1) µX(j − k)

k! (j − k)! Γ(ν + j − k + 1)

∣

∣

∣

∣

∣

.

This result yields a bound for the distribution function integrated absolute error:

|FY (y) − FYd
(y)| =

∣

∣

∣

∣

∫ y

0

(

fY (y) − fYd
(y)

)

dx

∣

∣

∣

∣

≤

∫ ∞

0

∣

∣fY (y) − fYd
(y)

∣

∣ dx(3.24)

≤ 2ν+1λd .
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A bound for the density function integrated squared error can be similarly

obtained:

e∗d =

∫ ∞

0
E2

d (y) dy

≤

∫ ∞

0
λ2

d

y2νe−y/c

c2(ν+1) Γ2(ν + 1)
dy(3.25)

=
λ2

d Γ(2ν + 1)

c Γ2(ν + 1)
.

Admittedly, these bounds are not very tight. Moreover, a precise order of con-

vergence cannot be determined since these error bounds depend on the moments

of the distribution being approximated.

4. THE ALGORITHM

The following algorithm can be utilized to approximate the density func-

tion of the quadratic form Q = X′AX where X ∼ N p(µ, Σ), Σ > 0 and A is an

indefinite symmetric real matrix.

1. The eigenvalues of AΣ denoted by λ1≥ ··· ≥ λr > 0>λr+θ+1 ≥ ··· ≥ λp ,

and the corresponding normalized eigenvectors, ν1, ...,νp, are deter-

mined.

2. Letting P = (ν1, ...,νp), γ1, ..., γp be the eigenvalues of Σ, t1, ..., tp

be the normalized eigenvectors of Σ corresponding to γ1, ..., γp, T =

(t1, ..., tp), Σ−1/2 = T diag(γ
−1/2
1 , ..., γ

−1/2
p ) T ′, b = (b1, ···, bp)

′ =

P ′ Σ−1/2 µ and the Uj ’s denote independently distributed standard

normal variables, one has the decomposition Q =
∑r

j=1 λj(Uj + bj)
2 −

∑p
j=r+θ+1 |λj |(Uj + bj)

2 ≡ Q1 − Q2, where Q1 ≡ W′
1A1W1, W1 ∼

N r(b1, I), b1 = (b1, ..., br)
′, A1 = diag(λ1, ..., λr), and Q2 ≡ W′

2A2W2,

W2 ∼N p−r−θ(b2, I), b2 = (br+θ+1, ..., bp)
′, A2 = diag(|λr+θ+1|, ..., |λp|).

Clearly, b = 0 whenever µ = 0 and, in that case, there is no need to

determine the matrices P or T .

3. The cumulants and the moments of Q1 and Q2 are obtained from Equa-

tions (2.4) and (2.5), respectively.

4. Laguerre polynomial density approximants, as specified by Equation

(3.11), are obtained for each of the positive definite quadratic form

Q1 and Q2 on the basis of their respective moments and denoted by

fQ1(·) and fQ2(·). This requires the determination of βi and νi from

Equations (3.1) and (3.2) for each Qi, i = 1, 2. The degree d of a

given approximant can initially be set equal to 6 and then progressively

increased until convergence is observed (graphically or with respect to

certain percentiles of interest).
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5. Given fQ1(·) and fQ2(·), the approximate density of Q is obtained

from Equation (2.6) where hP (·) and hN (·) are respectively specified

by Equation (3.15) and (3.16).

6. The corresponding cumulative distribution function can then be eval-

uated from Equations (3.17) and (3.18).

Remarks. In the case of a nonnegative definite quadratic form, that is,

Q = X′AX where A = A′ and A ≥ 0, all the eigenvalues of A are nonnegative

and one has Q = Q1 whose approximate density and distribution functions are

directly obtained from Equations (3.11) and (3.12), respectively.

5. NUMERICAL EXAMPLES

In this section, the proposed Laguerre polynomial approximation method-

ology is applied to positive definite and indefinite quadratic forms as well as the

Durbin–Watson statistic. In each case, the approximated distribution will either

be compared with the exact or simulated distributions. It should be noted that

Equations (3.15) and (3.16) can be viewed as closed form representations since

the 1F1 hypergeometric function can be readily evaluated by most mathematical

or statistical computing packages. More precision can be obtained by increasing

the degree d of the polynomial adjustment appearing in Equation (13). However,

when several successive approximations are seen to be nearly identical, the gain

in accuracy becomes minimal. Percentage points were obtained by equating the

distribution functions to a given probability and solving the resulting equations

numerically. The simulated distribution functions were generated by making use

of the Monte Carlo technique.

