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Abstract:

• Modeling real data sets, even when we have some potential (as)symmetric models for
the underlying data distribution, is always a very difficult task due to some uncon-
trollable perturbation factors. The analysis of different data sets from diverse areas
of application, and in particular from statistical process control (SPC), leads us to
notice that they usually exhibit moderate to strong asymmetry as well as light to
heavy tails, which leads us to conclude that in most of the cases, fitting a normal
distribution to the data is not the best option, despite of the simplicity and popu-
larity of the Gaussian distribution. In this paper we consider a class of skew-normal
models that include the normal distribution as a particular member. Some properties
of the distributions belonging to this class are enhanced in order to motivate their use
in applications. To monitor industrial processes some control charts for skew-normal
and bivariate normal processes are developed, and their performance analyzed. An
application with a real data set from a cork stopper’s process production is presented.
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1. INTRODUCTION

The most commonly used standard procedures of statistical quality control

(SQC), control charts and acceptance sampling plans, are often implemented un-

der the assumption of normal data, which rarely holds in practice. The analysis

of several data sets from diverse areas of application, such as, statistical process

control (SPC), reliability, telecommunications, environment, climatology and fi-

nance, among others, leads us to notice that this type of data usually exhibit

moderate to strong asymmetry as well as light to heavy tails. Thus, despite

of the simplicity and popularity of the Gaussian distribution, we conclude that

in most of the cases, fitting a normal distribution to the data is not the best

option. On the other side, modeling real data sets, even when we have some

potential (as)symmetric models for the underlying data distribution, is always a

very difficult task due to some uncontrollable perturbation factors.

This paper focus on the parametric family of skew-normal distributions

introduced by O’Hagan and Leonard (1976), and investigated with more detail

by Azzalini (1985, 1986, 2005), among others.

Definition 1.1. A random variable (rv) Y is said to have a location-scale

skew-normal distribution, with location at λ, scale at δ and shape parameter α,

and we denote Y ∼ SN(λ, δ2, α), if its probability density function (pdf) is given

by

(1.1) f(y; λ, δ, α) =
2

δ
φ

(
y −λ

δ

)
Φ

(
α

y −λ

δ

)
, y ∈R (α, λ∈R, δ ∈R

+) ,

where φ and Φ denote, as usual, the pdf and the cumulative distribution function

(cdf) of the standard normal distribution, respectively. If λ = 0 and δ = 1, we

obtain the standard skew-normal distribution, denoted by SN(α).

This class of distributions includes models with different levels of skewness

and kurtosis, apart from the normal distribution itself (α = 0). In this sense, it

can be considered an extension of the normal family. Allowing departures from

the normal model, by the introduction of the extra parameter α that controls the

skewness, its use in applications will provide more robustness in inferential meth-

ods, and perhaps better models to fit the data, for instance, when the empirical

distribution has a shape similar to the normal, but exhibits a slight asymmetry.

Note that even in potential normal situations there is some possibility of hav-

ing disturbances in the data, and the skew-normal family of distributions can

describe the process data in a more reliable and robust way. In applications it

is also important to have the possibility of regulating the thickness of the tails,

apart of the skewness.
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The cdf of the skew-normal rv Y defined in (1.1) is given by

(1.2) F (y; λ, δ, α) = Φ

(
y −λ

δ

)
−2 T

(
y −λ

δ
, α

)
, y ∈R (α, λ∈R, δ ∈R

+) ,

where T (h, b) is the Owen’s T function (integral of the standard normal bivariate

density, bounded by x = h, y = 0 and y = b x), tabulated in Owen (1956), and

that can be defined by T (h, b) =
1

2π

∫ b

0

{
e−

1
2 h2(1+x2)/(1+ x2)

}
dx, (b, h) ∈ R×R.

Although the pdf in (1.1) has a very simple expression the same does not

happen with the cdf in (1.2), but this is not a problem that leads us to avoid

the use of the skew-normal distribution. We have access to the R package ‘sn’

(version 0.4-17) developed by Azzalini (2011), for instance, that provides func-

tions related to the skew-normal distribution, including the density function, the

distribution function, the quantile function, random number generators and max-

imum likelihood estimates. The moment generating function of the rv Y is given

by MY (t) = 2 exp
(
λt + δ2t2/2

)
Φ(θδ t), ∀ t ∈ R, where θ = α/

√
1 + α2 ∈ (−1, 1),

and there exist finite moments of all orders.

Other classes of skew normal distributions, for the univariate and the mul-

tivariate case, together with the related classes of skew-t distributions, have been

recently revisited and studied in the literature. For details see Fernandez and

Steel (1998), Abtahi et al. (2011) and Jamalizadeb et al. (2011), among others.

In this paper some control charts based on the skew-normal distribution are pro-

posed. They still are parametric control charts, and should be compared with

the so-called nonparametric or distribution-free control charts that require even

less restrictive assumptions, a topic out of the scope of this paper. We merely

mention that the nonparametric charts have the same in-control run-length dis-

tribution for every continuous distribution, and thus, are by definition robust. In

the literature several Shewhart, CUSUM and EWMA type nonparametric control

charts have been proposed. Most of them are devised to monitor the location and

are based on well-known nonparametric test statistics. For a recent overview on

the latest developments on nonparametric control charts, see Chakraborti et al.

