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Abstract:

• This paper proposes a method of utilizing spatial information to improve predictions
in one dimensional time series analysis using singular spectrum analysis (SSA). It em-
ploys inverse distance weighting for spatial averaging and subsequently multivariate
singular spectrum analysis (MSSA) for enhanced forecasts. The technique is exempli-
fied on a data set for rainfall recordings from Upper Austria.
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1. INTRODUCTION

Singular spectrum analysis (SSA) is a recently popularized tool for time

series analysis, cf. [10]. The origins of SSA can be traced to [2, 4, 6]. More infor-

mation about the history of SSA can be found in [22]. It is a model free approach

to time series analysis and literally any time series with a notable structure can be

analysed using SSA. Indeed it has a wide area of applications ranging from mathe-

matics and physics [10], to economics and financial mathematics [13, 14], environ-

mental sciences [15], social sciences [12], and medicine [7]. It is now implemented

under various software platforms, here we use Rssa, see [9] and a program called

CaterpilarSSA as can be downloaded from http://www.gistatgroup.com/cat/

programs.html. The aim of SSA is twofold:

i) To make a decomposition of the original series into a sum of a small

number of independent and interpretable components such as a slowly

varying trend, oscillatory components and a structure less noise;

ii) To reconstruct the decomposed series so as to make predictions without

the noise component.

MSSA is an extension of SSA and takes advantage of the (delay) embedding

procedure to obtain a similar formulation as SSA, albeit with larger matrices for

multidimensional time series. It has previously been successfully applied to the

study of climate fields, see [18]. Here we will employ it to jointly model an original

time series with a spatial average of which we believe will improve predictions by

pooling spatially dependent information.

One of the simplest but effective ways of generating spatial averages is

inverse distance weighting, which was first introduced, incidentally also for the

analysis of rainfall data in [11]. It was subsequently propagated in [20] and

became thereafter one of the most popular spatial interpolation techniques

(cf. eg. [16]).

Section 2 is devoted to reviewing the basics of SSA. Section 3 discusses

forecasting, while Section 4 briefly presents MSSA, an extension of the SSA tech-

niques to multivariate data and introduces a method of incorporating spatial

dependence to improve forecasts. The application is presented in Section 5 and

conclusions appear in Section 6.

2. SINGULAR SPECTRUM ANALYSIS

Most classical time series models devised for analysis and forecasting are

based on restrictive assumptions of normality, linearity and stationarity, cf. [3].
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A number of time series are deterministic, linear and dynamical systems thus

allowing linear models to be used for modelling and forecasting. However, many

time series exhibit nonlinear behaviour and therefore would require a method

that works well for both linear and nonlinear, stationary and nonstationary data

sets. SSA is one such technique.

2.1. A brief review of SSA

The Basic SSA, as it is commonly referred to, has two main stages: De-

composition and Reconstruction; each of which consists of two steps as described

below. The main concept in SSA is the aspect of separability of the original time

series into signal and noise so that the analysis and forecasting can be done on

signal in the absence of noise. Separability will be mentioned again later. In the

following discussion, we follow the approach in [10, Chapter 1].

Let FN = {f1, f2, ..., fN} be a real valued, nonzero (at least one fi 6= 0)

time series data of sufficient length N without missing values.

Stage 1: Decomposition

Step 1: Embedding

This (standard) time series procedure maps the one dimensional time series,

FN into multidimensional lagged vectors, X1 : ··· : XK , where

Xi = (f1, ..., fi+L−1)
T ∈ RL , 1 ≤ i ≤ K and K = N − L + 1 .

The single most important parameter of embedding is the window length, L, an

integer such that 2 < L < N . This parameter should always be large enough to

permit reasonable separability. It should not be greater the N/2 for optimum

results. See [8] for more on the choice of parameters for SSA. The vectors Xi,

called the lagged vectors or L lagged vectors (to emphasize their dimension) form

the K columns of the trajectory matrix X, i.e. X = [X1 : ··· : XK ].

Specifically X is given as follows:

X =















f1 f2 f3 ··· fK

f2 f3 f4 ··· fK+1

f3 f4 f5 ··· fK+2
...

