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Abstract:

e In this paper, we study the asymptotic properties of the maximum likelihood estimator
(MLE) in COGARCH(1,1) models driven by Lévy processes as proposed by Maller
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some conditions relevant to the moments of the driving Lévy process and the sampling
scheme.
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1. INTRODUCTION

GARCH models are prominent stochastic models in finance, designed to
capture the time-varying conditional volatilities and heavy tail phenomenon of
financial time series. We refer to Bollerslev ([5]); Bougerol and Picard ([6]);
Nelson ([16]); Basrak et al. ([1]); Berkes et al. ([3]), and for its estimation, to Hall
and Yao ([9]); Berkes and Horvath ([2]); Francq and Zakoian ([8]). In ordinary
discrete time GARCH models, time series are assumed to be equally spaced.
However, in some situations, time series are often observed irregularly. This
phenomenon happens, for instance, in tick-by-tick data and daily data which is
not observed on weekends and holidays. To accommodate the irregularity of time
spaces, several authors have made efforts to extend the discrete time GARCH
model to a continuous time counterpart. Nelson ([15]) demonstrated that the
discrete time GARCH process with Gaussian innovations is a finite approximation
of a bivariate diffusion process. Therein, the limiting diffusion process is driven by
two independent Brownian motions, which unfortunately undermines the spirit of
GARCH processes since they are originally designed to have a single innovation
sequence. Later, Kliippelberg et al. ([12]) proposed a continuous time GARCH
(COGARCH) process driven by a Lévy process, which can be seen as an analogue
of discrete time GARCH process. Also, Maller et al. ([13]) demonstrated that the
discrete time GARCH process embeds in COGARCH processes and further, the
embedded GARCH process converges in a strong sense to the original COGARCH
process that embeds it as the discrete grid used for obtaining the embedded
process gets finer (cf. Theorem 2.1 of [13]). For more details, we refer to Kallsen
and Vesenmayer ([11]).

Concerning the estimation of COGARCH parameters, Haug et al. ([10])
considered a method of moment estimator which is suitable for equally spaced
time series and verified its consistency and asymptotic normality under some
regularity conditions, which, however, is not directly applicable to irregularly
spaced time series. On the other hand, Miiller ([14]) proposed an MCMC-based
estimation for COGARCH(1,1) models driven by a compound Poisson process,
which is suitable for irregularly spaced time series, which, however, has a defect
that computation is somewhat intensive. Maller et al. ([13]) proposed using a
Gaussian maximum likelihood estimator (MLE) in COGARCH(1,1) models but
its asymptotic properties such as consistency and asymptotic normality has not
been thoroughly investigated yet in the literature. Motivated by this, we are led
to study the asymptotic behavior of the MLE in COGARCH(1,1) models. Since
some empirical study to evaluate finite sample performance has been already
implemented by [13], here we focus on the rigorous verification of the asymptotic
properties of the MLE.

The organization of this paper as follows. In Section 2.1, we give a brief



138 Kim and Lee

review for COGARCH(1,1) processes. In Section 2.2, we present the main result
of this paper. In Section 3, we provide the proof for the result presented in Section
2.2.

2. THE COGARCH(1,1) MODEL AND ESTIMATION

2.1. COGARCH(1,1) Processes

In this subsection, we summarize the COGARCH(1,1) process. Let (2, F, P,
{Fy : t > 0}) be a filtered probability space satisfying the usual conditions:

e Fy has all the measurable sets of P-measure 0,

e cach F; is right continuous, i.e., F; = ﬂt<s Fs.

Let L:={L;,F;:t>0} be a cadlag Lévy process with characteristic triplet
(v, ¢, 1I) satisfying [ min{1,2?}II(dz) < co. The characteristic function of Ly
is given by
iuL . t¢2u2 iux :
u — Ee'™" = exp < ityu — 5 +t [ {e™ =1 —iurly <) HI(dr) ¢ .
& <

which is called Lévy-Khintchine’s representation (cf. Theorem 43 of Chapter I of
Protter ([17])). In this paper, we assume ¢ = 0.

Let n° > 0, ¢° > 0, and 8° > 0 satisfying n° > ¢°. Define AL := Ly — L,
and

Xp=nt— Y log (1 +¢°(ALs)%),
0<s<t

which is a cadlag process. Let o3 be an integrable random variable which is
independent of {L;}. Define

t
o2 = (ﬁo/ eXSds—l—Ug) e Xt-,
0

which is a caglad process. According to Proposition 3.2 of Kliippelberg et al.
([12]), the process {o?} satisfies the stochastic integral equation

t
(2.1) o? o2 = / (8 = r7o?)ds +¢° 3 0A(AL)2.
0

0<s<t

Note that due to ¢ =0, L is a quadratic pure jump, i.e., [L,L]; — [L, L]y =
ZO<s§t(ALS)2 (cf. p. 71 of [17]) and (2.1) is rewritten as

t
(2.2) o — ol = / (B° —n°ol)ds + goo/ o2d[L, L],
0 (0,t)
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i.e., {o7_} is the almost surely unique and cadlag solution of the stochastic dif-
ferential equation

do?, = (8° —1°o?)dt + o o2d]L, L.

Later, we take o3 so that the solution is strictly stationary (see (3.1)). Finally,
we define the integrated COGARCH(1,1) process as

Gy = / osdLgs, t>0.
(0,4]

2.2. Gaussian ML Estimation

In this subsection, we consider the maximum likelihood estimation method
as proposed by Maller et al. ([13]) and study its asymptotic properties. Particu-
larly, we consider the situation in which {G; : ¢t > 0} is observed discretely with
irregular time spaces. For each n € N, we set N = N,, € N,

O=th<t1 < - <ty <oo, Aty :=tp—tr_1,
and
Ynk = Gtk - Gtk,17

where {Aty} are allowed to be nonidentical. By putting A:= A, =
max{Aty, ..., Aty }, we assume that A — 0 and ty — oo as n — 0.

Let 6° = (8°,¢°,n°)" be the vector of (unknown) true parameters. Let
0= (8,n,¢) and

O:={0=008.10):5:<B<F << 0 << — @ > el

where 0 < B, < 8" <00, 0 <1 <" <00, 0 < < * <00, and 0 < ¢, < 0.
We assume that 6° € ©.

Following [13], we set 62, () (k=0,1,2,...,N) to be the solution of the
recursion formula:

- B
‘71210(9) = m7
G24(0) = BAL + e MG2 L (0) + pe MY for k=1,2,..., N.