(2011) and references therein.

This paper is organized as follows. Section 2 provides some information

about the family of skew-normal distributions, in what concerns properties, ran-

dom sample generation and inference. Section 3 presents bootstrap control charts

for skew-normal processes and some simulation results about their performance.

Control charts based on specific statistics with a skew normal distribution are

considered to monitor bivariate normal processes, and their properties evaluated.

In Section 4, an application in the field of SQC is provided. The paper ends with

some conclusions and recommendations in Section 5.
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2. THE UNIVARIATE SKEW-NORMAL FAMILY OF DISTRI-

BUTIONS

Without loss of generality, we are going to enhance some properties of this

family of distributions by considering a standard skew-normal rv X, with pdf

(2.1) f(x; α) = 2φ(x)Φ(αx) , x∈R (α∈R) .

Note that, if Y ∼ SN(λ, δ2, α) then X =
Y − λ

δ
∼ SN(α).

2.1. An overview of some properties

In Figure 1 we illustrate the shape of the pdf of X for several values of α. We

easily observe the shape parameter α controls the direction and the magnitude

of the skewness exhibited by the pdf. As α → ±∞ the asymmetry of the pdf

increases, and if the sign of α changes, the pdf is reflected on the opposite side of

the vertical axis. For α > 0 the pdf exhibits positive asymmetry, and for α < 0

the asymmetry is negative.
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Figure 1: Density functions of standard skew-normal distributions with shape
parameter α and the negative and positive half-normal pdf’s.

From the Definition 2.1, we easily prove the following results:

Proposition 2.1. As α → ±∞ the pdf of the rv X converges to a half-

normal distribution. If α → +∞, the pdf converges to f(x) = 2φ(x), x ≥ 0, and

if α → −∞, the pdf converges to f(x) = 2φ(x), x ≤ 0.
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Proposition 2.2. If X ∼ SN(α) then the rv W = |X| has a half-normal

distribution with pdf given by f(w) = 2φ(w), w ≥ 0, and the rv T = X2, the

square of a half-normal distribution, has a pdf given by f(t) = 1√
2π

t−1/2 e−t2/2,

t ≥ 0, i.e., has a chi-square distribution with 1 degree of freedom.

Denoting the usual sign function by sign(·) and taking θ = α/
√

1 + α2, the

rv X with a standard skew-normal distribution SN(α) has mean value given by

E(X) =

√
2

π
θ −→

α→±∞
sign(α) × 0.79788 ,

and variance equal to

V(X) = 1 − 2

π
θ2 −→

α→±∞
0.36338 .

The Fisher coefficient of skewness is given by

β1 =
(4 − π)

√
2 θ6/π3

√
−8θ6/π3 + 12 θ4/π2 − 6θ2/π + 1

−→
α→±∞

sign(α) × 0.99527 .

From these expressions we easily observe that the mean value and the de-

gree of skewness of the SN(α) distribution increases with |α| while the variance

decreases, but they all converge to a finite value.

Taking into consideration the large asymmetry of the SN(α) distribution

when α → ±∞, and the fact that the kurtosis coefficient expresses a balanced

weight of the two-tails, we shall here evaluate separately the right-tail weight and

the left-tail weight of the SN(α) distribution through the coefficients τR and τL

defined by

τR :=

(
F−1(0.99) − F−1(0.5)

F−1(0.75) − F−1(0.5)

)(
Φ−1(0.99) − Φ−1(0.5)

Φ−1(0.75) − Φ−1(0.5)

)−1

and

τL :=

(
F−1(0.5) − F−1(0.01)

F−1(0.5) − F−1(0.25)

)(
Φ−1(0.5) − Φ−1(0.01)

Φ−1(0.5) − Φ−1(0.25)

)−1

,

where F−1 and Φ−1 denote the inverse functions of the cdf of the SN(α) and of

the cdf of the standard normal distributions, respectively. These coefficients are

based on the tail-weight coefficient τ defined in Hoaglin et al. (1983) for symmetric

distributions. For the normal distribution, τL = τR = 1. If the distribution F has

a right (left) tail heavier than the normal tails, τR > 1 (τL > 1), and if F has a

right (left) tail thinner than the normal tails, τR < 1 (τL < 1).
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Table 1 presents the mean value, the standard deviation, the median, the

skewness coefficient, the left-tail weight and the right-tail weight of the SN(α)

distribution for several values of α > 0. From the values of Table 1 we notice

that when α increases from 0 to +∞, the mean value, the median and the coef-

ficient of skewness increase, but the variance decreases, as expected. The SN(α)

distribution has a right-tail heavier than the normal tail, and a left-tail thin-

ner than the normal tail. Moreover, the right tail-weight of the SN(α) quickly

converges to 1.1585, the right tail-weight of the half-normal distribution, while

the left tail-weight of the SN(α) converges more slowly to the left tail-weight of

the half-normal distribution, 0.5393, a value very smaller than the tail-weight of

the normal distribution. When α decreases from 0 to −∞ we easily obtain the

values of these parameters (coefficients) from the values of this table, taking into

consideration that if the sign of α changes, the pdf is reflected on the opposite

side of the vertical axis.