. . .
...

. . .
...

fL fL+1 fL+2 ··· fN















.

The L×K matrix X is a Hankel matrix, i.e. the elements along the anti-diagonal,

i + j = constant are equal, for the ith row and j th column.
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Step 2: Singular Value Decomposition, SVD

This decomposes the trajectory matrix X and represents it as a sum of

elementary matrices (rank-one bi-orthogonal). This is done by:

i) Calculating the matrix S = XXT .

ii) Obtaining eigenvalues, λi of S such that λ1 ≥ λ2 ≥ ··· ≥ λL ≥ 0. Since

S is positive definite, the eigenvalues are positive.

iii) For each λi, calculate Ui and Vi, the left and right singular vectors

of X. The Ui s are orthonormal system of eigenvectors corresponding

to each λi such that 〈Ui, Uj〉 = 0, i 6= j (orthogonality) and ‖Ui‖ = 1

(unit norm property) and Vi = XT Ui/
√

λi.

iv) Set d = max(i : λi > 0) = rank(X). Then Xi =
√

λi UiV
T
i (i = 1, ..., d),

and the SVD of the trajectory matrix represents it as a sum of the Xi,

i.e.:

X =
d

∑

i=1

Xi

= X1 + X2 + ··· + Xd .

(2.1)

The collection (
√

λi, Ui, Vi) is called the ith eigentriple of X,
√

λi are the singular

values of X and the set
{√

λi

}d

i=1
is the spectrum of X.

The ratio λi

/

d
∑

i=1
λi is the characteristic contribution (or its share) of Xi to (2.1).

The first eigenvalue has the largest contribution and the last has the smallest.

If all the eigenvalues have multiplicity one, then (2.1) is uniquely determined.

Stage 2: Reconstruction

Step 3: Grouping

This corresponds to splitting the elementary matrices Xi into several groups

and summing the matrices within each group. If I = i1, ..., ip be one such group,

then the matrix XI corresponding to the group I is defined as:

XI = Xi1 + ··· + Xip .

For m such groups (disjoint), then X will be given as:

(2.2) X = XI1 + ··· + XIm
.

Matrices XIi
are called resultant matrices and the procedure of choosing the sets

I1, ..., Im is called the eigentriple grouping.

The contribution of component XI in (2.2) is measured by the share of the cor-

responding eigenvalues, i.e.
∑

i∈I

λi

/

d
∑

i=1
λi.
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Step 4: Diagonal Averaging

This (last) step transfers each resultant matrix into a time series, which

is an additive component of the initial (original) series, FN . If zij stands for an

element of a matrix Z, then the kth term of the resulting series is obtained by

averaging zij over all i, j such that i+ j = k +2 ([10, page 17, 24], [12, page 242]).

This is diagonal averaging or Hankelization of the matrix Z. The result of the

Hankelization of a matrix Z is the matrix HZ. Diagonal averaging is a linear

operation and maps the trajectory matrix of the initial series into the original

series itself, i.e. it transfers each matrix I into a time series which is an additive

component of the initial series FN .

2.2. Separability

As mentioned earlier, the main concept in studying SSA properties is sepa-

rability. This entails how well the components of the time series can be separated

from each other to allow forecasting to be meaningfully done and also reliable

construction of confidence bounds. Any time series may comprise trend (slowly

varying component), periodic or quasi periodic components (like seasonal varia-

tions or harmonics generally) and noise. These may be generalized into signal and

noise components. SSA decomposition of the series FN can only be successful if

the resulting additive components of the series are approximately separable from

each other, [10, 12].

If a time series FN can be split as FN = F
(1)
N + F

(2)
N , then the matrix terms

of the SVD step can be split into X(1) and X(2) respectively, i.e. X = X(1) +X(2).

This would imply that each row of X(1) is orthogonal to each row of X(2). Since

rows (and columns) of the trajectory matrix X are themselves subseries of the

initial series, the orthogonality condition of the rows of X(1) and X(2) is the condi-

tion of orthogonality of any subseries of length L and K = N −L+ 1 of the series

F
(1)
N to any subseries of the same length, F

(2)
N . If this holds, then F

(1)
N and F

(2)
N

are said to be weakly separable.

