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Smirnov law of iterated logarithm and an asymptotic expansion for the mean in-
tegrated squared error of the proposed estimator. These results show the superior
theoretical performance of the boundary modified kernel estimator over the classical
kernel estimator for distribution functions that are not smooth at the extreme points
of the distribution support. The automatic selection of the bandwidth is also briefly
discussed in this paper. Beta reference distribution and cross-validation bandwidth
selectors are considered. Simulations suggest that the cross-validation bandwidth per-
forms well, although the simpler reference distribution bandwidth is quite effective for
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Key-Words:

• kernel distribution function estimation; boundary kernels; Chung-Smirnov property;

MISE expansion; bandwidth selection.

AMS Subject Classification:

• 62G05, 62G20.



170 Carlos Tenreiro



Boundary kernels for distribution function estimation 171

1. INTRODUCTION

Given X1, ..., Xn independent copies of an absolutely continuous real ran-

dom variable with unknown density and distribution functions f and F , respec-

tively, a kernel estimator of F is introduced by authors such as Tiago de Oliveira

[33], Nadaraya [20] or Watson and Leadbetter [35]. Such an estimator arises as

an integral of the Parzen-Rosenblatt kernel density estimator (see Rosenblatt [25]

and Parzen [21]) and is defined, for x ∈ R, by

(1.1) F̄nh(x) =
1

n

n
∑

i=1

K̄

(

x−Xi

h

)

,

where, for u ∈ R,

K̄(u) =

∫

]−∞,u]
K(v)dv,

with K a kernel on R, that is, a bounded and symmetric probability density func-

tion with support [−1, 1] and h = hn a sequence of strictly positive real numbers

converging to zero when n goes to infinity. Theoretical properties of this esti-

mator, including bandwidth selection, have been investigated by several authors.

Classical and more recent references, showing a continued interest in the sub-

ject, are, among others, Winter [36, 37], Yamato [38], Falk [7], Singh, Gasser and

Prasad [28], Swanepoel [30], Jones [13], Shirahata and Chu [27], Sarda [26], Alt-

man and Léger [1], Bowman, Hall and Prvan [2], Tenreiro [31, 32], Liu and Yang

[16], Giné and Nickl [11], Mason and Swanepoel [18] and Chacón and Rodŕıgues-

Casal [3].

If the support of f is known to be the finite interval [a, b], from the conti-

nuity of F it is well known that the kernel estimator (1.1) is an asymptotically

unbiased estimator of F if and only if h→ 0 as n goes to infinity (see Yamato

[38], Lemma 1). However, if F is not smooth enough at the extreme points of

the distribution support, the bias of F̄nh does not achieve the standard h2 order

of convergence on the left and right boundary regions. In fact, assuming that

the restriction of F to the interval [a, b] is twice continuously differentiable, for

x = a+ αh with, α ∈ [0, 1], we have

EF̄nh(x) − F (x) = hF ′
+(a)ϕ1(α) +

h2

2
F ′′

+(a)ϕ2(α) + o(h2),

uniformly in α, with

(1.2) ϕ1(α) = α(µ0,α(K) − 1) − µ1,α(K),

ϕ2(α) = α2(µ0,α(K) − 1) − 2αµ1,α(K) + µ2,α(K) and µℓ,α(K) =
∫ α
−1 z

ℓK(z)dz.

A similar expansion is valid for x in the right boundary region. As noticed by

Gasser and Müller [9] in a regression context, this local behaviour dominates the
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global behaviour of the estimator which implies an inferior global order of con-

vergence for the kernel estimator (1.1) which can be confirmed by examining the

asymptotic behaviour of widely used measures of the quality of kernel estimators

such as the maximum absolute deviation or the mean integrated squared error.

This type of boundary effect for kernel estimators of curves with compact

supports is well-known in regression and density function estimation frameworks

and several modified estimators have been proposed in the literature (see Müller

[19], Karunamuni and Alberts [14], and Karunamuni and Zhang [15], and refer-

ences therein). In order to improve the theoretical performance of the standard

kernel distribution function estimator when the underlying distribution function

F is not smooth enough at the extreme points of the distribution support, the

use of the so-called boundary kernels, suggested for regression and density kernel

estimators by Gasser and Müller [9], Rice [24], Gasser, Müller and Mammitzsch

[10] and Müller [19], is addressed in this paper, which is organised as follows.