Table 1: Mean value (µ), standard deviation (σ), median (µe), skewness
coefficient (β1), left-tail weight (τL) and right-tail weight (τR)
of the SN(α) distribution.

α µ σ µe β1 τL τR

0 0 1 0 0 1 1

0.3 0.2293 0.9734 0.2284 0.0056 0.9986 1.0017

0.5 0.3568 0.9342 0.3531 0.0239 0.9946 1.0077

1 0.5642 0.8256 0.5450 0.1369 0.9718 1.0457

2 0.7136 0.7005 0.6554 0.4538 0.9008 1.1284

3 0.7569 0.6535 0.6720 0.6670 0.8291 1.1540

5 0.7824 0.6228 0.6748 0.8510 0.7222 1.1584

10 0.7939 0.6080 0.6745 0.9556 0.6124 1.1585

+∞ 0.7979 0.6028 0.6745 0.9953 0.5393 1.1585

2.2. Inference

Regarding the estimation of the parameters in the location-scale skew-

normal family of distributions, SN(λ, δ2, α), we are only able to obtain numerical

maximum likelihood estimates (MLE), and thus, a closed form for their sampling

distribution is not available.

Let (Y1, ..., Yn) be a sample of size n from a SN(λ, δ2, α) distribution. The

likelihood function is given by

(2.2) LSN (λ, δ, α) =
2n

δn

n∏

i=1

φ

(
yi −λ

δ

) n∏

i=1

Φ

(
α

yi −λ

δ

)
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and the log-likelihood is given by

lnLSN (λ, δ, α) = n ln 2 − n ln δ +
n∑

i=1

lnφ

(
yi −λ

δ

)
+

n∑

i=1

lnΦ

(
α

yi −λ

δ

)
,

where ln(·) denotes the natural logarithm function.

The MLE estimates of λ, δ and α, denoted λ̂, δ̂ and α̂, are the numerical

solution of the system of equations

(2.3)






δ2 =
1

n

n∑

i=1

(yi −λ)2 ,

α
n∑

i=1

φ
(
α yi−λ

δ

)

Φ
(
α yi−λ

δ

) =
n∑

i=1

yi −λ

δ
,

n∑

i=1

yi−λ
δ φ

(
αyi−λ

δ

)

Φ
(
α yi−λ

δ

) = 0 .

We may have some problems to obtain these estimates in the case of small-

to-moderate values of the sample size n as well as for values of α close to zero.

Note that if all the values of the sample are positive (negative), for fixed values

of λ and δ, the log-likelihood function is an increasing (decreasing) function of α,

producing therefore boundary estimates, and for α = 0, the expected Fisher

information matrix is singular.

Several authors have given important suggestions to find these estimates.

For instance, for a fixed value of α, solve the last two equations of (2.3) for

obtaining λ and δ, taking into account the first equation, and then, repeat these

steps for a reasonable range of values of α. Another suggestion to get around

these problems of estimation is to consider another re-parametrization for the

skew-normal distributions SN(λ, δ2, α) in (1.1), in terms of the mean value µ, the

standard deviation σ and the asymmetry coefficient β1. For details in this topic

see, for instance, Azzalini (1985), Azzalini and Capitanio (1999) and Azzalini and

Regoli (2012), among others.

To decide between the use of a normal or a skew-normal distribution to fit

the data, apart from the information given by the histogram associated to the

data sample and the fitted pdf estimated by maximum likelihood, we can advance

to the confirmatory phase with a likelihood ratio test.

To test the normal distribution against a skew-normal distribution, i.e.,

the hypotheses H0 : X ∼ SN(λ, δ2, α = 0) versus H1 : X ∼ SN(λ, δ2, α 6= 0), the
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likelihood ratio statistic Λ is given by

(2.4) Λ =
LSN

(
λ̂, δ̂, α = 0)

LSN

(
λ̂, δ̂, α̂

) ,

where LSN(λ,δ,α), given in (2.2), denotes the likelihood function for the SN(λ,δ2,α)

distribution. Under the null hypothesis, −2 logΛ is distributed as a chi-square

distribution with 1 degree of freedom. For a large observed value of −2 logΛ, we

reject the null hypothesis, i.e., there is a strong evidence that the SN
(
λ̂, δ̂2, α̂

)

distribution presents a better fit than the normal N(µ̂, σ̂2) distribution to the

data set under consideration.

2.3. Other stochastic results

Among other results valid for the skew-normal distribution, we shall refer

the following ones:

Proposition 2.3. If Z1 and Z2 are independent random variables with

standard normal distribution, then Z1|Z2≤αZ1
∼ SN (α). Also,

X :=

{
Z2 if Z1 < αZ2

−Z2 otherwise
∼ SN(α) .

Proposition 2.3 allows us to write the following algorithm for the generation

of random samples, (Y1, ..., Yn), of size n, from a SN(λ, δ2, α) distribution.