Example 1.

We first consider the case of a positive definite central quadratic form in in-

dependently distributed standard normal variables, which, according to Equation

(2.2), can be expressed as

QI = X′AX =
r

∑

j=1

λjYj ,(5.1)

where A > 0, X ∼ Np(0, I), λj , j = 1, ..., r, are the positive eigenvalues of A, the

Yj ’s, j = 1, ..., r are independently distributed central chi-square random vari-

ables, each having one degree of freedom.

In this first example, λ1 = λ2 = 1, λ3 = λ4 = 2.5, and λ5 = λ6 = 9. Since

the eigenvalues occur in pairs, the exact density function can be determined from
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the positive part of Equation (3.23) wherein λ′k = λk/2, s = t = r/2, ρ = 0 and an

empty product is interpreted as 1. In this case, with ν = 0.77054 and β = 14.12,

the density function of QI can be directly approximated by means of Equation

(3.11) in conjunction with Equations (3.1), (3.2) and (3.5). Certain quantiles

determined from the exact distribution, the gamma density and the sixth and

fourteenth-degree Laguerre polynomial approximant specified by Equation (3.12)

are included in Table 1.

The 95th percentiles obtained from approximants of degrees 4, 6, 8, 10, 12

and 14 are respectively 60.5291, 62.5418, 62.3713, 61.8045, 61.7053 and 61.8384.

This sequence suggests that a fourteenth-degree approximant might be sufficiently

accurate. The exact 95th percentile is in fact 61.8999. Certain extreme tail

quantiles obtained from the exact density function and the fourteenth-degree

Laguerre polynomial approximants are presented in Table 2. Bounds for the

integrated absolute and squared errors are plotted in Figure 1 for various values

of d. Figure 2 shows exact integrated absolute (left panel) and squared (right

panel) differences between the exact and approximate cumulative distribution

function versus d.

Table 1: Certain quantiles of QI .

CDF Gamma Laguerre (d = 6) Laguerre (d = 14) Exact

0.01 1.43483 1.92384 2.51869 2.5795

0.05 3.77669 4.63033 5.04397 5.04193

0.10 5.88517 6.83939 7.03708 7.00919

0.50 20.4832 20.3014 20.0027 20.0400

0.90 50.0482 49.0916 49.3561 49.4183

0.95 61.6596 62.5418 61.8384 61.8999

0.99 87.6053 91.4214 90.9503 90.8707

Table 2: Certain extreme tail quantiles of QI .

CDF Gamma Laguerre (d = 6) Laguerre (d = 14) Exact

0.0001 0.102918 0.149769 0.403458 0.491026

0.001 0.380511 0.542588 1.00356 1.09778

0.999 123.408 127.632 132.491 132.317

0.9999 158.391 183.558 173.364 173.764
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Figure 1: Bounds for the Integrated Absolute (left panel) and Squared (right panel)
Truncation Errors with Respect to the Truncation Order.
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Figure 2: Integrated Absolute Difference (left panel);
Integrated Squared Difference (right panel).

Example 2.

We now consider the general case of a non-central indefinite quadratic form,

QII = X′AX where

A =









1 1 2 6
1 8 0 0
2 0 −1/2 1
6 0 1 −2









,

X ∼ N4(µ, Σ) with µ = (1, 2, 3, 4)′ and

Σ =









1 4/5 −1/5 0
4/5 1 1/3 1/4
−1/5 1/3 1 0

0 1/4 0 1









.