More precisely,

k-1 k
Gor(0) =8> Atgyje 1m0 4 o720 () 4 e D ey,

=0 i=1
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which can be viewed as an estimate of 0't2k when 6 = 0°. By observing the argu-
ment:

E{(Gt+h _ Gt)Q‘ft} — <0_t2 . Oﬁo O) (eXP{(TIOO_ @Ozh} - 1) + O,Boh -
n—-e n - n -

provided that E{L?} = 1 and {¢?} is strictly stationary (see the proof of Propo-
sition 5.1 of [12]), we use the terms:

6 )(exp{(n—w)Atk}—1)+ﬁAtk
n—e n—e n—¢

) ~2
Pk (0) = (Un,k1(9) -
as estimates of conditional variances of Y, when 8 = 6°.

Let m = m,, be a positive integer. Then we define a Gaussian log-likelihood
function of 8 = (8, ¢, n) as

N 2 ~2
Ln(0) := kz;nlnk(@)ﬁ% Lk (0) = </33Lk(9) + log At )

which is slightly different from that of [13] in which Aty does not appear. Below,
we show that 6,, a measurable maximum point of Ly, i.e.,

Ln(0n) = max Ln(0)

is consistent and asymptotically normal under some regularity conditions such as

Cl: 0°c©. A—0andty — oo. ty, = o(ty) and e m = O(A/?).
C2: ¢=0,1ie., {L;:t>0}is a quadratic pure jump.

C3: E{L1} =0, E{L?} =1, and E{L{} < oo; ¥(2) < 0, where ¥(z) :=
log Ee=#%1,

C4: 6° is an interior point of ©; tyA — 0; E|Gy|*° = O(h) for some
6> 0; [pa’dll(z) =0.

The following is the main result of this paper, the proof of which is presented
in the next section.

Theorem 2.1. Under C1-C3,

(2.3) b, 2 0°.
Suppose that C4 also holds. Then,
(2.4) Vin (0, —0°) = N(0,7%71),

where

T = / 2*TI(dz) = lim WE{(Gh = Go)*|Fo}
e no {E{(Gp, — Go)2|Fo} )

and Y is a positive definite matrix presented in Proposition 3.3.
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3. PROOFS

In what follows, K denotes a generic constant. We begin with the existence
of a strictly stationary solution of (2.2). Let {L;} be an independent copy of
{L;:0 <t < oo}. We extend the time domain of {L;} and {X;} to R by letting

L; = —L’(kft)f for —co<t<0

and
X =0t + Z log (1 + ¢°(ALs)?)  for —oo <t < 0.
t<s<0
Note that {L; : t € R} and {X; : ¢t € R} are cadlag processes and still have inde-
pendent and strictly stationary increments. We define

u
(3.1) = Bo/ eXv=Xu-dy  for u <0.
—o0
Lemma 3.1. Suppose that C3 holds. Then, o2 is square integrable.

Proof: Note that

u 2 u 2
E{/ eX”X“—dv} = lim E{/ eX”X“—dv} < 00,
—00 h—o0 u—h

(cf. the proof of Proposition 4.1 of [12]). This completes the proof. O

It can be easily checked that {2} with o3 = ffoo eXv=Xo-dy is the almost
surely unique strictly stationary solution of (2.2).

3.1. The Proof of Consistency

In this subsection, we assume that C1-C3 hold. Note that

o2(0) = B/n + /( | oL I,

is integrable, since
h—oo

E/ e™o?d[L, L], = lim E/ e™o?d[L, L], = Eag/ e Mdu < oo.
(—00,0] (—h,0] 0

We set

2(0) = B/ + (52(6) = B/n)e ™ + pe /( )ensagd[L, s, (t>0)
0,t

which is a caglad process.
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Lemma 3.2. {02(0)} is strictly stationary and satisfies the stochastic dif-
ferential equation

(3.2) do?, (0) = (B — no7 (0))dt + po7d[L, L];.

Especially, c2(0) > 3/n and Ecf(6) < co.

Proof: Note that

o14(0) =08, 0= (6300) ~ /) (¢ ) e [ rotaln 1),
(0,4]

By using Fubini’s theorem, we can see that

/ (6 — no2(6))ds = / (B — 102, (6))ds
0 0

- | { n(o2(0) — B/m)e ™ — pne ™ / Mo2d(L, L], }d
0

= (08(9)—5/77) (e —nt_ /176 ”5/0 e™o2d[L, L],ds

_ 2 o e —-nt _ o e M5ds b emu 2
= (05(0) = B/n) ( 1) —¢ /( . { / d } oad[L, L],
= (05(0) = B/n) (e =1) —¢ / (e — ™M) eMio2d[L, L],

(0,4]

— (oB0) = p/n) (" =1)— ¢ [

02d[L, L], + @e™ ™ / e™o2d[L, L]y,
0.4]

(0,2]

and which implies (3.2). Now that the strict stationarity can be easily checked,
03(0) > B/n obviously implies o?(0) > 3/n. Moreover,

é —nj
n Z / i— 1—3] L L]

7=0

which indicates the square integrability since E{ f(o 1 o2d[L, L], }* < oo due to
C3. This gives the lemma. O

Lemma 3.3. 03(0°) = 02 a.s. Hence, 07(0°) =07 a.s. for every t >0

and 0’? > 5°/n°.
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Proof: By using Fubini’s theorem, we obtain

a2(6°) = 5°/n° +s0°/( 0 e"ond|L, L],

= B°/n° + s0°/ e <5/ eX”_X“ch)) d[L, L],
(—00,0) —00
0 o
— 50/?70 + 50()00/ / el U*Xu—d[LjL]u erdv
—00 (v,0)
O o O o
= 5° / e Vdv + 3°° / / e v Xu=d[L, L], | e dv
—c0 —00 (v,0)
0 o o
= ﬂo/ e v Xo —i—goo/ e’ “*X“—d[L, L], eXvdu.
—0o0 (’U,O)

On the other hand, we have

e’V Xy — exp { — Z log(1 4+ ¢°(ALy)?)

v<s<0

= Z exp § — Z log(1 + ¢°(AL)?)

v<w<0 w<s<0

—exp{ — Z log(1+ ¢°(AL)?) p | +1

w<s<0

= —¢° Z exp — Z log(1 + ©°(ALg)?) p (AL,)* + 1

v<w<0 w<s<0
= —goo/ e Xu=d[L, L], + 1,
(v,0]
and thus,
0
02(0°) = ﬁo/ {1 —¢°e X0~ (ALy)*} e dv.
Since (ALg)? = 0 = Xo_ a.s., we obtain
0
02(0°) = ﬁo/ eXvXo—dy =62 as.

This verifies the uniqueness of the solution of (3.2) and completes the proof. [

The following proposition plays a key role in proving the consistency.

Proposition 3.1. Ifo3(0) = 0} a.s., then § = 6°. Hence,

02
T(9) := —E{U(Q](Oe) +1oga§(e)} , 6coe
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has the unique maximum at 6 = 6°. Moreover, Y (0) is uniformly continuous in
0eo.