In geometrical terms, F
(1)
N and F

(2)
N are separable if and only if the subspace

ℓ(L,1) spanned by the columns of X(1) is orthogonal to the subspace ℓ(L,2) spanned

by the columns of X(2). One way to enhance separability of the series is auxiliary

information about the series to help in choosing the window length, for example,

if it is known that there is a seasonal component whose period is an integer,

it is advisable to choose the window length which is a factor of the period, [10,

page 44]. To choose eigentriples, one may use the graph of the logarithms of

eigenvalues in which explicit plateau in the eigenvalue spectra prompts ordinal

numbers of the eigentriple and a slowly decreasing sequence of singular values

corresponds to noise components.
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Another way to measure the separability between two series components,

F
(1)
N and F

(2)
N (i.e. if FN = F

(1)
N + F

(2)
N ) is to calculate the weighted correlation or

w-correlations between the two using the formula

ρw
12 =

〈

F
(1)
N , F

(2)
N

〉

w
∥

∥F
(1)
N

∥

∥

w

∥

∥F
(2)
N

∥

∥

w

,

where
∥

∥F
(i)
N

∥

∥

w
=

√

〈

F
(i)
N , F

(i)
N

〉

w
, i = 1, 2,

〈

F
(1)
N , F

(2)
N

〉

w
=

N−1
∑

i=0
wif

(1)
i f

(2)
i , and

the weights wi defined as follows:

Let L⋆ = min(L, K) and K⋆ = max(L, K). Then,

wi =















i + 1 for 0 6 i 6 L⋆ − 1 ,

L⋆ for L⋆ 6 i 6 K⋆ ,

N − i for K⋆ 6 i 6 N − 1 .

A natural hint for grouping is the matrix of the absolute values of the w-corre-

lations corresponding to a full decomposition. If the absolute value of the

w-correlation is small then the corresponding series are almost w-orthogonal

and is said to be weakly separable. The series F (1) and F (2) are w-orthogonal if
〈

F
(1)
N , F

(2)
N

〉

w
= 0, [10, 12].

Separability is analogous to independence of random variables whence the

covariance and correlation between such random variables are zero, [5, Section 4.5].

3. FORECASTING WITH SSA

Details of SSA Forecasting can be found in [10, Chapter 2, 5] and in [19].

We have three basic conditions:

1) Time series has structure.

2) A mechanism identifying this structure is found.

3) A method of time series continuation, based on the identified structure

is available.

In SSA, forecasting is done through application of linear recurrent formulae

(LRF) or equations. The class of series governed by LRF is rather wide; it

contains harmonics, polynomials and exponential series and is closed under term-

by-term addition and multiplication, [12]. An infinite series is governed by some

LRF if and only if it can be represented as a linear combination of products
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of exponential, polynomial and harmonic series. (The signal component of a

separable time series is always a linear combination of these series.)

An important property of SSA decomposition is that the original series

satisfies an LRF of the form fn = a1fn−1 + ··· + adfn−d for some dimension d;

a1, ..., ad are constants.

Thus for any N and L, there are at most d nonzero singular values in the

SVD of the trajectory matrix X and so even if L and K = N − L + 1 are larger

than d, we need at most d matrices Xi to reconstruct the series. If fn satisfies the

LRF above, it will always be represented as a sum of products of exponentials,

polynomials and harmonics, [10].

Alternatively put, if r < L, (r = number of terms in the SVD step), then

the series satisfies some LRF of some dimension d 6 r. This result also implies

that if dim(ℓr) < L, then the series satisfies a natural LRF of dimension L − 1.

Any such series satisfying an LRF can then be forecast for an arbitrary number

of steps using the LRF.

The selection of the resultant matrices in the third step of Basic SSA algo-

rithm implies selection of the r-dimensional space ℓr ∈ RL spanned by the corre-

sponding left singular vectors and if ℓr is non-vertical, it produces an appropriate

LRF which can be used in forecasting.

