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1. INTRODUCTION

Statistical analysis of the extremes of time series is a traditional staple of hy-

drology and insurance, but the last two decades have seen applications broaden to

a huge variety of domains, from finance to atmospheric chemistry to climatology.

The most common approaches for describing the extreme events of stationary data

are the block maximum approach, which models the maxima of a set of contiguous

blocks of observations using the generalized extreme-value (GEV) distribution,

and the peaks-over-threshold approach, in which a Poisson process model is used

for exceedances of a fixed high or low threshold level; often this entails fitting the

generalized Pareto distribution (GPD) to the exceedances. The two approaches

lead to different but closely related descriptions of the extremes, determined by

the marginal distribution of the series and by its extremal dependence structure.

Whereas the marginal features are well-understood from the study of independent

and identically distributed (iid) variates, the rather less well-explored dependence

features are the main focus of this paper. We review some related relevant theory

and methods and attempt to list some aspects that seem to need further study.

Throughout the paper, we discuss maximum or upper extremes, but minima or

lower extremes can be handled by negating the data.

Temporal dependence is common in univariate extremes, which may display

intrinsic dependence, due to autocorrelation, or dependence due to the effects of

other variables, or both, and this demands an appropriate theoretical treatment.

Short-range dependence leading to clusters of extremes often arises: for example,

financial time series usually display volatility clustering, and river flow maxima

often occur together following a major storm. The joint behavior of the obser-

vations within a cluster is determined by the short-range dependence structure

and can be accommodated, though not fully described, within a general theory.

Long-range dependence of extremes seems implausible in most contexts, genetic

or genomic data being a possible exception. Large-scale variation due to trend,

seasonality or regime changes is typically dealt with by appropriate modelling.

Below we first give an account of the effect of dependence on time series

extremes, and discuss associated statistical methods. For completeness we then

outline some relevant Bayesian methods, and then turn to dealing with regression

and non-stationarity. The paper closes with a brief list of some open problems.
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2. SHORT-RANGE DEPENDENCE

2.1. Effect of short-range dependence

The discussion below is based partly on Leadbetter et al. (1983), a standard

reference to the literature on extremes of time series and random processes, and

on Beirlant et al. (2004, Ch. 10), which provides a more recent summary; see also

Coles (2001, Ch. 5). It is usual to study the effect of autocorrelation under a type

of mixing condition that restricts the impact of dependence on extremes.

Definition 2.1. A strictly stationary sequence {Xi}, whose marginal dis-

tribution F has upper support point xF = sup{x : F (x) < 1}, is said to satisfy

D(un) if, for any integers i1 < ··· < ip < j1 < ··· < jq with j1− ip > l,
∣

∣

∣

∣

P
{

Xi1 ≤ un, ..., Xip ≤ un, Xj1 ≤ un, ..., Xjq
≤ un

}

− P
{

Xi1 ≤ un, ..., Xip ≤ un

}

P
{

Xj1 ≤ un, ..., Xjq
≤ un

}

∣

∣

∣

∣

≤ α(n, l) ,

where α(n, ln) → 0 for some sequences ln = o(n) and un → xF as n → ∞.

The D(un) condition implies that rare events that are sufficiently separated

are almost independent. ‘Sufficient’ separation here is relatively short-distance,

since ln/n → 0 as n → ∞. This allows one to establish the following result, which

shows that if the D(un) condition is satisfied, then the GEV limit arises for the

maxima of dependent data, thereby justifying the use of the block maximum

approach for most stationary time series.

Theorem 2.1. Let {Xi} be a stationary sequence for which there exist

sequences of normalizing constants {an > 0} and {bn} and a non-degenerate dis-

tribution H such that Mn = max{X1, ..., Xn} satisfies

P
{

(Mn− bn)/an ≤ z
}

→ H(z) , n → ∞ .

If D(un) holds with un = anz + bn for each z for which H(z) > 0, then H is a

GEV distribution.

Thus the effect of dependence must be felt in the local behavior of extremes,

the commonest measure of which is the extremal index, θ. This lies in the in-

terval [0, 1], though θ > 0 except in pathological cases. If the sequence {Xn} is

independent, then θ = 1, but this is also the case for certain dependent series.

The relation between maxima of a dependent sequence and of a corresponding

independent sequence is summarised in the following theorem:
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Theorem 2.2. Let {Xi} be a stationary process and let {X̃i} be indepen-

dent variables with the same marginal distribution. Set Mn = max{X1, ..., Xn}

and M̃n = max{X̃1, ..., X̃n}. Under suitable regularity conditions,

P
{

(M̃n− bn)/an ≤ z
}

→ H̃(z) , n → ∞ ,

for sequences of normalizing constants {an > 0} and {bn}, where H̃ is a non-

degenerate distribution function, if and only if

P
{

(Mn− bn)/an ≤ z
}

→ H(z) ,

where H(z) = H̃θ(z) for some constant θ ∈ [0, 1].

Since the extremal types theorem implies that the only possible non-degen-

erate limit H̃ is the GEV distribution, with location, scale and shape parameters

µ ∈ R, σ > 0 and ξ ∈ R, say, it follows that H is also GEV, with parameters

µ̃ = µ −
σ

ξ

(

1 − θ−ξ
)

, σ̃ = σ θξ , ξ̃ = ξ ,

and the value of θ determines by how much M̃n is stochastically larger than

Mn. As ξ̃ = ξ, the upper tail behaviour of H̃ is qualitatively the same as that

of H, regardless of θ. For example, when H̃ is Gumbel, then ξ̃ = ξ = 0, and the

parameters of the independent case are related to those of the stationary process

by µ̃ = µ + σ log θ and σ̃ = σ: H is also Gumbel with the same scale parameter

but a smaller location parameter.