Proof: Suppose that 02(0) = 03, a.s. Then, we have
/( ) {pem - <p°e”°“} oud(L, Ly = °/n° = B/n, as.
Also, by the strict stationarity, for every t,
/( , {s@e"(t’“) —~ so"e"o(t*“)} o2d[L, L), = 3°/n° — B/n, as.

which implies ¢7() = o2, a.s. Moreover, both the processes are caglad processes
and so are indistinguishable. Thus, we have

t t
[o-nohaste [ oin.n,= [(@-woas+e [ oiL.L.
0 (0,t) 0 (0,t)

Suppose that ¢° # ¢. Then,

1 t
/ o2d[L, L] = / {B° =B+ (n—n°)o}ds,
(0,t) Y =% Jo

which implies that there exist constants «,~ such that

¢
ol =05 + / (a+ yo?)ds.
0

If v £ 0, 07 = v H(a +703)e’ — a}, which contradicts the strictly stationarity
of {oZ}. On the other hand, if v = 0, 67 = 03 + at. In this case, a # 0 contradicts
the strictly stationarity of {o?} as well. Thus, a = v = 0, which in turn produces

02 = o} a.s. for every t > 0. Then, we should have

0=p3°— noag + gooag [L,L]; — [L,L]o} a.s.

However, the above is also false since [L, L]; — [L, L]o is independent of 03. There-
fore, o = ¢©°. If n # n°, then o7 = c for some constant c. Thus from the same

reasoning, we conclude that n = n°, and 8° = (.

Now, we have that for h > 0, n1, 19 satisfying n. < ns <n1 < n*,

/ e — e”2u|05d[L, L,
(_0070)

/ emtelm=m —1|62d[L, L],
(—00,0)

9

2 2
< || sup |elm—m)u _ 1|/ e”o2d[L, L),
—h<u<0 (—00,0)
+e_”2h/ 6”2(“+h)03d[L, L],
(_007_h] 2

/ e”Quaid[L, L,
—h<u<0 (—00,0] 9
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which implies

=0.
2

lim sup
0=0 |y 2| <5

/ eMUo2d[L, L), — / o2 d[L, L),
(—00,0) (—00,0)

This in turn implies that Y is continuous. So the proposition is established. [

The proof of the consistency is based on the uniform convergence of the like-
lihood function, which can be obtained from the ergodic theorem and smoothness
condition on the likelihood function.

Lemma 3.4. Let 0,217;3_1(9) := 07, (0). Then,

1 Op 1 2 P i 2
— R 4 0) Y At, — E 1 0) 5.
R 0 I {03«)) Hlosanl >}

k=m

Proof: Since

sup_ |oy: o—1(8) — 03 (0)]
te—1<u<lty

ti tk—1
< penAtr / ofd[L,L); + (1 - e_”Atk) Lp/ e Mt—1=524[L, L],

lk—1 —0o0

and .
k
sup 02(0) <ol (B)+ ¢ / o2d[L, I];,

t_1<s<ty te—1

we have that Esup,, .« 04(f) < oo and

sup [0y, o—1(8) — 03 (0)]
tr_1<u<ty

max
m<k<N

= o(1).

2

Thus, we have

N 2 ' )
1 Onk—1 2 1 /N { (o 9 }
B gy T80 (0) p Aty — —— —2~ +1logo2(0) pds
tNk;Z;n{Ji,k—ﬂg) Bk )} " in ), 102(0) gos(0)
1 Y o2 b1 o2 , )
< — E sup n,K— _ s + lOg o2, 9) — IOg o 9 Atk ~o.
b 225 S [, oA e ) - ose )

On the other hand, by the ergodic theorem,

1 [ o2 2 P o3 P
tN/ {03(9)+10g05(0)}ds—>E{ag(9)—i—logao(G)},

tm

(cf. Lemma A.1). Hence, the lemma is validated. O
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Lemma 3.5. There exists a constant ¢ > 0 such that for all large n,

~2
inf Pnk (0>

min _inf §2,(6) A min >c a.s.
m<k<N 060 i (6) m<k<No0cO Aty
Proof: Since
k—1
52.(0) > ﬁZAtk_ie_"(tk_t’“—i) a.s.,
i=0
we have that for all large n,
min _inf 62,(0) > b >0 as.
m<k<N 0€0© 2n*

and

(n—@)Aty _ 1 ;
min {inf&flk_l(ﬂ)—sup b {e —1}}245* >0 a.s.
’ n

m<k<N | 60 pcon—¢ | (n—p)Aty

This completes the proof. O

Now, we prove that {52,(0)} approximates to {2, (0)} well.
Lemma 3.6.

2
E ( GS_anLS> =O(h*) ash— 0.
(0,1]

Proof: From Corollary 4.1 of [12], we obtain
Elof — 08\2 = 2{Var(a(2)) — Cov(af,og)} = 2Var(o'8){]_ _ et‘lf(l)}7

ie., Elo? — 02> = O(t) as t — 0. Further, for h > 0,
t 0

2
E( Gsades> = / E{G?_o%lds
(0,h] (0,h]

_ / BG2_{0? — o2}ds + / BG2_o2ds.
(0,h] (0,h]

Since

|EG?_{0? — 63}| <EY2GI_EY2(0c? - 0d)*=0(s) ass—0

—

and
E{G? 03} = E{E(G?_|R) 03} = O(s) as s —0,

the lemma is established. O
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Lemma 3.7. Suppose that e Ttm = O(Al/Q). Then,

1/2
Jmax [lon(6) = 57(0) 2 = O(AY?).

Proof: Since

k k
o, (0) = 8 Z Aty_je 106 t=i) e 71520 (9) + pe Mk Z L
i=0 i=1

and

—n(tr—tr— 2
E :6 ( lYnk i+1

- Z otk —tis) {[G, Gliy_i0y — GGy, +2 / (Gu — Gy, _,)dG,,
X (t

k—itk—it1] }
} )

k
= Z e*ﬁ(tk*tkﬂ') {/ Uid[L, L]u + 2/ (Gu_ — Gtk_i)UudLu
i=1 (tk—istk—it1] (tk—irtk—it1]

we only have to deal with

k

. e 'k e"o —e el"k—i o
33) e 3 oL ey e | 24[L, L],
0<s<ty i=1 (th—istr—it1]
and
k
(3.4) et (Gu- — Giy)oudLy.
i=1 (tk—istk—it1]
Note that (3.3) is bounded by
k
Z(enAtqu _ 1)677(tktki)/ Uid[L,L]u
i=1 (th—isth—it1]
k
— Z(enAtkfiJrl _ 1)e7l(tktki)/ Ugdu
i=1 (th—isth—it1]
k
+ Z(enﬁtkﬂ‘ﬂ _ 1)6*77(%*15194) / O'gd {[L, L], —u},
i=1 (th—isti—it1]

where the second term is a sum of martingale differences. Thus, the L?-norm of
(3.3) is O(A'/2) uniformly in m < k < N, since

E </(87t] o2d{[L,L], — u}) =E </(O,t—s] o2d{[L, L], — u})

= Eoy -E[L,L)3 - (t — s).