Algorithm 2.1. Repeat Steps 1.–4. for i = 1 to n:

1. Generate two independent values, Z1 and Z2, from a N(0,1) distribution;

2. Compute T = α Z2;

3. The value Xi =

{
Z2 if Z1 < T

−Z2 otherwise
comes from a SN(α);

4. The value Yi = λ + δXi comes from a SN(λ, δ2, α).

Figure 2 presents four histograms associated to samples of size one thou-

sand generated from a SN(α) distribution with shape parameter α = 0, 1, 2, 3,

respectively, together with the pdf’s of a normal and of a skew normal distribu-

tion fitted to the data by maximum likelihood. From Figure 2 we easily observe

that as α increases the differences between the two estimated pdf’s become larger,
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and the normal fit is not the most appropriate to describe the data. Note that,

even in potential normal processes, real data are not exactly normal and usually

exhibit some level of asymmetry. Thus, in practice, we advise the use of the

skew-normal distribution to model the data.
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Figure 2: X1 ∼ SN(0), X2 ∼ SN(1), X3 ∼ SN(2), X4 ∼ SN(3).

Histograms and estimated pdf’s, SN(λ̂, δ̂, α̂) and N(µ̂, σ̂).

Another result with high relevance for applications, which allows us to

design, in Section 4, control charts to monitor specific bivariate normal processes,

is the one presented in Proposition 2.4.

Proposition 2.4. Let (Z1, Z2) be a bivariate normal variable, with E(Z1)

= E(Z2) = 0, V (Z1) = V (Z2) = 1 and corr(Z1, Z2) = ρ. Let Tm = min(Z1, Z2)

and TM = max(Z1, Z2), where min(·) and max(·) denote the minimum and the

maximum operators, respectively.

i. If ρ = 1, Tm and TM have a N(0, 1) distribution.

ii. If ρ =−1, Tm and TM have half-normal distributions, being Tm ≤ 0, ∀m

and TM ≥ 0, ∀M.

iii. If |ρ| 6= 1, Tm ∼ SN(−α) and TM ∼ SN(α), with α =

√
1 − ρ

1 + ρ
.

In particular, if Z1 and Z2 are independent variables, ρ = 0, and then,

Tm ∼ SN(−1) and TM ∼ SN(1).
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3. CONTROL CHARTS BASED ON THE SKEW-NORMAL DIS-

TRIBUTION

The most commonly used charts for monitoring industrial processes, or

more precisely, a quality characteristic X at the targets µ0 and σ0, the desired

mean value and standard deviation of X, respectively, are the Shewhart con-

trol charts with 3-sigma control limits. More precisely, the sample mean chart

(M -chart), the sample standard deviation chart (S-chart) and the sample range

chart (R-chart), which are usually developed under the assumptions of indepen-

dent and normally distributed data. Additionally, the target values µ0 and σ0 are

not usually fixed given values, and we have to estimate them, in order to obtain

the control limits of the chart.

The ability of a control chart to detect process changes is usually measured

by the expected number of samples taken before the chart signals, i.e., by its

ARL (average run length), together with the standard deviation of the run length

distribution, SDRL.

Whenever implementing a control chart, a practical advice is that 3-sigma

control limits should be avoided whenever the distribution of the control statistic

is very asymmetric. In such a case, it is preferable to fix the control limits of

the chart at adequate probability quantiles of the control statistic distribution, in

order to obtain a fixed ARL when the process is in-control, usually 200, 370.4, 500

or 1000, or equivalently, the desired FAR (false alarm rate), i.e., the probability

that an observation is considered as out-of-control when the process is actually

in-control, usually 0.005, 0.0027, 0.002 or 0.001. General details about Shewhart

control charts can be found, for instance, in Montgomery (2005).

In the case of skew-normal processes we do not have explicit formulas for

the MLE estimators of the location, scale and shape parameters, and thus, a

closed-form for their sampling distribution is not available. The same happens

for other statistics of interest, such as, the sample mean, the sample standard

deviation, the sample range and the sample percentiles, among others. Thus,

to monitor skew-normal processes, the bootstrap control charts are very useful,

despite of the disadvantages of a highly time-consuming Phase I. Moreover, many

papers, see for instance, Seppala et al. (1995), Liu and Tang (1996) and Jones

and Woodall (1998), refer that for skewed distributions, bootstrap control charts

have on average a better performance than the Shewhart control charts. Other

details about the bootstrap methodology and bootstrap control charts can be

found, for instance, in Efron and Tibshirani (1993), Bai and Choi (1995), Nichols

and Padgett (2006) and Lio and Park (2008, 2010).
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3.1. Bootstrap control charts for skew-normal processes

To construct a bootstrap control chart we only use the sample data to

estimate the sampling distribution of the parameter estimator, and then, to ob-

tain appropriate control limits. Thus, only the usual assumptions of Phase II

of SPC are required: stable process and independent and identically distributed

subgroup observations. The following Algorithm 3.1, similar to the ones proposed

in Nichols and Padgett (2006) and Lio and Park (2008, 2010), can be used to im-

plement bootstrap control charts for subgroup samples of size n, to monitor the

process mean value and the process standard deviation of a skew-normal distri-

bution, respectively. This algorithm can be easily modified in order to implement

bootstrap control charts for other parameters of interest.