In Section 2, we introduce the boundary modified kernel distribution func-

tion estimator and some families of boundary kernels are presented, one of them

leading to proper distribution function estimators. Contrary to the boundary

modified kernel density estimators which possibly assume negative values, in a

distribution function estimation framework the theoretical advantage of using

boundary kernels is compatible with the natural property of obtaining a proper

distribution function estimate. In Section 3 we show that the Chung-Smirnov

theorem, that gives the supremum norm convergence rate of the empirical distri-

bution function estimator, is also valid for the boundary kernel distribution func-

tion estimator. In Section 4 we present an asymptotic expansion for the mean

integrated squared error of the estimator. This result illustrates the superior

theoretical performance of the boundary kernel distribution function estimator

over the classical kernel estimator whenever the underlying distribution function

is not smooth enough at the extreme points of the distribution support. The au-

tomatic selection of the bandwidth is addressed in Section 5 where beta reference

distribution and cross-validation bandwidth selectors are considered. Simulations

suggest that the cross-validation bandwidth performs well, although the simpler

reference distribution bandwidth is quite effective for the generality of test dis-

tributions. All the proofs can be found in Section 6. The simulations and plots

in this paper were carried out using the R software [23].

2. KERNEL ESTIMATOR WITH BOUNDARY KERNELS

In order to deal with the boundary effects that occur in nonparametric re-

gression and density function estimation, the use of boundary kernels is proposed

and studied by authors such as Gasser and Müller [9], Rice [24], Gasser, Müller
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and Mammitzsch [10] and Müller [19]. Next we extend this approach to a distri-

bution function estimation framework, where we assume that the support of the

underlying distribution is known to be the finite interval [a, b].

We consider the boundary modified kernel distribution function estimator

given by

(2.1) F̃nh(x) =
1

n

n
∑

i=1

K̄x,h

(

x−Xi

h

)

,

for x ∈ ]a, b[ and 0 < h ≤ (b− a)/2, where

K̄x,h(u) =

∫

]−∞,u]
Kx,h(v)dv,

and Kx,h takes the form

Kx,h(u) =







KL(u; (x− a)/h), a < x < a+ h
K(u), a+ h ≤ x ≤ b− h
KR(u; (b− x)/h), b− h < x < b,

where K is a bounded and symmetric probability density function with support

[−1, 1], and KL(·;α) and KR(·;α) are second order (left and right) boundary ker-

nels for α ∈ ]0, 1[. Therefore, KL(·;α) and KR(·;α) are such that theirs supports

are contained in the intervals [−1, α] and [−α, 1], respectively, and

∫

Kℓ(u;α)du = 1,

∫

uKℓ(u;α)du = 0 and

∫

u2Kℓ(u;α)du 6= 0,

for all α ∈ ]0, 1[, with ℓ = R,L. Additionally we define F̃nh(x) = 0 for x ≤ a and

F̃nh(x) = 1 for x ≥ b.

If we write

K̄ℓ(u;α) =

∫

]−∞,u]
Kℓ(v;α)dv,

for ℓ = L,R, the kernel K̄x,h can be written as

K̄x,h(u) =







K̄L(u; (x− a)/h), a < x < a+ h
K̄(u), a+ h ≤ x ≤ b− h
K̄R(u; (b− x)/h), b− h < x < b.

In the following examples we present three families of boundary kernels.

We will assume that KR(u;α) = KL(−u;α). In this case, we have K̄R(u;α) =

1 − K̄L(−u;α).
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Example 2.1. In a density estimation setting the standard choice for KL

is

KL(u;α) = (Aα(K) +Bα(K)u)K(u)I(−1 ≤ u ≤ α),

where Aα(K) = µ2,α(K)/Dα(K), Bα(K) = −µ1,α(K)/Dα(K) and Dα(K) =

µ0,α(K)µ2,α(K) − µ1,α(K)2. Despite being negative for small values of α, this

type of boundary kernels is suitable for density estimation. Contrary to nonneg-

ative boundary kernels, they allow the control of the variability of the estimator

near the support distribution boundary (see Gasser and Müller [9]). In this case,

we get

K̄L(u;α) = (Aα(K)K̄(u) +Bα(K)µ1,u(K))I(−1 ≤ u ≤ α) + I(u > α).

A local behaviour analysis of the modified kernel distribution function es-

timator near the end points of the distribution support reveals that this class of

boundary kernels may not be especially appropriate for the estimation of a distri-

bution function. Restricting our analysis to the left-sided boundary region, and

assuming the continuity of the second derivative of F in ]a, a+h[, for x = a+αh,

with α ∈ ]0, 1[, we have

(2.2) EF̃nh(x) − F (x) =
h2

2
F ′′(x)µ(α) + o(h2)

and

(2.3) Var F̃nh(x) =
F (x)(1 − F (x))

n
− h

n
F ′(x)ν(α) +O(n−1h2),

where

µ(α) =

∫ α

−1
z2KL(z;α) dz

and

ν(α) =

∫ α

−1
zBL(z;α) dz,

with BL(u;α) = 2K̄L(u;α) KL(u;α) (see expansions (6.4) and (6.5) in Section

6).