In light of Equation (2.3), QII can be re-expressed as

QII = Q1 −Q2 =
2

∑

i=1

λi(Ui + bi)
2 −

4
∑

j=3

|λj | (Uj + bj)
2(5.2)

where the Ui’s, i = 1, 2, 3, 4, are standard normal random variables, λ1 = 14.487,
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λ2 = 0.175399, λ3 = −1.05353, λ4 = −6.30884, b1 = 3.04567, b2 = 7.26373, b3 =

−2.10575, and b4 = −2.93822. Clearly QII can also be regarded as a general

linear combination of non-central chi-square random variables. In this case, the

matrices P and Σ1/2 are respectively

P =









0.552559 0.72748 0.200698 0.353796
0.537095 0.0528413 −0.257096 −0.801647
0.119867 −0.0192312 −0.919478 0.373928
0.62597 −0.683821 0.219504 0.303922









and

Σ1/2 =









0.829443 0.524395 −0.186334 −0.048092
0.524395 0.798945 0.248679 0.157654
−0.186334 0.248679 0.950168 −0.0248771
−0.048092 0.157654 −0.0248771 0.986009









.

The approximate density functions of Q1 and Q2 were obtained by mak-

ing use of sixth-degree Laguerre polynomial approximants. The resulting ap-

proximations of the density and distribution functions of QII as evaluated from

Equations (3.15) and (3.16) and Equations (3.17) and (3.18) with ν1 = 2.05092,

β1 = 51.8858, ν2 = 1.99611 and β2 = 22.1952, are plotted in Figure 3. The right

panel of Figure 3 also shows the simulated distribution function, which was ob-

tained on the basis of 100,000 replications. Accordingly, the standard error is at

most 1/633 ≈ 0.0016.
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Figure 3: Approximated PDF (left panel);
Simulated and Approximated CDF (right panel).

Example 3.

Consider the following general linear combination of independently dis-

tributed central chi-square random variables:

QIII = Q1 −Q2 =
r

∑

i=1

λiYi −

p
∑

j=r+θ+1

|λj |Yj ,(5.3)
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where θ = 0, the Yj ’s, j = 1, ..., 16 are independently distributed central chi-

square random variables having one degree of freedom and λ1 = λ2 = 2, λ3 = λ4 =

4, λ5 = λ6 = 6, λ7 = λ8 = 8, λ9 = λ10 = 10, λ11 = λ12 = −20, λ13 = λ14 = −30

and λ15 = λ16 = −40.

Since the eigenvalues occur in pairs in the right-hand side of Equation

(3.21), QIII can be expressed as

QIII =
s

∑

i=1

λ′i Ti −
t

∑

j=s+1

|λ′j |Tj ,(5.4)

where s = r/2, t = p/2, λ′k = λk/2, k = 1, ..., t, and the Ti’s and Tj ’s are indepen-

dently distributed chi-square random variables, each one having two degrees of

freedom. Imhof (1961) derived the following representation of the exact density

function of QIII

g(q) =



































∑s
j=1

λt−2
j ′ e

−2q/(2λ′
j)

2

(Qs
k=1,k 6=j(λ

′
j−λ′

k)

)(Qt
k=s+1(|λ′

j |+|λ′
k|)

) , q ≥ 0 ,

∑t
j=s+1

|λ′
j |

t−2 e
2q/(2|λ′

j |)

2

(Qt
k=s+1,k 6=j(|λ

′
j |−|λ′

k|)

)(Qs
k=1(λ′

j+λ′
k)

) , q < 0 .

(5.5)

The sixth-degree Laguerre polynomial density approximant of QIII as determined

from Equations (3.14) and (3.15) is shown in Figure 4, superimposed on the exact

density.
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Figure 4: Exact density and Laguerre Polynomial Approximant
(dotted line).
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Example 4.

The statistic proposed by Durbin and Watson (1950), which in fact assesses

whether the errors in the linear regression model

Y = Xβ + ǫ(5.6)

are uncorrelated, can be expressed as

D =
ǫ̂′A∗ǫ̂

ǫ̂′ǫ̂
(5.7)

where

ǫ̂ = Y −Xβ̂(5.8)

is the vector of residuals,

β̂ = (X ′X)−1X ′Y(5.9)

being the ordinary least-squares estimator of β, and A∗ = (a∗ij) is a symmetric

tridiagonal matrix with a∗11 = a∗pp = 1; a∗ii = 2, for i = 2, ..., p− 1; a∗ij = −1 if

|i− j| = 1; and a∗ij = 0 if |i− j| ≥ 2. Assuming that the error vector is normally

distributed, one has ǫ ∼ Np(0, I) under the null hypothesis.