Moreover, since (3.4) is also a sum of martingale differences, the L?-norm of (3.4)
is O(A'/?) due to Lemma 3.6. Hence, the proof is completed. O
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For vector x = (21, x2,x3)’, we denote |x| := Vx'x.

Lemma 3.8.

max
m<k<N

< 00.
2

1 1o,
12520
SUp 32 99 ‘aep”’“( )

Proof: Due to Lemma 3.5, we have

1 0 ‘
SUp —5—— | 7:Pnk(0)| < Ksup {
oco P2, (0) |08 #(6) 0cO

k—1
< K{1+Ze— M4 /2) (b —1—th—i— 1)Y112k . 1}
=1

Further, according to the proof of Lemma 3.7,

0 . -
i) + 01805, 1)}

—(1+/2) 1=tk —i-1)y2 / —(n/2)(te-1=9) 5241 L. L 0
max e ki e ogd|L,L|s|| — 0.
m<k<N Z k—i-1 (0.te1] [ ] )
Since
max / e~/ 2t1=5) 5241, ], / e~ /255241, L|| < oo,
mSkSN LS (0,t-1] 5 (—00,0] 5
the lemma is validated. O

In fact, Lemma 3.10 below shows a more general result. However, Lemma
3.8 is sufficient to verify the consistency. Finally, we verify the uniform conver-
gence of the likelihood function. In what follows, we denote

P2.(0) = (ag,kl(e) - f (p) <exp{(n ; f)ﬁtk} - 1) N gét:;

and p?2, := p2,(6°).

Proposition 3.2.

1
sup tEN(H)—T(G)‘ — op(1)
9eo | tN
Proof: We have
1 N
tn
k=m
N N
1 1
= a Z {1k (0) — E(Luk(0)[Frp—1) } Atk + i > " E(lnk(0)|Fp—1) At
k=m
N 2 ~9
1 Prk p. k(e)}
ST Fop1)} At Pk o Pur\P) L Ay
Z{ K0 = B O Fne)) S0 o 37 { o2 1og P |
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where the first term is a sum of martingale differences, which converges to 0 in
probability. Then, we obtain from Lemmas 3.5 and 3.7 that

PQk sz 2 2
o n - L + log ﬁn (0) - log Pn (0)
Pik(e) Pik(‘g) F F

< K max (Haik,lHQ + 1) Héi,kqw) - U?z,kfl(e)Hg —0

max
m<k<N 1

m<k<N
and
2
P k(g)
— i s — 1| = O(A),
D22 SO | R L (0) (8)

which implies

N 2 ~2 N 2
1 Pk p k(ﬁ)} 1 o2, ,
tn 5 (g) T108~ Aty — — ————— +logo; ._1(0) p At
tn k:m{pik(ﬁ) 5 A, g ; 2 (g) " BTk 1(0) ¢ Aty
= op(1).

Note that due to Lemma 3.4, the pointwise convergence holds:
1N

(3.5) = 3" L(0)Aty = T(9), for each ¢ € ©.
tN =

Below, we verify the uniform convergence. Letting 1,z (6) := %lnk(ﬁ), we have

N
1 1 .
— sup Ly (0) = Ln(02) < — Y sup 1nk(e)‘ Atyh
N |91—92|<h N k:meee

since 61 + A\(f3 — 01) € © for any A € (0,1). Moreover, due to Lemmas 3.1, 3.5,
and 3.8,

. Y2k
E 1, (6 ‘ < Es . 1
m?/?%{zv Slelg nk(0)| < m?l?%{N Zlelg {5ik(9) " }

Y2
< K max E{ - 41%sup
m<k<N [ Aty 0o

1
o)

1 0.
maeﬂik(e)'

- e (AT o |
< g B{oh 1) g o )|
< K max, sup ﬁ%:w)(%ﬁik(@) ) < 0.
Therefore, we obtain
(3.6) lim imsup B——  sup | (01) — L (62)] = 0.

h=0 n—oco N |9,—0,|<h
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Now, for given h > 0, take finitely many open balls By (6;) := {0 € © : |0 —
6;] < h} with 6; € © such that © C |J, By (6;). Then,

L o) - m)]

sup
gco |tN
1 1 1
< max sup |-—Ln(0)— —Ln(0;)| +max | —Ln(0;) — Y(0;)
i geB(0;) | TN IN i |tN
+max sup |Y(0;) —Y(0)|.
v 0eBy(0:)

Thus, we obtain from (3.5) that for every € > 0,

tizN(e) _ T(@)‘ > e)

lim sup P (Sup
N

n—00 0cO

< limsup P sup
n—oo |91792|<h

1 1
—LnN(01) — —LpN(02)
N tn

s €
3

so that the uniform convergence is achieved by letting h — 0 thanks to (3.6) and

+P ( sup |Y(01) — Y(62)] > 6) ,
‘91702‘<h 3

Proposition 3.1. O

The Proof of Consistency. Let € > 0 and B.(6°) :={0 € ©:]0 —6°| <
€}. Then, © — B.(#°) is compact, since O is taken as a compact subset in R3.

Hn:{ee@:T(9)<T(9°)—1}, neN

n

constitute a collection of open subsets relative to ©, which covers © — B.(6°)
since T(0) < T (6°) for each § € © — B.(0°) (cf. Proposition 3.1). By virtue of
compactness, there is ng € N such that © — B.(6°) C H,,, i.e.,
1
sup{Y(0):0 €O —B(0°)} <Y(6°) — —

ng

Therefore, by Proposition 3.2, we have that with probability tending to 1,

1 1
sup {EN(G) 10 €0 — BS(QO)} <Y(0°) — —.
tN 2n0
On the other hand,
1 1 1 A
— LN (0°) 55 Y (6°), —LN(0°) < —Ln(6y).
tn tN tN

Hence, lim, o, P (én S Be(ﬁo)) =1. 0O
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3.2. The Proof of Asymptotic Normality

In this subsection, we assume that C1-C4 hold. By Taylor’s theorem, we

have
1 X
3.7 0= — Lk (6) At
(3.7) m Z;n k(0n) Aty
1 N
= T Z 1nk(00 Atkz + { Z lnk Atk} 2V (9 — 00)
N
k=m
where
; 9 Y2 1 9
1 90 = ] 90 — nk -1 - YD 00
nk( ) 60 le‘( ) <ﬁ%k(90) > ﬁik(eo) aepnk( ),

. . 7 B ) 1 0, 1 0
Yok 1
(o) mw mﬂnk”)'

More precisely,

D1 (0° + M (0 — 0°))
Lx@) = | 5% 6771 1 (0° 4+ Xa (0, — 6°))
LLuk(60° + A3 (6 — 6°))

for some A1, A2, A3 € (0,1).