For the previous class of kernels the quantity ν(α) can be negative for small

values of α, which leads to an estimator whose local variability is larger than the

empirical distribution function one. Additionally, as µ(α) converges to a strictly

negative value, when α tends to zero, a local bias can occur for small values of

α (at the order of convergence h2). In the next examples we take for KL(·;α)

a symmetric probability density function with support [−α, α]. In this case,

Fnh is nonnegative and ν(α) > 0, for α ∈ ]0, 1[. Therefore, the boundary kernel

estimator has a local variability inferior to the empirical distribution function

one. Additionally, µ(α) converges to zero, as α approaches zero (for the boundary

kernels of Example 2.2, this is true whenever K is continuous on a neighbourhood

of the origin with K(0) > 0).
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Example 2.2. If K is such that
∫ α
0 K(u)du > 0 for all α > 0, for

KL(u;α) = (2K̄(α) − 1)−1K(u)I(−α ≤ u ≤ α),

we have

K̄L(u;α) = (2K̄(α) − 1)−1(K̄(u) − K̄(−α))I(−α ≤ u ≤ α) + I(u > α).

Example 2.3. If we take

KL(u;α) = K(u/α)/α

we get

K̄L(u;α) = K̄(u/α).

Finally, note that, for these two last classes of boundary kernels, F̃nh is,

with probability one, a continuous probability distribution function. Therefore, in

a distribution function estimation framework, the theoretical advantage of using

boundary kernels, which we establish in the following sections, is compatible with

the natural property of obtaining proper distribution function estimates.

3. UNIFORM CONVERGENCE RESULTS

The almost sure (or complete) uniform convergence of the classical kernel

distribution function estimator F̄nh to F was established by Nadaraya [20], Winter

[36] and Yamato [38], whereas Winter [37] proved that, under certain regularity

conditions, F̄nh has the Chung-Smirnov law of iterated logarithm property (see

also Degenhardt [5] and Chacón and Rodŕıgues-Casal [3]). In this section we show

that these results are also valid for the boundary kernel distribution function

estimator (2.1). For that, we will need the following lemma that gives upper

bounds for ||F̃nh − EF̃nh|| and ||EF̃nh − F ||, where || · || denotes the supremum

norm.

Lemma 3.1. For all 0 < h ≤ (b− a)/2, we have

(3.1) ||F̃nh − EF̃nh|| ≤ CK ||Fn − F ||

and

(3.2) ||EF̃nh − F || ≤ CK sup
x,y∈[a,b]: |x−y|≤h

|F (x) − F (y)|,

where Fn is the empirical distribution function and

CK = max

(

1, max
ℓ=L,R

sup
α∈ ]0,1[

∫

|Kℓ(u;α)| du
)

.
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Moreover, if the derivative F ′ is continuous on [a, b], then

(3.3) ||EF̃nh − F || ≤ hCK sup
x,y∈[a,b]: |x−y|≤h

|F ′(x) − F ′(y)|.

The next results follow straightforwardly from Lemma 3.1 after separat-

ing the difference F̃nh − F into a stochastic component F̃nh − EF̃nh and a non-

stochastic bias component EF̃nh − F . The first one is a consequence of a well-

known exponential inequality due to Dvoretzky, Kiefer and Wolfowitz [6], which

gives a bound on the tail probabilities of ||Fn − F ||, and the second one follows

from the law of iterated logarithm for the empirical distribution function esti-

mator due to Smirnov [29] and Chung [4] (see also van der Vaart [34], p. 268,

and references therein). Also note that the condition imposed on the boundary

kernels is trivially satisfied by nonnegative boundary kernels such as those of the

Examples 2.2 and 2.3. It is also fulfilled by the boundary kernels of Example 2.1.

Theorem 3.1. For ℓ = L,R, let Kℓ be such that

sup
α∈ ]0,1[

∫

|Kℓ(u;α)| du <∞.

If h→ 0, then

||F̃nh − F || → 0 almost completely.

Theorem 3.2. Under the conditions of Theorem 3.1, if F is Lipschitz

and (n/ log log n)1/2h→ 0, then F̃nh has the Chung-Smirnov property, i.e.,

lim sup
n→+∞

(2n/ log log n)1/2||F̃nh − F || ≤ 1 almost surely.