Algorithm 3.1.

Phase I: Estimation and computation of the control limits

1. From in-control and stable process, observe k, say 25 or 30, random

samples of size n, assuming the observations are independent and come

from a skew-normal distribution, SN(λ, δ2, α).

2. Compute the MLE estimates of λ, δ and α, using the pooled sample of

size k×n.

3. Generate a parametric bootstrap sample of size n, (x∗
1, ..., x

∗
n), from a

skew-normal distribution and using the MLEs obtained in Step 2. as

the distribution parameters.

4. Select the Step associated to the chart you want to implement:

i. Two-sided bootstrap M-chart to monitor the process mean

value µ: from the bootstrap subgroup sample obtained in Step 3.,

compute the sample mean, µ̂∗ = x∗.

ii. Upper one-sided bootstrap S-chart to monitor the process

standard deviation σ: from the bootstrap subgroup sample ob-

tained in Step 3., compute the sample standard deviation, σ̂∗ = s∗.

5. Repeat Steps 3.–4., a large number of times, say B = 10 000 times,

obtaining B bootstrap estimates of the parameter of interest, in our

case, the process mean value or the standard deviation.

6. Let γ be the desired false alarm rate (FAR) of the chart. Using the B

bootstrap estimates obtained in Step 5.,

i. Find the 100(γ/2)th and 100(1−γ/2)th quantiles of the distribu-

tion of µ̂∗, i.e., the lower control limit LCL and the upper control

limit UCL for the bootstrap M -chart of FAR=γ, respectively.

ii. Find the 100(1−γ)th quantile of the distribution of σ̂∗, i.e., the

upper control limit UCL for the bootstrap S-chart of FAR=γ. The

lower control limit LCL is placed at 0.



The Skew-Normal Distribution in SPC 95

Phase II: Process monitoring

7. Take subgroup samples of size n from the process at regular time in-

tervals. For each subgroup, compute the estimate x and s.

8. Decision:

i. If x falls between LCL and UCL, the process is assumed to be in-

control (targeting the nominal mean value); otherwise, i.e., if the

estimate falls below the LCL or above the UCL, the chart signals

that the process may be out-of-control.

ii. If s falls below the UCL, the process is assumed to be in-control

(targeting the nominal standard deviation); otherwise, the chart

signals that the process may be out-of-control.

In order to get information about the robustness of the bootstrap control

limits, we must repeat Steps 1.–6. of Algorithm 3.1 a large number of times, say

r = 1000, and then, compute the average of the obtained control limits, UCL

and LCL, and their associated variances. The simulations must be carried out

with different subgroup sample sizes, n, and different levels of FAR, γ. From

this simulation study one would expect that, when the subgroup sample size

n increases, the control limits get closer together, and when FAR decreases, the

limits become farther apart.

In this study, using Algorithm 3.1, we have implemented M and S bootstrap

control charts for subgroups of size n = 5, to monitor the process mean value of

a skew-normal process at a target µ0, and the process standard deviation at a

target σ0. Without loss of generality we assume µ0 = 0, σ0 = 1 and α = 0. The

main interest is to detect increases or decreases in µ and to detect increases in σ

(and not decreases in σ). The FAR of the charts is equal to γ = 0.0027, which

corresponds to an in-control ARL of approximately 370.4. In Phase I we have

considered k = 25 subgroups of size n = 5.

The performance of these bootstrap control charts to detect changes in the

process parameters is evaluated in terms of the ARL, for a few different magnitude

changes. When the process changes from the in-control state to an out-of-control

state we assume that µ = µ0 → µ1 = µ0 + δσ0, δ 6= 0 and/or σ = σ0 → σ1 = θσ0,

θ > 1. In this work we have repeated 30 times Steps 1.–6. of Algorithm 3.1, and

then, we have chosen a pair of control limits that allow us to obtain an in-control

ARL approximately equal to 370.4, discarding the most extreme upper and lower

control limits. Our goal, although out of the scope of this paper, is to improve

this algorithm in order to obtain more accurate control limits without replication.

Table 2 presents the ARL values of the bootstrap M -chart and S-chart, and

the associated standard deviation SDRL. Indeed, as can be seen from Table 2,

the bootstrap control charts present an interesting performance, even when we
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consider small changes. As the magnitude of the change increases, the ARL values

decrease fast. Despite of the fact that, in SPC, the classical M and S control

charts are much more popular, these charts are good competitors, even for the

case of normal data if we have to estimate the target process values.

Table 2: ARL and SDRL of the bootstrap M and S charts for subgroups
of size n = 5. In-control, µ = µ0 (δ = 0) and σ = σ0 (θ = 1);
when the process is out-of-control we assume either µ → µ1 = δ 6= 0
or σ → σ1 = θ > 1.