Let %%:j&p, be a differential operator of order g, where ¢, 1, j,l are non-

negative integers with ¢ + j + [ = ¢. Observe that

R T
81 » o,
= 9o Gp g 1(0) + O(Aty) {ZZWW T k— 1(9)+1}

p<q a,b,c

(3.8)
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uniformly in 8 € ©, and

01 -9
(3.9) W%k(e)

94 k—1
= — A o _n(tk_tk—i)
Gﬁaanb&pc {ﬁ; lg—qe }

+H(=1)T(a=0,c=0)p Y _(tg — typ—y)le My 2

n

M- LM~

(2

H(=1)1M (a=0,e=1)Y (tg — ty_) e M ldY 2,

=1

-
Il

04 56—77%
+ - .
OB O n — ¢

Define
aq 9 o aq é
oot = ggapag

(1)1 (a=0,c= 0)p / (t— 8)1e1=9)024[ L, L),

—oo<s<t

1) (a=0,c=1) / (t— )1 Le =3 o241, 1],
—oo<s<t

Below, we show that a nice approximation to {%aik (0)} is achievable similarly to
Lemma 3.7. For a random vector X = (X1, X2, X3)’, we denote || X||2 := VEX'X.

Lemma 3.9.

9, 9,

el _Z — 1/2
s |557300) - ot = o)
Proof: We can express
k
Z (te —tr—s) efn(trtk*i)yaik—iﬂ
i=1
k
=) (tn — tp—g) e M) {/ o2d[L, L], + 2/ (Gue — Gy, )0 dLu}
i—1 (th—isth—it1] (th—isth—it1]
and
k 122
> (t — tpi) e R TTE—) / o2d[L, L], — / (ty — w)e " We2d[L, L],
i=1 (th—isth—i+1] 0
k

< Z sup (tk — tk—l) e_n(tk_tkfi) _ (tk _ u)e—'f](tk—u)

i—1 WE(tr—istk—it1]

| oL,
(tk—isth—it1]
k

< KDY Aty M=t — 4+ 1) / ood[L, L]

i=1 (tk—istk—it1]
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By virtue of the above facts, the lemma can be proven in the same fashion to
O

prove Lemma 3.7.

Lemma 3.10. For any p > 0 and any nonnegative integer q,

1 0%, 0 1 0%2(0) |
3.10 E T VE —0.
(3:10) max EsUp |\ ooy Spiompog 1020 opioniagt| =
and
1 8q52k(9) g quzk(ﬁ) ?
E < VE I <
mekan gl | 72.(0) 0o dgl "2, 0) opiopogt|
Proof: Assume that p > 1. In view of (3.9), we have
1 9957, ,(9) 1+ 30 iy (b — e ‘)q_l e MDY R
G 11 (0) O5°0nPdp* B/n+ o iy eIV |
Since = < 2P holds for every z > 0 and ¢ > 0, letting Bj={i:j<t;<j+1,

i< k:} We have

k P
E sup >oicr (b —tr—i)Te A Z)Yan: i+1
E  _nit—tr
o | B/n+ X e tk_’)Yn,k—iH
[tx] S ety P
. i€ B n,i+1
< Esup tr] —j+1)7 ’ :
0 ]z;([ ] ) ﬁ/77+99ZeB e —n(tp— t)Y2
1 [tk] 1/p|?
< Esup|— > (] =i+ 17| D e )
0 19550 i€B;
[tk] 1/p|?
< KB[S () -+ el [ 3 vz,
§=0 i€B;
[tx] 1/p|?
< K\ () =g+ 0)7e M) (B2
7=0 zeB
uniformly in m < k < N. Similarly, we also have
w) ! emo2dL, L],

1 0i03(0) 1+ )%
2 oniogl =&
22(0) 05100 B+ f_oo enuagd[L, Il
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and

SO (—w) emo?d[L, L), |
B+ ¢ [ ema2d[L, L],
f;}{l eMo2d[L, L,

B+ [ emoldlL, L],

1 o0 —j 1/p
< Esup |— Z (j+1)1 (/ e”“agd[L,L]u)
0 |¥P —j—1

, —j 1/p
: ( / ozd[L,uu)
—j—1

sup

oo
< Esup |Y (j+1)7

A
=
e

NgL

<

_|_

=
3
z
D

Therefore, we obtain (3.10).

Now, due to (3.8),

1 992, (0) 1 957 ,4(0)
p21,(0) 931N ! o2 1 (0) OB OnI0
1 or Jnk 1(9)
O(Aty)
I;%:c or w1 (0) 0B OnPIp*
uniformly in 6 € ©. Further, a similar argument can be applied to
2
L 970,,(6) . Hence, the lemmas is proved. ]

SUPo |z 10) a5 on o1

Below, we establish a central limit theorem for the asymptotic normality.
To this end, we show that the score function can be approximated by a sum of
square integrable martingale differences. For vector x = (x1,x2,z3)’, we denote
x| := v/x’x. And for random vector X = (X1, X2, X3)’, we denote ||X||; := E|X].

Lemma 3.11. Suppose that tyA — 0. Then,

N

Y? 1 0
tN§<pnknk° 1) s a2
1 al Yn2k o
(311) = tNZ;n <pnk o) ) Hpnkw )Aty, +op(1)
1 Y Yn2k o
(312) - mk;(pk L ) 5 g1 070 o)
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Proof: Due to Lemmas 3.5, 3.7, 3.9, and 3.10, we have

H( Yn2k: _ Yn2k ) 1 3Pnk(90)
f’%k(eo) pik(go) ﬁik(eo) a0

1 1 0p2,(6°)
— E YnQ (~ o ) _ nk
{ g Pik(eo) P?Lk 6°) P?Lk(eo) 90

- e{e0im (5

B E'(?ZEZ; - 1) 72

‘ pik(9°) — P (6°)
pnk (00)

KHU?z,kfl(eo) G k—1(0°)

1

|

1

(

1 ) 1 9p2,(6°)
5 (6°) Pik(ao) Pik(eo) 90
3Pnk( °)
6°) 00
1 apnk( °)
pry(0°) 00 2

1 (9pnk( °)
pr(6°) 00

|

IN

IA

= 0(A'?)
2

uniformly in m < k < N, and

Y2 { 1 (9pnk(9°)_ 1 8pik(9°)}
Prk

P09 W62 00 ph (69 o0 I,
_ 2 1 1 3Pnk( °) _ 1 8p$”“(00)
=E {E(Ynk‘ftk_l)p%k(eo) ~2 (90) 00 pik(ao) 90

L 0pni(0°) L 0pu(0°)

:‘ﬁikwo) 00 p2(0°) o0
K{ 65Z,k—1(90) 803,/&—1(90)

+[|om k1 (0°) — on k1 (0],

1

IN

00 00

1 8Pik(9°)
Py (0°) 00

)

— 0(A"2),

uniformly in m < k < N. Thus, (3.11) follows.