Moreover, the same is true whenever F ′ is Lipschitz on [a, b] and h satisfies the

less restrictive condition (n/ log log n)1/2h2 → 0.

Remark 3.1. If F is Lipschitz and the bandwidth fulfills the more restric-

tive condition n1/2h→ 0, the Chung-Smirnov property can be deduced from the

strong approximation property
√
n ||F̃nh −Fn|| = o(1) almost surely, that can be

derived by adapting the approach by Fernholz [8]. In this case,
√
n ||F̃nh−F || and

the Kolmogorov statistic
√
n ||Fn − F || have the same asymptotic distribution.

Remark 3.2. When F ′ is Lipschitz on [a, b] and (n/ log log n)1/2h2 → 0,

Fnh has the Chung-Smirnov property without assuming the continuity of F ′ at

x = a or x = b. This shows that Fnh improves on F̄nh for distribution functions

which are not smooth enough at the extreme points of the distribution support

(cf. Winter [37], Theorem 3.2).
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Remark 3.3. If F is the uniform distribution on [a, b], from inequality

(3.3) we deduce that ||EF̃nh − F || = 0, for all 0 < h ≤ (b− a)/2. Therefore,

||F̃nh − F || = ||F̃nh − EF̃nh|| ≤ CK ||Fn − F ||,

and F̃nh has the Chung-Smirnov property even when h does not converge to zero

as n goes to infinity.

Remark 3.4. In practice the bandwidth h is usually chosen on the basis

of the data, that is, h = ĥ(X1, ..., Xn). From the proof of Lemma 3.1 we easily

conclude that the so-called automatic boundary kernel estimator defined by (2.1)

with h = ĥ satisfies the inequalities

||F̃nĥ − F || ≤ CK

{

||Fn − F || + sup
x,y∈[a,b]: |x−y|≤ĥ

|F (x) − F (y)|
}

,

for any F , and

||F̃nĥ − F || ≤ CK

{

||Fn − F || + ĥ sup
x,y∈[a,b]: |x−y|≤ĥ

|F ′(x) − F ′(y)|
}

,

whenever F ′ is continuous on [a, b]. Therefore, under the conditions of Theorems

3.1 and 3.2, if the assumptions on h are replaced by their almost sure counterparts,

we conclude that the automatic boundary kernel estimator, F̃nĥ, is an almost sure

uniform convergent estimator of F that enjoys the Chung-Smirnov property.

4. MISE ASYMPTOTIC EXPANSION

A widely used measure of the quality of the kernel estimator is the mean

integrated squared error given by

MISE(F ;h) = E

∫

{F̃nh(x) − F (x)}2dx

=

∫

Var F̃nh(x)dx+

∫

{EF̃nh(x) − F (x)}2dx

=: Ṽ(F ;h) + B̃(F ;h),

where the integrals are over R. Denoting by V̄(F ;h) and B̄(F ;h) the corre-

sponding variance and bias terms for the classical kernel distribution function

estimator (1.1), the approach followed by Swanepoel [30] leads to the following

expansions whenever the restriction of F to the interval [a, b] is twice continuously

differentiable:

V̄(F ;h) =
1

n

∫

F (x)(1 − F (x))dx− h

n

∫

uB(u)du+O
(

n−1h2
)

(4.1)
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where

B(u) = 2K̄(u)K(u),

for u ∈ R, and

B̄(F ;h) = h3
(

F ′
+(a)2 + F ′

−(b)2
)

∫ 1

0
ϕ1(α)2dα(4.2)

+ h4
(

F ′
+(a)F ′′

+(a) − F ′
−(b)F ′′

−(b)
)

∫

u2K(u) du

∫ 1

0
ϕ1(α)dα

+
h4

4

(
∫

u2K(u) du

)2

||F ′′||22 + o(h4),

where ϕ1 is given by (1.2) and || · ||2 is the L2 distance in [a, b].

Depending on the smoothness of F on R, we see that two different orders

of convergence to zero for the mean integrated square error can be obtained.

In the smooth case, that is, when F ′
+(a) = F ′

−(b) = 0, the previous expansions

agree with the classical ones (cf. Jones [13]). However, in the non-smooth case an

inferior global order of convergence occurs and a different order of convergence for

the optimal bandwidth, in the sense of minimising the asymptotic MISE, takes

place.

Next we show that, even when F is not smooth at the extreme points of the

distribution support, the leading terms of the MISE expansion of the boundary

kernel estimator agree with those given in Jones [13] for the classical kernel distri-

bution function estimator. This shows the theoretical advantage of the boundary

kernel distribution function estimator over the classical kernel estimator. Next

define Bℓ(u;α) = 2K̄ℓ(u;α)Kℓ(u;α), for u ∈ R, α ∈ ]0, 1[ and ℓ = L,R.