M -chart (µ → µ1) S-chart (σ → σ1)

δ ARL SDRL θ ARL SDRL

0.0 370.5 (371.8) 1.0 370.7 (369.0)

0.1 371.7 (377.2) 1.1 112.8 (112.3)

0.3 168.3 (169.7) 1.2 45.1 (44.4)

0.5 61.5 (61.2) 1.3 22.5 (22.0)

1.0 8.4 (7.8) 1.4 12.9 (12.2)

1.5 2.4 (1.8) 1.5 8.4 (7.9)

2.0 1.3 (0.6) 1.6 6.1 (5.5)

2.5 1.0 (0.2) 1.7 4.6 (4.1)

−0.1 261.9 (261.4) 1.8 3.7 (3.2)

−0.3 90.7 (89.9) 1.9 3.1 (2.5)

−0.5 33.4 (32.4) 2.0 2.6 (2.1)

−1.0 5.0 (4.6) 2.5 1.6 (1.0)

−1.5 1.8 (1.2)

−2.0 1.1 (0.4)

−2.5 1.0 (0.1)

3.2. Control charts for bivariate normal processes

Let (X1, X2) be a bivariate normal process and, without loss of generality,

assume that the quality characteristics X1 and X2 are standard normal variables,

possibly correlated, denoting ρ the correlation coefficient. The result presented

in Proposition 2.4 allows us to design control charts based on the statistics Tm =

min(X1, X2) and TM = max(X1, X2) to monitor this bivariate normal process.

These univariate statistics permit the implementation of control charts,

here denoted Tm-chart and TM -chart, to monitor simultaneously two related qual-

ity characteristics, alternatives to the multivariate control charts based on the

Hotelling (1947) statistic and its variants.
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Moreover, these charts can be used when in each time of sampling we only

have available one observation from each variable of interest, X1 and X2, but can

be extended to other situations. For instance, when the distributions of X1 and X2

have different parameters, replacing X1 and X2 by standardized data, and also

when we have samples of size greater than one from each of the variables X1 and

X2, replacing the observations of the samples by the standardized sample means.

First we have implemented a two-sided TM chart to detect changes in µ,

from µ0 = 0 to µ1 = µ0 + δ σ0, δ 6= 0, assuming that the standard deviation is

kept at σ0 = 1. We have considered different magnitude changes, and apart from

independent data we have also considered correlated data with different levels

of positive and negative correlation. The obtained ARL values are presented in

Table 3.

Table 3: ARL of the two-sided TM -chart. Xi ∼ N(µ, σ), i = 1, 2, corr(X1,X2) = ρ.
In-control: µ = µ0 (δ = 0) and σ = σ0 = 1; when the process is out-of-
control, we assume that only µ → µ1 = δ 6= 0.

H
H

H
H

H
δ

ρ 0.0 0.1 0.25 0.5 0.9 1.0 −0.25 −0.5

0.0 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4

0.1 361.6 359.5 357.1 354.2 352.7 352.9 368.4 379.6

0.3 249.7 248.6 247.4 247.0 251.0 253.1 253.5 258.7

0.5 144.1 144.0 144.4 145.9 152.5 155.2 144.7 145.5

1.0 36.7 36.9 37.3 38.6 42.5 43.9 36.5 36.4

1.5 11.6 11.7 12.0 12.7 14.4 15.0 11.4 11.3

2.0 4.6 4.7 4.9 5.2 6.0 6.3 4.5 4.4

2.5 2.4 2.4 2.5 2.7 3.1 3.2 2.2 2.2

−0.1 330.8 334.7 339.6 345.9 352.1 352.9 318.2 298.2

−0.3 196.1 204.6 215.9 231.6 249.9 253.1 170.6 135.9

−0.5 100.8 107.9 117.9 132.6 151.5 155.2 80.6 56.8

−1.0 21.7 24.1 27.7 33.5 42.0 43.9 15.7 9.7

−1.5 6.7 7.5 8.8 10.9 14.2 15.0 4.8 3.1

−2.0 2.9 3.2 3.7 4.6 6.0 6.3 2.2 1.7

−2.5 1.7 1.9 2.1 2.4 3.1 3.2 1.4 1.2

From these values we observe that as the magnitude changes increases, the

ARL decreases, as expected, and that reductions in µ are detected faster than

increases. We easily observe that the level of correlation ρ does not have a great

impact on the performance of the chart. However, if the quality characteristics,

X1 and X2, are positively correlated, the ARL’s become larger as the level of

correlation increases, i.e., the chart becomes less efficient to detect the change.
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Table 4: ARL of the upper one-sided TM -chart. Xi ∼N(µ,σ), i = 1, 2, corr(X1,X2) = ρ.
In-control: µ = µ0 (δ = 0) and σ = σ0 (θ = 1); when the process is out-of-
control, µ → µ1 = δ > 0 and/or σ → σ1 = θ > 1.