Further, note that

1 8 2 oy __ 1 2 2 o
maepnk(g ) = 7072% (%) 690n,k—1(9 )

2
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uniformly in m < k < N and

Y?2 1 0 o
Z ( nk ) ~ (90)@0—2&_1(0 VAt
n,k—1

k=m pnk 00
N
1 0 ,

< — +1 )| 0°)| At
= /i ; <pnk 90 > 0-7217k_1(90) aean,k—l( ) k

N P ,
< 0°)| Aty = O(ty*
- / Z J2k 190)89 nk 1( ) k (N)’

so that (3.12) holds. This completes the proof. O

The following proposition and lemma are concerned with the stability of
the sum of conditional variances of the score function.

Proposition 3.3. Suppose that C2-C3 hold and fR 23dIl(x) = 0. Then,
ash |0,
(3.13) E{(Gun—G)YF} = h </ 4 (dz) + 0(1)> oy,
R
(3.14) E{(Gron— GAIF} = h(1+ o(1))o?
uniformly in t > 0, and therefore,

- ._/ #TI(dz) = lim hE {( Giyn — Gy |7+ }
e ho {E{(Gpn — Gi)? |~7:t}}

Further,

for every t > 0.

. 1 2 2 /00 i o
=iy 0070 ) g0

is positive definite.

Proof We defer the proof of (3.13) and (3.14) to Lemma A.2. Since

Egg(lgo) 550 0(00)’ < oo (cf. Lemma 3.10), ¥ is well defined and symmetric.
Moreover, since we have that for A € R3, )\’%08(00) =0 a.s. if and only if A = 0,
Y. is positive definite. O

1/2
For a matrix A = (a;j)i j=1,23, we denote |A| := (Zz] ’aij‘z) .

Lemma 3.12.

N
! 1 9 5 0 , p
tn = oy (6°) 08 ) 55 0°) Aty — .
In Pl 0;11 o 1(0°) 890n,k—1( )89’ Un,k:—l( YAty
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Proof: Notice

L Uik11(00)feoi,k_1<9°>§,,ai7k_1<e°> T S ) )
= e a,%,ki(eo) " 2°) aae"i»k-1<90>02,k_11<90>aafﬂ"i”“*”o)
F oo | (0o ) 7)) ageien @
+u€(§;13tk] 05(190)889 U(GO);H, a1 (6°) 0’3,1@_11(90) ~ 2
F o o @) e (g7 @) - 5ot

We concentrate on the third term since the other terms can be treated similarly.

Note that
1 1 0 1 o 5
sup o | 1 750mk-100°) 55 77700k -1(0°)
weltosita] |02 1(0°)  02(6°)[ |00 T T2 (60) 96

1 9 1 0
— 75159 6° D 20|
0-721716—1(90) aean,k—l( )0_5(90) aelO'u( )

<K sup  |on i q(6°) — on(6°)]
uE(tk_l,tk]

Since

sup oy 1 (6°) — 03 (6°)]

u€(tg—1,tx]

th . tg—1 o
< °en Atk/ Utzd[L,L]t + (,00 (1 —_e M Atk) / e " (tkflft)U?d[L,L]ta
lk—1

o0

we can have

2 o 2 (po
max sup o, _1(0°) — o, (0 =o(1).
| o o) = 0| = o)
Similarly,
0 0
o o — 1 .
RN |[ue e 11|00 Tur1 (%) = ggou®) ) o)
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Moreover, we have that for A > 0 and p > 1,¢ > 0,
f W) e =0 g24[ L, I],
B/m+ @f = ogd[L, Ly

Sl emnth=wo24(L, L], +§: o = ef’?<h—“>agd[L,L]u

B/n + gofo e-h=wo2d[L, L], 4= ﬂ/ﬁ + @f:]?_le*n(hfu)ggd[L, L]

" ) 2 Up RS ) 2 i
e """ Word[L, L], — j+1)7 (/ e " Word[L, L u)
</0 | | ) <P Z —j—1 | ]
h p 4 o ' —j 1/p|"
< ( | ot L]u) + LS e ( | ot L]u)
0 L2 j
7=0

<

IA

Thus, it can be seen that

1 0
sup os(0° < 00
weltp1) |02(6°) 06 7u(0") H
and
1 0 o 1 o
sup 770’”{ B 90 - u 00
e o an ) ey g 7 )
1 9 1 0
< W=7y 35 nk—1(6° sup o2 (6° < 0.
Ug”k‘*l(eo) 09" 0 u€(tp_1,tx] 19 (0)89/ ( : 4
Therefore,
1 9 e 1 9 o
E =220, 0°)— o> 0°) — —— Z S2(p° g°
wetnntel| T ©°) 57k 1 ) g 71 O) = i g7 g 7u(%)] = 0

uniformly in m < k < N. Then the lemma is validated by the ergodic theorem
(cf. Lemma A.1). O

Now, we establish the asymptotical normality of the score function.

Proposition 3.4. Suppose that there exists § > 0 such that E|G,|*T0 =
O(h). Then,

N
1 .
ﬁ E lnk(eo)Atk = N(O, TZ)
k=m

Proof: Due to Lemma 3.11, it suffices to show that
Yo

W Z <pnk(9°)

19,
—1 — 0°)At N ).
> 0_721’]{:_1(00) aean,k—l( ) k= (057- )
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Let A be any vector in R? and

1 9 N
it = o g (Voo @}

Note that

B B I a0 T o
Vix \e ) oz e aa )

are row-wise martingale differences with respect to {F;, : k =m,...,N}. Since

due to Proposition 3.3 and Lemma 3.12

N 4
1 E{Y%|F
— Aty E VP i} Z’f‘ jj’“—l} 1| b 1Aty 5 TN,
tN pnk(e )

it suffices to verify Lindeberg’s condition for martingale differences (cf. Theorem
35.12 of Billingsley ([4])). For € > 0 and A > 0, we have

N 2 2
Y32 At2 Y2 At?
E E nk_ _ 1> Enk—1 I < nk 1> &n k—lik > €
<pik(9°) 7 pik(eo) ' tN

k=m

k=m
N
Y? At? Y?2 At?
<ZE<2”kO 1>A I(Q”’“O—1>A > €
k=m pnk 0 tN pnk(e ) tN
N 2
At?
+ Z E ( > gn,k—lTNkI {gn,k—l > A},
k=m

and further, due to Lemma 3.5 and the fact E|G},|**® = O(h),

N

Y2 At? Y2 At?
ZE<2”’fO—1)AtI (2”k —1> A%
- P (0°) tN Py (0°) tN

k=m
6/2 <A>5/4 Ati/Q

N
Y2 At?
SZE( nk 1) A=k i
tN
2+6/2 At2+5/2 N BV, |4+6 At2+6/2

k=m p"k 00) tn
N

<K> E

- 146/4 — 2+46/2 146/4
= e h AT £/

N 24-3/2
(Aty) Aty
K E +1 — 0,
P { (At2+5/2 ) } t1+5/4

m

e
Pik(eo)

€

Y2
—1

=m

VAN

and due to Proposition 3.3,

N 2

2
Y At?

S B (o —1> e kT s A

<p2 (6°) En.k i {&np—1 }

k=m nk
N F
= ZE{Atk <{k|(9tok)l} >fn,k 1Atk1{5nk 1>A}}
k=m Prk

< KE{§I {0 > A}}.