Theorem 4.1. For ℓ = L,R, let Kℓ be such that

∫ 1

0

(
∫

|Kℓ(u;α)|du
)2

dα <∞,

and assume that the restriction of F to the interval [a, b] is twice continuously

differentiable. We have

Ṽ(F ;h) =
1

n

∫

F (x)(1 − F (x))dx− h

n

∫

uB(u)du+O
(

n−1h2
)

and

B̃(F ;h) =
h4

4

(
∫

u2K(u)du

)2

||F ′′||22 + o
(

h4
)

.

Note that the previous assumptions on the boundary kernels are trivially

satisfied by nonnegative boundary kernels such as those of Examples 2.2 and 2.3,

and also by the boundary kernels of Example 2.1. Next we give the asymptotically

optimal choice for the bandwidth in the sense of minimising the leading terms in

the expansion of the MISE.
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Theorem 4.2. Under the conditions of Theorem 4.1, let us assume that

CB > 0 where

CB = 2

∫

uB(u) du−
∫ 1

0

∫

u
(

BL(u;α) +BR(u;α)
)

dudα.

Then the asymptotically optimal bandwidth is given by

h0 = min

(

δ(K)||F ′′||−2/3
2 n−1/3 ,

b− a

2
min

(

1 ,

∫

uB(u)du
/

CB

))

,(4.3)

where

δ(K) =

(
∫

uB(u) du

)1/3(∫

u2K(u)du

)−2/3

.

Remark 4.1. Following the approach by Marron and Jones [17], and tak-

ing into account the results of Swanepoel [30] and Jones [13], we conclude that

the uniform density on [−1, 1] is the optimal kernel in the sense of minimising the

asymptotic MISE. However, as noticed by Jones [13], other suboptimal kernels,

such as the Epanechnikov kernel on [−1, 1], have a performance very close to the

optimal one.

Remark 4.2. For the boundary kernels of Example 2.3, we have CB =
∫

uB(u)du > 0 and the asymptotically optimal bandwidth is simply given by

h0 = min
(

δ(K)||F ′′||−2/3
2 n−1/3, (b− a)/2

)

.

5. BANDWIDTH SELECTION

In a kernel estimation setting the bandwidth is usually chosen on the basis

of the data. For the classical kernel distribution function estimator (1.1) and as-

suming that f is a smooth function over the whole real line, two main approaches

for the automatic selection of h can be found in the literature. Cross-validation

methods are discussed in Sarda [26], Altman and Léger [1] and Bowman, Hall

and Prvan [2], and direct plug-in methods, including normal reference distribu-

tion methods, are proposed by Altman and Léger [1], Polansky and Baker [22]

and Tenreiro [32]. In the following subsections we consider two fully automatic

bandwidth selectors for the boundary kernel distribution function estimator. The

first one is a reference distribution method based on the beta distribution family.

The second one is a cross-validation bandwidth selector inspired in the approach

of Bowman, Hall and Prvan [2].



180 Carlos Tenreiro

5.1. A reference distribution method

A commonly used quick and simple method for choosing the bandwidth

involves using the asymptotically optimal bandwidth for a fixed reference dis-

tribution having the same mean and scale as that estimated for the underlying

distribution. In what follows a beta distribution over the interval [a, b] with both

shape parameters greater than or equal to 2 is taken as reference distribution.

The restriction on the shape parameters values takes into account the assump-

tions on F imposed in Theorem 4.1. If X has a beta distribution over the interval

[a, b] with shape parameters p and q, the expected value of X is given by

E(X) = a+ (b− a)
p

p+ q

and the variance of X by

Var(X) = (b− a)2
pq

(p+ q)2(p+ q + 1)

(see Johnson, Kotz and Balakrishnan [12], p. 222). Taking the sample mean X̄

and the sample variance S2 as estimators of E(X) and Var(X), respectively, the

method of moments estimators for the parameters p and q are given by

p̃ = X̃(X̃(1 − X̃)S̃−2 − 1) and q̃ = (1 − X̃)(X̃(1 − X̃)S̃−2 − 1),

where X̃ = (X̄ − a)/(b− a) and S̃2 = S2/(b− a)2. Thus, denoting by F̂ the beta

distribution over the interval [a, b] with shape parameters p̂ = max(2, p̃) and q̂ =

max(2, q̃), the considered beta optimal bandwidth, which we denote by ĥBR, is

defined by (4.3) with ||F̂ ′′||2 in place of ||F ′′||2 where

||F̂ ′′||22 =
(p̂− 1)(q̂ − 1)B(2p̂− 3, 2q̂ − 3)

(b− a)(2(p̂+ q̂) − 5)B(p̂, q̂)2
,

and B(x, y) =
∫ 1
0 t

x−1(1 − t)y−1dt is the beta function.