Then, on writing ǫ̂ as MY where Mp×p = I −X(X ′X)−1X ′ = M ′ is an

idempotent matrix of rank p− k, the test statistic can be expressed as the fol-

lowing ratio of quadratic forms:

D =
Z′MA∗MZ

Z′MZ
,(5.10)

where Z ∼ Np(0, I); this can be seen from the fact that MY and MZ are iden-

tically distributed singular normal vectors with mean vector 0 and covariance

matrix MM ′. We note that the distribution function of D (and, in general,

ratios of quadratic forms of the form (X′BX)/(X′CX)) at the point t0 can be

determined as follows:

Pr (D < t0) = Pr
(

Z′MA∗MZ < t0Z
′MZ

)

= Pr
(

Z′M(A∗M − t0I)Z < 0
)

.(5.11)

On letting U = Z′M(A∗M − t0I)Z, U can be re-expressed as a difference of two

positive quadratic forms by applying Steps 1 and 2 of the algorithm provided in

Section 4, with A = M(A∗M − t0I), µ = 0 and Σ = I. The moments and the

Laguerre polynomial approximant of the density function of U are then obtained

from Steps 3, 4 and 5.

We make use of a data set that is provided in Hildreth and Lu (1960,

p. 58). In this case, there are k = 5 independent variables, p = 18, the observed
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value of D is 0.96, and the 13 non-zero eigenvalues of M(A∗M − t0I) are those

of MA∗M minus t0. The non-zero eigenvalues of MA∗M are 3.92807, 3.82025,

3.68089, 3.38335, 3.22043, 2.95724, 2.35303, 2.25696, 1.79483, 1.48804, 0.948635,

0.742294 and 0.378736. For instance, when t0 = 1.80977, which corresponds to the

10th percentile of the simulated cumulative distribution function resulting from

1,000,000 replications, the eigenvalues of the positive definite quadratic form Q1

are 2.11817, 2.01035, 1.87099, 1.57345, 1.41053, 1.14734, 0.54313 and 0.44706,

while those of Q2 are 0.01507, 0.32186, 0.861265, 1.06761 and 1.43116. The

approximate cumulative distribution function of D based on ten moments was

evaluated from Equations (3.17) and (3.18) at certain percentiles of the distribu-

tion obtained by simulation. The results reported in Table 3 indicate that the

empirical and approximate distribution functions are in close agreement for the

given simulated percentiles.

Table 3: Approximate CDF evaluated at certain empirical percentile of D.

CDF Simulated Approximate CDF

0.01 1.36069 0.010435

0.025 1.51197 0.025476

0.05 1.64792 0.050280

0.1 1.80977 0.099761

0.25 2.08536 0.247875

0.5 2.39014 0.495934

0.75 2.6861 0.748343

0.9 2.93742 0.902156

0.95 3.07679 0.952783

0.975 3.18896 0.977276

0.99 3.31005 0.991466

1 3.83768 1

6. COMPUTATIONAL CONSIDERATIONS AND CONCLUDING

REMARKS

Laguerre polynomials for which an explicit representation is provided in

this paper are readily available from numerous mathematical packages including

Mathematica and Maple. It should be pointed out that, after the determination

of the parameters ν and β, the only remaining step for obtaining a density approx-

imant is the evaluation of the polynomial coefficients, which are easily determined

from Equation (3.8). Quantiles can then be obtained by numerical integration or
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from the explicit representation of the cumulative distribution function given in

Equations (3.17) and (3.18) for indefinite quadratic forms. Conveniently, the req-

uisite calculations can be handled by most mathematical or statistical packages.

The symbolic computational package Mathematica was used for evaluating the

approximants and plotting the graphs, the code being available from the authors

upon request.

The proposed density approximation methodology is conceptually simple

since it is essentially based on a moment-matching technique. Moreover, it is

easy to program and consistently yields remarkably accurate percentage points.

Although most applications require relatively few moments, the proposed approx-

imation can accommodate a large number of moments, if need be. The applicabil-

ity of the results is not restricted to quadratic forms since this methodology can

also be utilized to approximate the density functions of random variables that are

approximately or asymptotically distributed as gamma random variables, such as

those that are proportional to the logarithm of the inverse of certain likelihood ra-

tio test statistics or those that can be expressed as general linear combinations of

independently distributed non-central chi-square random variables, which occur

in asymptotic theory.
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