Then by letting A — oo, we establish the proposition. ]
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Note that every component of Zk o nk( )Aty is expressed as
N
1 0* 0?
— ———— 1.k (A, = k(09 AL
i 2 ST o ) Atk Z « 0BIOn gt b (67) At
i §N: OO | 605+ (1—8)0°) (07— 0°) At
o9 apiomagt "0 " "
with § € (0,1). The rest of this subsection is devoted to verifying the convergence

of 7 >l Ink(65) Aty

Lemma 3.13.

N
— 1L 05 1 0 o p
_ o o L 0 . s

k= <1 2~2k(90)) G 89pnk(9 )ﬁik(Go) 80’p”k(0 )AL

N
1 Y2 1 0?
— nk 1) 5 Aty
<~2< >p @) daa Atk 0
Hence,

1 .
— N 0k(00)Al 2 -3,

Proof: For convenience, we set 01 := %%W and 0y := W to de-

note any differential operators of the first order. Due to Lemmas 3.5 and 3.7, we
alﬁ%k( °) 82pnk( °)

Pui(0°) Py (6°) }
81ﬁik(9°) 02, (0°)

have

1 1
P2u(0°)  p2(6°)
= E {P k ! - ! -

M p2(0°) R (0°) ]| pr(0°)  pr(6°)
E{ Pai(0°) 1‘ 01021,(6°) Dapyy, (6°)

E {Yn?k

|
Pr(0°) Po(0°) Py (6°) }

- 017 (0°) D2 (6°)
K O_i L (6°) — 0_721 L (6° nk = nk
H k 1( ) k 1( ) pnk(eo) pik(eo)

IN

2

— 0,

uniformly in m < k < N, since

O1pry,(0°) D2y, (6°)

~ < 00
Pap(0°) 7oy (0°)

2

max
m<k<N
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(cf. Lemma 3.10). Moreover, due to Proposition 3.3,
N 2 ~ 0o\ 2
t?\/ e Pik(eo) ﬁik(eo) Pnk(eo)
N 4 ~2 g° 2
E (Y5 |F
N Prie(0°) pnk(e ) Pnk(9 )

O192,(6°) 022, (0°)
%(90) Pnk(eo)

) Aty — 0,

LSS (YA (D) 020N o,
t ;( 2 (90) 1) < ﬁ?zk(eo) ﬁik(m) )Atk— p(l)7

N k=m pnk
ie.,
N
1 Y2k > 1 0 2 1 0
. gy L) = 52 (0°) = 2, (0°) Ay, = 0.
tn kz';m <p31k(90) p2.(6°) 00 k p2,(6°) 90’ F

Similarly, we can see that
N

1 Y2 > 1 0?
— e _ 1) ———— 0°) At —>0
i ,;(ﬁ,%k(eo) 7,0 aoaw " O

On the other hand, we have

Doy (6°)
Ok (0°) — D1pini (0°)] | =2~
< y 17 SRl
N o o Dap2,,(6°)
<K Halgg,k—ﬂe ) — 8102,k_1(0 ) 7’590) 0,
n 2
and
E 1 _ 3lp2k( )82pnk(90) _ Pik(eo) . } 81pik(9°) 82/3%1@(90)
ﬁik(‘go) P%k(‘go) " (90) Pnk(eo) pik(eo) ﬁ%k(‘go)
. 51pn 6°) ﬁzpn ¢°)
< K|67 4 100°) —on 1 (6 ko S —0
uniformly in m < k < N. Therefore,
0
— 1, (0°)Aty, = —— o2 6°) — o2 0°)At 1).
Z k( k ; o () 39 Tn-1(0) 57 0n k-1 (07) Aty +op (1)

Henceforth, the lemma is validated by Lemma 3.12. O



162 Kim and Lee

Lemma 3.14. We have

3
i e e
Hence,
N
1 9 0 * o\ [ p¥* o P
v 2 o GFoaA 0+ (= DF)E, )00 0

N =

Proof: Observe that Wlnk (#) is a finite sum of the terms:

Y2 Lo 0 Yiooo1 ) 1 2
- onk =k 2,0 Z___2.(0),
2o U e 7.0 7.0 omoras" 0 5, @ ogapas 'O
vZ o1 o?

~2
~ ~ :(0),
72,(0) 72,0 ageanpage s ?)

where 0;, (i = 1,2, 3) are differential operators of the first order. Now, by Lemmas
3.5 and 3.10,

y?2 vz 2 0:p2,.(0

E sup — "’f H Zp "k ‘ KE-7 T su 7@"’“( ) ‘
6 pnk z:l pnk Atk i—1 0 pnk(e)
~9 3 ~9

Pak 9ip; k(e)‘ 2 iy, (0)
< KE22 | | sup |—22—=| < KE (0, .1 + O(A) sup | —5—=

Atk 0 pik(9) ( k=t )]‘;[1 0 pik(e)
< K02 41+ O(A)]l3 Hsup ”)“’f

2
12 (9) D221, (0) D321, (0)

S KHO—?%,k—l—'_O(A)Hz sup 2nk9 nk9 ~2nk0 < 0
uniformly in m < k < N. The other terms can be treated in essentially the same
fashion. Hence, the lemmas is asserted. ]

The following proposition is due to Lemmas 3.13-3.14:

Proposition 3.5.