5.2. A cross-validation method

An alternative approach for bandwidth selection can be based on the cross-

validation ideas of Bowman, Hall and Prvan [2]. The cross-validation function

proposed by these authors is a mean over all the observations of the integrated

squared error between the indicator function I(Xi ≤ x) associated to the obser-

vation Xi, and the boundary kernel estimator constructed from the data with

observation Xi omitted, that is,

CV(h) =
1

n

n
∑

i=1

∫

{I(Xi ≤ x) − F̃−ih(x)}2dx,
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where

F̃−ih(x) =
1

n− 1

n
∑

j=1

j 6=i

K̄x,h

(

x−Xj

h

)

.

The cross-validation bandwidth, which we denote by ĥCV, is the minimiser of

CV(h). The main motivation for this method comes from the equality

E

(

CV(h) − 1

n

n
∑

i=1

∫

{I(Xi ≤ x) − F (x)}2dx

)

= E

∫

{F̃n−1,h(x) − F (x)}2dx,

which shows that the criterion function CV(h) provides an unbiased estimator of

MISE(F ;h) for a sample size n− 1, shifted vertically by an unknown term which

is independent of h. Although the asymptotic behaviour of the cross-validation

bandwidth is not discussed in this paper, it will be of interest to know whether

ĥCV is asymptotically equivalent to the asymptotically optimal bandwidth h0.

As shown in Bowman, Hall and Prvan [2], this property is valid for the standard

kernel distribution function estimator.

5.3. A simulation study

In order to analyse the finite sample performance of the bandwidth selec-

tors ĥBR and ĥCV, a simulation study was carried out for a set of beta mixture

distributions with support [0, 1] that represents different shapes and boundary

behaviours. Their weights and shape parameters are given in Table 1 and the cor-

responding probability density and cumulative distribution functions are shown

in Figure 1.

Table 1: Beta mixture test distributions.

Beta mixture distribution
P

i
wi B(pi, qi)

Weights w 1st shape parameters p 2nd shape parameters q

#1 (1/4, 3/4) (1, 6) (6, 1)
#2 (1/10, 7/10, 2/10) (1, 2, 3) (2, 2, 1)
#3 (1/10, 7/10, 2/10) (1, 2, 6) (2, 6, 1)
#4 (5/16, 5/16, 3/16, 2/16, 1/16) (1, 25, 160, 320, 800) (10, 60, 100, 80, 90)

From each distribution we generated 500 samples of sizes n = 25, 50, 100

and 200, and we calculated the integrated squared error ISE(F ;h) =
∫

{F̃nh(x)−
F (x)}2dx for h = ĥBR and h = ĥCV as a measure of the performance of each

bandwidth selector. The integrated squared error associated to the asymp-

totically optimal bandwidth h0 was also evaluated for the sake of comparison.
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Figure 1: Beta mixture test density and
cumulative distribution functions.
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Figure 2: Integrated squared error results for the smoothing parameters
h = ĥBR, h = ĥCV and h = h0 and sample sizes n = 25, 50, 100
and 200. K is the Epanechnikov density function. The number
of replications for each case is 500.
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In the implementation of cross-validation method the minimisation of CV(h)

was confined to the interval [ĥBR/10, 1/2]. The previous integrals have been

numerically evaluated using the composite Simpson’s rule. The Epanechnikov

densityK(t) = 3
4(1− t2)I(|t| ≤ 1) was taken as kernel function and we restrict our

attention to the boundary kernels defined by Kℓ(u, α) = K(u/α)/α for ℓ = L,R

(see Example 2.3). The integrated squared error empirical distributions (log

scale) are presented in Figure 2.

For all the considered test distributions, Figure 2 suggests that the cross-

validation bandwidth performs quite well showing a performance close to that one

of the oracle estimator with bandwidth h0. Additionally, for distributions #1, #2

and #3 there is no indication of significant differences between the bandwidths

ĥCV and ĥBR. This can be seen as an evidence of the well-known fact that smooth-

ing has only a second order effect in kernel distribution function estimation. For

the beta mixture #4 the cross-validation approach is clearly more effective than

the beta optimal smoothing for large sample sizes. This distribution presents fea-

tures that are not revealed until the sample size is above some threshold which

explains the fact that both methods performed similarly for small sample sizes

but not for large ones. In this latter case the cross-validation method is able to

adapt to distributional shape while the beta distribution reference method does

not reveal such a property.