An LRF that governs a series with the help of SSA may be found as follows.

Let d be minimal dimension of all LRFs governing a time series FN . If the window

length L is greater than d and N is large enough, then the trajectory space of FN

is d dimensional. The trajectory space determines an LRF of dimension L − 1

that governs the time series. If this LRF is applied to the last terms of the

series, a forecast of the series is obtained. The same idea works for an additive

component F
(1)
N of FN . The assumption here is that F

(1)
N is (strongly) separable

from the residual F
(2)
N = FN − F

(1)
N for the selected window length L. Normally

(strong) separability of the components of a series implies that each component

satisfies some LRF, [10, Chapter 6]. If F
(2)
N is noise, then forecasting is done

for F
(1)
N . Thus using a selected set of eigentriples, estimation can be performed

on F
(1)
N and its trajectory space. The basic inputs for the SSA LRF for a series

FN include the window length L, N , linear space ℓv which is not a vertical space

and the number M of points to forecast. The linear space is used to obtain an

orthonormal basis P1, ..., Pr used in the forecasting process.

Forecasting is also closely linked to separability of the series as mentioned

above. If FN = F
(1)
N + F

(2)
N , then forecasting is done for the signal F

(1)
N in the

presence of the noise component F
(2)
N which is given as F

(2)
N = FN − F

(1)
N .
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[10, pages 95–107] gives an account of the forecasting algorithm and prop-

erties of LRFs.

Construction of confidence bounds can be done by either the empirical

method or the bootstrap technique. The empirical confidence intervals are con-

structed for the entire series, which is assumed to have the same structure in the

future. Bootstrap bounds are obtained for the continuation of the signal, [10, 12].

4. MSSA WITH INVERSE DISTANCE WEIGHTING

Data mining is an automated search for knowledge hidden in large col-

lections of data set attributes. In environmental science and other areas where

space-time behaviour is an important focus of investigation, it is not uncommon

to have attributes whose values change with space and time and quite often, due

to spillovers or unobservable variables or omitted factors. This leads to spatial

dependence that subsequently influence data analysis.

In light of spatial dependence, an inverse distance weighting technique, see

[1, 20], is proposed as a means of incorporating spatial information to improve the

prediction. We construct an additional explanatory variable by taking spatially

weighted averages

ȳt =
n

∑

i=1

wi yit where wi =
1/di

n
∑

i=1
(1/di)

,

with di denoting distances between the target location and the i th measurement

site.

Multivariate (or multichannel) Singular Spectrum Analysis (MSSA) is an

extension of SSA to multidimensional data.

Assume that yj =
(

y
(1)
j , ..., y

(m)
j

)

is an m-variate time series, L the window

length, X(i) (i = 1, ..., m) the trajectory matrices of the one dimensional time

series {y(i)
j } (i = 1, ..., m), the trajectory matrix X of the multivariate series is

given as X = (X(1), ..., X(r), ..., X(m)); [10, 17]. Note that X is now an L × mK

block Hankel matrix (there are m blocks of X(i) matrices).

The aims and techniques of MSSA are straightforward extensions to those

of SSA and so are the algorithms. Hence we refrain from any further discussion

regarding the theory of MSSA. For more details see [21, 17]. The advantage of

MSSA over SSA, however, is that it automatically utilizes dependencies among

the time series in the analysis. Consequently, the quality of MSSA forecasts are

typically improved when the series are more strongly correlated.
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The above pooling of the spatial information by inverse distance weighting

leads to a new time series ȳt that can be used as a kind of covariable to the Linz

rainfall series to improve the predictions. We thus now employ a MSSA with the

original Linz series complemented by the pooled one, i.e. m = 2 in this case. Of

course this can be performed for all the time series, not only the Linz one and

even jointly, but we will refrain from this for the sake of expository simplicity.

5. THE APPLICATION

The complete data set consisted of N = 192 monthly recordings of rainfall

at several locations in Upper Austria for the period 1994 Jan to 2009 Dec (see

Figure 1 for a depiction of the measurement locations with the solid dot indicating

Linz). The data is provided by the Zentralanstalt für Meteorologie in Austria and

is described in more detail in [15].