P
P

P
P

P
P

PP
δ θ

ρ 0.0 0.1 0.25 0.5 0.9 1.0 −0.25 −0.5

0.0 1.0 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4

1.1 156.7 156.9 157.4 159.3 167.1 175.0 156.6 156.6

1.5 22.2 22.4 22.8 23.8 27.6 31.4 22.0 22.0

2.0 7.7 7.9 8.1 8.6 10.4 12.2 7.6 7.5

2.5 4.6 4.7 4.9 5.2 6.4 7.5 4.5 4.4

0.1 1.0 268.0 268.1 268.4 269.3 272.3 273.4 268.0 268.0

1.1 119.5 119.7 120.2 122.2 129.2 135.5 119.3 119.3

1.5 19.0 19.2 19.5 20.5 23.8 27.1 18.8 18.8

2.0 7.1 7.2 7.4 7.9 9.5 11.1 6.9 6.8

2.5 4.3 4.4 4.6 4.9 6.0 7.1 4.2 4.1

0.3 1.0 144.4 144.5 145.0 146.6 151.4 153.1 144.2 144.2

1.1 71.1 71.3 71.8 73.4 79.0 83.2 70.9 70.9

1.5 14.2 14.3 14.6 15.4 18.0 20.4 14.0 13.9

2.0 5.9 6.0 6.2 6.6 8.0 9.3 5.7 5.7

2.5 3.8 3.9 4.1 4.4 5.3 6.2 3.7 3.6

0.5 1.0 80.7 80.9 81.4 82.9 87.4 89.0 80.0 80.5

1.1 43.6 43.8 44.3 45.6 49.8 52.6 43.4 43.4

1.5 10.7 10.8 11.1 11.7 13.8 15.6 10.5 10.5

2.0 5.0 5.1 5.3 5.6 6.8 7.9 4.8 4.8

2.5 3.4 3.5 3.6 3.9 4.7 5.5 3.3 3.2

1.0 1.0 22.2 22.4 22.7 23.6 26.0 26.8 22.0 22.0

1.1 14.7 14.9 15.2 15.9 17.9 19.0 14.5 14.5

1.5 5.7 5.8 6.0 6.4 7.6 8.5 5.6 5.5

2.0 3.4 3.5 3.6 3.9 4.7 5.4 3.3 3.2

2.5 2.6 2.7 2.8 3.0 3.6 4.2 2.5 2.4

1.5 1.0 7.7 7.8 8.1 8.5 9.6 10.0 7.6 7.5

1.1 6.1 6.1 6.3 6.7 7.7 8.2 5.9 5.8

1.5 3.4 3.5 3.6 3.9 4.6 5.1 3.3 3.2

2.0 2.5 2.5 2.6 2.9 3.4 3.8 2.4 2.3

2.5 2.1 2.2 2.2 2.4 2.9 3.3 2.0 1.9

2.0 1.0 3.4 3.5 3.6 3.9 4.4 4.6 3.3 3.2

1.1 3.0 3.1 3.2 3.4 4.0 4.2 2.9 2.8

1.5 2.3 2.3 2.4 2.6 3.0 3.3 2.1 2.1

2.0 1.9 2.0 2.1 2.2 2.6 2.9 1.8 1.7

2.5 1.8 1.8 1.9 2.0 2.4 2.7 1.7 1.6

2.5 1.0 1.9 2.0 2.0 2.2 2.5 2.6 1.8 1.7

1.1 1.8 1.9 2.0 2.1 2.4 2.5 1.7 1.6

1.5 1.7 1.7 1.8 1.9 2.2 2.4 1.6 1.5

2.0 1.6 1.6 1.7 1.8 2.1 2.3 1.5 1.4

2.5 1.5 1.5 1.6 1.7 2.0 2.2 1.4 1.3
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On the other hand, the best performance of the chart is obtained when there is a

decrease in the process mean value and the quality characteristics are negatively

correlated. This control chart is ARL-biased, and maybe due to this fact, we

have observed the chart is not appropriate to detect simultaneous changes in µ

and σ. Then, we think sensible to implement an upper one-sided TM -chart to

detect changes in µ and/or σ.

From the ARL values presented in Table 4, we conclude that the upper

one-sided TM -chart presents an interesting performance to detect increases in

one of the process’ parameters, µ or σ, but also to detect simultaneous changes in

these parameters. We observe again that the level of correlation, ρ, between the

quality characteristics X1 and X2, has a small impact on the performance of the

chart. Finally, the lower one-sided Tm-chart has a similar performance to detect

changes from µ → µ1 < 0 and/or σ → σ1 > 1.

4. AN APPLICATION IN THE FIELD OF SPC

In this section we consider an application to real data from a cork stopper’s

process production. The objective is modeling and monitoring the data from this

process, for which we know the corks must have the following characteristics:

Table 5: Technical specifications: cork stoppers caliber 45mm×24mm.

Physical quality
characteristic

(mm)

Mean
target

Tolerance
interval

Length 45 45 ± 1

Diameter 24 24 ± 0.5

For this purpose we have collected from the process production a sample,

of size n = 1000, of corks’ lengths and diameters. First, we fitted a normal and

a skew-normal distribution to the data set. Looking to the histograms obtained

from the sample data, presented in Figure 3, both fits seem to be adequate, and

the differences between the two pdf’s are small.