In conclusion, we can say that the cross-validation bandwidth reveals a very

good performance, although the simpler and less time consuming beta reference

distribution bandwidth shows it self to be quite effective for the generality of test

distributions.

6. PROOFS

Proof of Lemma 3.1: We start by the analysis of the stochastic compo-

nent ||F̃nh −EF̃nh||. For that we follow the approach by Winter [37]. In order to

deal with kernels that could have negative values, we need the following version

of the integration by parts result presented by Winter [37, Lemma 2.1].

Lemma 6.1. If Φ is a probability distribution function and

Ψ(u) =

∫

]−∞,u]
ψ(v)dv,

where ψ is a Lebesgue integrable function with
∫

ψ(v)dv = 1, then

∫

ΦdΨ +

∫

ΨdΦ = 1.
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Proof: Denoting by µΦ and µΨ the finite signed measures defined by

µΦ(] −∞, x]) = Φ(x) and µΨ(] −∞, x]) = Ψ(x), for all x ∈ R, it is enough to

apply Fubini’s theorem to the indicator function (s, t) → I(s > t) which is inte-

grable with respect to the product measure µΦ ⊗ µΨ.

Returning to the proof of Lemma 3.1, for x ∈ ]a, a+ h[, we have

F̃nh(x) =

∫

K̄L((x− y)/h; (x− a)/h)dFn(y) = 1 −
∫

Ψx,h(y)dFn(y),

EF̃nh(x) =

∫

K̄L((x− y)/h; (x− a)/h)dF (y) = 1 −
∫

Ψx,h(y)dF (y),

and

F̃nh(x) − EF̃nh(x) =

∫

Ψx,h(y)(dF (y) − dFn(y)),

where Ψx,h(u) =
∫

]−∞,u] ψx,h(v)dv with ψx,h(v) = KL((x− v)/h; (x− a)/h)/h.

From Lemma 6.1 we get

F̃nh(x) − EF̃nh(x) =

∫

{Fn(y) − F (y)}dΨx,h(y),

and therefore

(6.1) sup
x∈ ]a,a+h[

|F̃nh(x) − EF̃nh(x)| ≤ ||Fn − F || sup
α∈ ]0,1[

∫

|KL(u;α)| du

because

sup
x∈ ]a,a+h[

∫

d|Ψx,h|(y) = sup
x∈ ]a,a+h[

∫

|ψx,h(u)| du ≤ sup
α∈ ]0,1[

∫

|KL(u;α)| du.

Similarly, we get

(6.2) sup
x∈ ]b−h,b[

|F̃nh(x) − EF̃nh(x)| ≤ ||Fn − F || sup
α∈ ]0,1[

∫

|KR(u;α)| du,

and the standard approach (see Winter [37]) can be used for x ∈ [a+ h, b− h], in

order to obtain

(6.3) sup
x∈ [a+h,b−h]

|F̃nh(x) − EF̃nh(x)| ≤ ||Fn − F ||.

Finally, from (6.1), (6.2) and (6.3) we obtain the upper bound (3.1) for ||F̃nh −
EF̃nh||.
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In the analysis of the bias component ||EF̃nh − F ||, we first note that, for

x ∈ ]a, a+ h[, the expectation of F̃nh(x) is given by

EF̃nh(x) =

∫

K̄L((x− y)/h; (x− a)/h)f(y) dy

=

∫∫

KL(u; (x− a)/h)f(y)I(y ≤ x− uh) dudy

=

∫

F (x− uh)KL(u; (x− a)/h) du.

Therefore,

(6.4) EF̃nh(x) − F (x) =

∫

{F (x− uh) − F (x)}KL(u; (x− a)/h) du,

which leads to

sup
x∈ ]a,a+h[

|EF̃nh(x) − F (x)| ≤ sup
x,y∈[a,b]: |x−y|≤h

|F (x) − F (y)| sup
α∈ ]0,1[

∫

|KL(u;α)| du.

Additionally, if F ′ is continuous on [a, b], from the Taylor formula we have

F (x− uh) − F (x) = −uhF ′(x) − uh

∫ 1

0
{F ′(x− tuh) − F ′(x)} dt.