1 N

v~

(0 Aty 2 -3,

The Proof of Asymptotic Normality. (2.4) can be proven by using
standard arguments (cf. the proof of Theorem 2.2 in Francq and Zakoian ([8]))

and the results in (3.7) and Propositions 3.3-3.5. 0
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APPENDIX

Lemma A.1. Suppose that C3 holds. Then,

1 tN 2 2
(A.1) / { T +10ga§(0)}ds i E{ 70 +logag(0)},
tm

In o2(0) 73(6)
L™ 1 0 50000 5oy Pop 10 50000 o0
<A2) t]V/ W% (0 )89/ 8(0 )d — Ea’é(eo) 90 0(9 )ae (9 )

Proof: We only verify (A.1) since (A.2) can be proved similarly. Let h > 0
and

o2(0,h) == B/n+ ¢ / 1= 624 (L, L),

(s—h,s)

Then we have

(A.3) % logo?(0) d—l/tN % togo?(0.m) \d
o2(g) 087 Tin ), oo, T 8T
2
99

< EH 206 +logao(0)} { (02h) +log o5 (0, h)H

< EK {0§l03(0) — 05(0,h)|} < K|o5l2llo3(0) — 05(6,h)|l2 < Ke .
Note that i
O'? = ﬁo/ eXu=Xs— gy + ag_h67X5*h7Xs‘
s—h
and thus,
2
7s +loga?(h,h) € G5,
a2(6,h) s s—h

where G¢ := 0{0y, Ly, — Ls : s <u < t}. Let

a(v) = sup sup{P(ANB)—P(A)P(B): AcG' ,BeGY,},

0<t<o0o

and define o* in the same way with replacing Gt by 0{o2 : s < u < t}. According
to the proof of Theorem 3.5 of Haug et al. ([10]), we can have

0 < av) <6a*(v) -0 asv— oo,

(cf. Fasen ([7])), which implies that {703?57}1)
strictly stationary and strong mixing. Thus,

+loga2(0,h): s > 0} is caglad,

g O'? : .
Z; = /i_l (Ug(G,h) +log a%(h, h)> dse€ Gj_,_1, 1=1,2, ..
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is strictly stationary and ergodic. Then, since by the ergodic theorem,

1 tn o2 9 ]
— 5 1 0,h) pds = — Z;
tn /tm {‘73<97h) Tlog oy (6, } ’ tZ:]H Forll

2
P g 2
— E 1 0,h

owing to (A.3), by letting h — oo, we get

tjv/t:V {05(29) + log o} (9)}ds LE{U(;;-(%&) +10g08(9)}-

This completes the proof. O

Lemma A.2. Suppose that C2-C3 hold and [, x3dIl(x) = 0. Then, as
h 10,

E{(Gun—G)YF} = h </R 2 I (dx) + 0(1)) oy,
E{(Giyn — G)?|Fi} = k(1 +0(1))o}

uniformly in t > 0.

Proof: By the strict stationarity, it suffices to consider the case ¢t = 0. For
h >0,

GG =2 GudGut[G.Clh=2] GCuoudly+ / o2d[L, L],
(0,h] (0,5] (0,5]

(Gh — Go)* = 2 o G:_dG: + (G, G,
0,

=4 G2 _odLg + 2 G?_o%d|L, L),

S—S

(0,h] (0,h]

I e T 1] / otd([L, L), [L, L]Js
(0,h] (0,h]

+4 Gs_o3d|[L, L], L],
(0,h]

where

E G?_o4dL,
(0,h]

fo} o
fo} 0

Since [, 23dIl(z) =0,

E { Gs_02d[[L, L], L)s
(0,h]
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Thus, we have

E{(G) — Go)*|Fo} :6/ E{Ggagyfo}ds+/x4n(dx)/ E{o}|Fo} ds.
(0,h] R (0,h]

)

Let Z; = f(o N Gy—oydL,. By the integration by parts and associativity
(cf. [17]), we can write

ZsazJr = 6°| Zy_du — 770/ Zy_o2du + goo/ Zs_o2d[L, L], —l—/ 03G_dL,
(0,s] (0,s] (0,s] (0,s]

+

/ (8° — UOUZ)dU + goo/ o2d[L, L)y, / Gu_oudLy,
(07'} (07'} (07'}

S

Note that for F' € Fy,
E{/ Zu_du-lp} - / E{Zu_lp}du—/ E{E(Zu_|Fo)1r} du = 0,
(0,s] (0,s] (0,s]

E{ / Zd} - [ wizcim
(0,s] (0,s]

Since

[/ (ﬂ°—n°a§)du+¢°/ agd[L,L]u,/ Gu_0ydLy,
(07’] (07'} (07'}

= [/ (5 _noag)dm/ Gy—oy,dL,, @0/ agd[L,L]u,/ Gy—_o,dLy,
(0»'] (07'] (0»'] (0"}

= goo/ Gu_03d[[L, L], L]y,
(07'}

_|_

we have

E{ [/ (B° = n°o)du + s0°/ aﬁd[L,L]u,/ Gu—0ydLy
(07'] (0"} (07'}

due to [ *dIl(x) = 0. Thus,

1F}=0

S
E {Zsaglp} = (¢° — 770)/ E{Zuaglp} du, E{ZoO'glF} =0,
0

which implies E {Zsaglp} =0 for each F' € Fy. This in turn implies E {Zsag \.7:0}
0,5 (0]

=0 and
]—"0}
= wglE{ai {U§+—a§+—ﬁos+no/ agdu} ]-"0}
0

_ o {E{o;*\fo} - (o} + R} + o E{ozoz|fo}du} .
0

E{G: o2|F} = E{G20?|Fo} =E { 03/ 02d[L, L), + 202 | Gyu_0udL,
(
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Since 02 = 3° [, e~ (Xs==Xu)qy 4 o2e~ s~ we can have
S S
E{c?|Fo} = ﬂo/ EefXS—“du—FogEe*XS = ﬁo/ Ee Xudu + agEe*XS
0 0

= ﬁo/ Ee Xvdu + oEe ¥
0

_ 60(65\11(1) _ 1)

s¥(1) 2
T(1) +e oq-

Then, observing

S 2 s
O‘;L = ﬁg {/ e_(Xs—Xu)du} 4 20’86_X5ﬁ0/ e—(XS,—Xu)du + 0'(%6_2)(57,
0 0

we obtain

s 2 s
E{c}F} = 5§E{/0 eX“du} +2ﬂ°a§E{/0 eXuQXSdu} + ogBe2Xs

) 9 ) es¥(2) es¥ (1)
= wmee) T e —en) \ vy~ wa)
(

(2 w(1l
¥ )_es ) +O_§es\ll(2)

20 g e

and
E {agag\fo} =E { O’ZE {03].7:“}‘ .7:0}
_ E{ o B0l — 1) L el w() 4

Oy \I/(l) U
of (s—u)¥(1) _
_ E{O’?Afo}ﬁ {6 \Ij(l) 1} +e(s—u)\11(1)E {0'3|F0}
_ B (e — 1) L eut(1) 2 Be{els—wv® — 1}
(1) 0 w(1)

s—u 2 2 e“‘l'@) eu\p(l)
fels—we) g2 {\Il(l)\l’@) + T(2) — U(1) < V() e(l) >}

eu\I/(Q) _ eu\IJ(l)

_|_2€(s—u)\11(1)ﬁ00,2

(s—u)¥(1) 4 uT(2)
0 \11(2)—\11(1) +e oge .

Hence,

E{(Gn - Go)'|Fo} = 6/ E{G§a§|f0}ds+/x4n(dx)/ E {0} Fo}ds
(0,h] R (0,h]

= 1'4 X o] 0'4
—h(é Hw>+<n)o,
E{(Gh— Go)*|Fo} = h(1+o(1))ag.

This completes the proof. O
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