Then, to test the underlying data distribution, we have used the Shapiro

test of normality and the Kolmogorov–Smirnov (K-S) for testing the skew-normal

distribution. Unexpectedly, although the fits seem to be similar, from these tests

of goodness-of-fit the conclusions are different: the normality for the length’s and

diameter’s data is rejected, for the usual levels of significance (5% and 1%), while
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Figure 3: Histograms and estimated pdf’s of the normal and skew-normal
fit to the length and diameter data.

the skew-normal distribution is not rejected. The p-values for the Shapiro and

K-S tests are presented in Table 6. Looking to the maximum likelihood estimates

of some parameters of interest of the fitted distributions, presented in Table 7, we

observe that there exist some differences between the estimates obtained for the

mean value and the location, as well as between the estimates obtained for the

standard deviation and the scale. Moreover, the data exhibit some skewness and

the estimate of the shape parameter is not very close to zero, as it may happen

in the case of normal data.

Table 6: P-value’s of the Shapiro test of normality and of the
Kolmogorov–Smirnov (K-S) for testing a skew-normal.

Length Diameter Decision

Shapiro 0.0018 0.0052 Normality rejected*

K-S 0.2376 0.2923 The skew-normal distribution is not rejected*

* Conclusion for a level of significance of 5% and 1%.

Table 7: Maximum likelihood estimates of some parameters
of interest of the fitted distributions.

Data Location Scale Shape Mean
Standard
deviation

Skewness

Length 44.7329 0.2907 1.0720 44.9025 0.2361 0.1591

Diameter 23.9526 0.1830 1.1358 24.0622 0.1466 0.1795
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To confirm the conclusions obtained by the previous tests of goodness-of-fit

we have used the likelihood ratio test presented in subsection 2.2. As we obtained

an observed value −2 lnΛobs > 3.84 (for length’s and diameter’s data), there is

a strong evidence that the SN
(
λ̂, δ̂, α̂

)
distribution presents a better fit than the

normal N(µ̂, σ̂2) distribution, for a level of significance of 5%.

Finally, based on Algorithm 3.1, we illustrate the implementation of the

M and S bootstrap control charts for subgroups of size n = 10 to monitor the

process mean value and the process standard deviation of the corks’ diameter.

The Phase I data set consists of k = 25 subgroups of size n = 10, and we have

been led to the following control limits: LCL = 23.936484 and UCL = 24.215071

for the M -chart, and UCL = 0.249708 for the S-chart. From these subgroups

we have also estimated the control limits of the corresponding Shewhart charts,

assuming normality, here denoted by LCLsh and UCLsh, and the center line, CL.

We obtained LCLsh = 23.947788, UCLsh = 24.200532 and LC = 24.07416 for the

M -chart, and UCLsh = 0.223152 and CL = 0.129573 for the S-chart.

In Figure 4 we picture the M and S bootstrap control charts together

with the corresponding Shewhart charts with estimated control limits, for use

in Phase II of process monitoring. We immediately observe that the bootstrap

control limits, LCL and UCL, are set up farther apart than the control limits of

the Shewhart M and S charts, LCLsh and UCLsh.
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Figure 4: Bootstrap M and S charts together with the corresponding
Shewhart charts with estimated control limits.

The Phase II data set used in this illustration consists of m = 50 subgroups

of size n = 10, supposed to be in-control. We have computed the statistics x

and s associated to these 50 subgroups, and we have plotted them in the charts

(here denoted M and S). While the bootstrap charts do not signal changes in

the process parameters, the Shewhart charts indicate that the process is out-of-

control, due to changes in the process mean value and standard deviation.
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5. SUMMARY AND RECOMMENDATIONS

Designing a control chart under the assumption of skew-normal data and

with control limits estimated via bootstrapping adds a relevant contribution to

the SPC literature in what concerns the implementation of robust control charts.

The use of this family of distributions, that includes the Gaussian as a particular

member, allows more flexibility to accommodate uncontrollable disturbances in

the data, such as some level of asymmetry or non-normal tail behavior. Moreover,

despite of the fact that, in SPC, the classical M and S control charts are much

more popular, these charts are good competitors, even for the case of normal data

if we have to estimate the target process values.

In order to integrate it within a quality process control system, we can

suggest, for instance, an a priori analysis of the process data. A simple boxplot

representation with the Phase I data subgroups can anticipate an underlying data

distribution that exhibits some level of asymmetry, possibly with some outliers,

and in this case, we suggest the use of the proposed bootstrap control charts

instead of the traditional Shewhart-type charts implemented for normal data.

Among other issues not addressed in this paper, the proposed control charts

should be compared to the existing parametric and nonparametric control charts.

Also important is to study the effect of increasing the Phase I sample on the

performance of the chart, as well as the determination of the minimum number m

of subgroups in Phase I, the sample size n and the number of replicates bootstrap r

we must consider in order to have charts with the same performance for the

scenarios of known and unknown process parameters. Finally, an exhaustive and

comparative study about the performance of control charts based on the skew-

normal and on the normal distributions must be carried out to have an idea about

the range of values of the shape parameter α of the skew-normal distribution for

which the performance of the two charts differ significantly. This will help a

practitioner to make a decision on which control chart is preferable to suit his

needs.
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