Using the fact that
∫

uKL(u;α)du = 0, for all α ∈ ]0, 1[, from (6.4) we get

EF̃nh(x) − F (x) = −h
∫

{F ′(x− tuh) − F ′(x)}uKL(u; (x− a)/h) du

which leads to

sup
x∈ ]a,a+h[

|EF̃nh(x) − F (x)| ≤ h sup
x,y∈[a,b]: |x−y|≤h

|F ′(x) − F ′(y)| sup
α∈ ]0,1[

∫

|KL(u;α)| du.

A similar analysis can be carried out for the cases x ∈ [a+h, b−h] and x ∈
]b−h, b[, leading to the bounds (3.2) and (3.3) for the bias term ||EF̃nh −F ||.

Proof of Theorem 4.1: We start by the analysis of the bias term B̃(F ;h)

=
∫

{EF̃nh(x) − F (x)}2dx. By using the continuity of the second derivative of F

and the Taylor expansion

F (x− uh) − F (x) = −uhF ′(x) + u2h2

∫ 1

0
(1 − t)F ′′(x− tuh) dt,

from (6.4) we get
∫ a+h

a
{EF̃nh(x) − F (x)}2 dx

= h5

∫ 1

0

(
∫∫ 1

0
(1 − t)F ′′(a+ αh− tuh)u2KL(u;α) dtdu

)2

dα

≤ h5 ||F ′′||2
∫ 1

0

(
∫

|KL(u;α)|du
)2

dα = O
(

h5
)

.
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A similar upper bound can be obtained for the term
∫ b
b−h{EF̃nh(x) − F (x)}2dx.

The stated expansion for B̃(F ;h) follows now from the dominated convergence

theorem:
∫ b−h

a+h
{EF̃nh(x) − F (x)}2dx

=

∫ b−h

a+h

(
∫

{F (x− uh) − F (x)}K(u) du

)2

dx

= h4

∫ b−h

a+h

(
∫∫ 1

0
(1 − t)F ′′(x− tuh)u2K(u) dtdu

)2

dx

=
h4

4

(
∫

u2K(u) du

)2

||F ′′||22 + o
(

h4
)

.

The analysis of the variance term, Ṽ(F ;h) =
∫

Var F̃nh(x)dx, can be made

easy by considering the expansion

nVar F̃nh(x) = F (x)(1 − F (x)) +

∫

{F (x− uh) − F (x)}Bx,h(u) du(6.5)

− {EF̃nh(x) − F (x)}2 − 2{EF̃nh(x) − F (x)}F (x),

where Bx,h is defined as Kx,h with K replaced by B. In fact, from the first part

of the proof we conclude that the integral over [a, b] of the last two terms is of

order O(h2), and from standard arguments we get

∫ b−h

a+h

∫

{F (x− uh) − F (x)}Bx,h(u) dudx = −h
∫

uB(u) du+O
(

h2
)

and
∣

∣

∣

∣

∫ a+h

a

∫

{F (x− uh) − F (x)}Bx,h(u) dudx

∣

∣

∣

∣

≤ h2 ||F ′||
∫ 1

0

∫

|u||BL(u;α)| dudα

≤ h2||F ′||
∫ 1

0

(
∫

|KL(u;α)|du
)2

dα = O
(

h2
)

.

Taking into account that the same order of convergence can be obtained

for the term
∫ b
b−h

∫

{F (x− uh) − F (x)}Bx,h(u)dudx, we finally get the stated

expansion for Ṽ(F ;h).

Proof of Theorem 4.2: We shall restrict our attention to the case where

F is the uniform distribution function on the interval [a, b]. From Remark 3.3

and equality (6.5) we get

MISE(F ;h) =
b− a

6n
− h

n

(
∫

uB(u) du− h
CB

b− a

)

,
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for 0 < h ≤ (b− a)/2. It is now easy to conclude that

h0 =
b− a

2
min

(

1 ,

∫

uB(u) du
/

CB

)

is the minimiser of MISE(F ;h), for 0 < h ≤ (b− a)/2.
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[1] Altman, N. and Léger, C. (1995). Bandwidth selection for kernel distribution
function estimation, Journal of Statistical Planning and Inference, 46, 195–214.

[2] Bowman, A.; Hall, P. and Prvan, T. (1998). Bandwidth selection for the
smoothing of distribution functions, Biometrika, 85, 799–808.
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Ser. A, 26, 101–116.

[36] Winter, B.B. (1973). Strong uniform consistency of integrals of density esti-
mators, Canadian Journal of Statistics, 1, 247–253.

[37] Winter, B.B. (1979). Convergence rate of perturbed empirical distribution
functions, Journal of Applied Probability, 16, 163–173.

[38] Yamato, H. (1973). Uniform convergence of an estimator of a distribution func-
tion, Bulletin of Mathematical Statistics, 15, 69–78.