Figure 1: Upper-Austrian rainfall measurement network.
Empty circle indicate measurement locations, solid circle Linz.

The time series graph Figure 2 shows the general behaviour of the logarithm

of Linz rainfall series and the reconstructed series for the period above. Since it is

annual data, it provides auxiliary information for the choice of the window length

as a factor of the period, 12 monthlies, hence the choice of L = 96 = N/2 as the

standard window length for the analysis. It can be inferred from the figure that

the grouping employed yielded a reconstructed series fairly close to the original

hence rather reliable in-sample predictions.
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Figure 2: Initial (grey) and SSA reconstructed (black) series for
Linz monthly rainfall data in logs; residuals below.

The plot in Figure 3 gives the eigenvalue graph. This graph is a plot of log-

arithms of the first 42 eigenvalues used in the reconstruction stage. As mentioned

earlier, it shows the plateau for ordinal numbers in the eigentriple grouping. The

remaining eigenvalues constitute the noise series and have not been included here.

This graph shows a high percentage contribution of the first eigenvalue with a

plateau for the second and third eigenvalues implying a particular type of sig-

nal. The other eigenvalues are gradually and slowly decreasing implying a strong

tendency to noise after the 42nd eigenvalue.

Figure 3: Eigenvalue graph for the first 42 eigenvalues used
in the reconstruction stage of MSSA.
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The graph in Figure 4 shows the w-correlations for the reconstructed com-

ponents on a 20 grade grey scale from white to black corresponding to absolute

values of correlations from 0 to 1, see [12, 10]. It shows the different eigenvalue

groupings, even for the eigenvalues corresponding to the noise. This graph further

illustrates the results of the grouping step and confirms the separation of signal

from the noise for the original series as it clearly marks off the lags below 42.

Furthermore some other possible eigentriple groupings were tried but the predic-

tions were not better than for this particular grouping.

Figure 4: Matrix of w-correlations from the reconstructed
components (1–42) and error (43–96) in the MSSA.

The following graphs in Figure 5 show the time series for the spatially

pooled series and its effect on the Linz data series for the MSSA analysis. For

the MSSA analysis we used two series, the Linz data and the inverse distance

weighted average by employing the Euclidean distances di between Linz and each

of the 36 other locations. Thus the nearer the locations to Linz, the stronger

the weighting and vice versa. For missing values in the data, a new weight is

calculated by excluding the corresponding distance measure from the wi s.

The in-sample SSA prediction was done with solely the Linz data to obtain

the SSA prediction of Figure 1. Its root mean square error (RMSESSA) was found

to be 0.247. The weighted average, using the inverse distance technique, was then

included as a second series to study its effects, due to spatial spillover, on the

Linz data for the MSSA prediction. This is shown in Figure 5. Its RMSEMSSA

was found to be 0.245 and slightly less than RMSESSA. This indicates that the
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suggested technique of including spatial dependence in the SSA analysis may ac-

tually improve the forecasts. However, our results from other groupings show a

less clear picture, particularly if not the standard window length of L = N/2 was

used, and in further work, we want to investigate the capabilities of MSSA per-

forming ensemble spatio-temporal predictions for the whole network of stations.

Figure 5: Time series for the inversely distance weighted data.
Initial (black) and MSSA reconstructed (grey) series
for Linz monthly rainfall data in logs; residuals below.

6. CONCLUSION

This short presentation illustrates the basic capabilities of SSA in separat-

ing the components of a time series and in forecasting without any assumptions

about the time series data. It brings out the key advantage of the methodology of

SSA in applied statistics: that of inference and prediction without specifying any

particular model structure. Its extension to multidimensional data analysis, the

MSSA is yet another elegant procedure to handle multidimensional data analysis

without necessarily pre-specifying dependence structures. The suggested method

of exploiting spatial dependence within the concept of MSSA is promising, par-

ticularly for the in-sample imputation of missing data. As mentioned earlier,

we require further studies and refinements for assessing the capabilities of the

technique for the out-of-sample predictions.
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