The extremal index can be defined in various ways, which are equivalent

under mild conditions. One is

(2.1) θ−1 = lim
n→∞

E

{

pn
∑

j=1

I
(

Xi > un | Mpn
> un

)

}

,

where pn = o(n) → ∞ and the threshold sequence {un} is chosen to ensure that

n{1 − F (un)} → λ ∈ (0,∞). Thus θ−1 is the limiting mean cluster size based on

a block of pn consecutive observations, as pn increases. Another is

(2.2) θ = lim
n→∞

P
{

max(X2, ..., Xpn
)≤ un | X1≥ un

}

,

so θ is the limiting probability that an exceedance over un is the last of a cluster of

such exceedances. Asymptotically, therefore, extremes of the stationary sequence

occur in clusters of mean size 1/θ. Since the suitably rescaled times of exceedances

over un in an independent sequence would in the limit arise as a Poisson process

of rate λ, and since un is the same as for the corresponding independent series,

the mean time between clusters in dependent series must increase by a factor 1/θ,

corresponding to clusters of exceedances arising as a Poisson process of rate λθ.
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Hsing (1987) shows that the structure of these clusters is essentially arbitrary;

see also Hsing et al. (1988).

A consequence of Theorem 2.2 is that if the extremal types theorem is

applicable, then for a suitable choice of parameters we may write

P
(

Mn≤ x
)

≈ H(x) ≈ H̃(x)θ ≈ F (x)nθ ,

and so that Mn is effectively the maximum of nθ equivalent independent observa-

tions. Thus for dependent data and a large probability p, the marginal quantiles

for Xj will be estimated by

F−1(p) ≈ H−1(pnθ) > H−1(pn) ,

so ignoring the clustering would lead to an underestimation of quantiles of F .

When clustering occurs, the notion of return level is more complex. If θ = 1, for

instance, then the ‘100-year-event’ will occur on average ten times in the next

millennium, but has probability 0.368 of not appearing in the next 100 years,

whereas if θ = 1/10, then on average the event also occurs ten times in a mil-

lennium, but all ten events will tend to appear together, leading to a probability

around 0.9 of not seeing any in the next 100 years. Such information may be

highly relevant to structural design.

Robinson & Tawn (2000) discuss how sampling a time series at different

frequencies will affect the values of θ, and derive bounds on their relationships.

The left panel of Figure 1 shows a realization of Xj =
∑6

i=1 i |Zj−i|, where

the Zj are iid with a Cauchy distribution.Clusters manifest themselves as vertical

strings formed by points corresponding to successive large values of Xi, driven

by occasional huge values of Zj . The corresponding plot for an iid sequence

would show no clustering. The middle panel shows realizations of the sequence

Xj = Zj + 2Zj+1, with the Zj iid Cauchy variates. In this case Davis & Resnick

(1985) show that the average cluster size is 3/2. The right panel shows the Cauchy

sequence Xj = ρXj−1 + (1 − |ρ|)Zj where ρ ∈ (0, 1) and the Zj are iid standard

Cauchy variates, for ρ = 0.8; Chernick et al. (1991) show that the extremal index

is 1 − ρ, so in this case the mean cluster size is 5.

Examples such as these are instructive, but such models are not widely used

in applications. It follows from Sibuya (1960) that linear Gaussian autoregressive-

moving average models have θ = 1, corresponding to asymptotically independent

extremes, despite the clumping that may appear at lower levels, and this raises the

question of how to model the extremes of such series. Davis & Mikosch (2008,

2009a) show that while both GARCH and stochastic volatility models display

volatility clustering, only the former shows clustering of extremes, thus providing

a means to distinguish these classes of financial time series.



Modelling Time Series Extremes 115

Figure 1: Clustering in realizations of some theoretical processes.
Left panel: Xi =

∑6

i=1
i |Zj−i| where the Zj are iid stan-

dard Cauchy. Middle panel: Xi = Zj + 2Zj+1 with the

Zj iid Cauchy; the data are transformed to sign(X)
√

|X|.
Right panel: Cauchy AR(1) sequence Xj = ρXj−1 + Zj

with ρ = 0.8 and Zj iid standard Cauchy.

Further conditions have been introduced to control local dependence of

extremes, the best known of which is the following.

Definition 2.2. A strictly stationary sequence {Xn} satisfies D′(un) if

lim sup
n→∞

n

[n/k]
∑

j=2

P
{

X1 > un, Xj > un

}

→ 0 , k = o(n) , n → ∞ .

for some threshold sequence {un} such that n{1 − F (un)} → λ ∈ (0,∞).

This condition may be harder to satisfy than one might expect; Chernick

(1981) gives an example of an autoregressive process with uniform margins that

satisfies D(un) but does not satisfy D′(un).

It can be shown that a stationary process satisfying both D(un) and D′(un)

has extremal index θ = 1. Similar conditions have been introduced to ensure

convergence of the point process of exceedances (Beirlant et al., 2004, Ch. 10).

2.2. Statistics of cluster properties

Suppose that a sequence {Xi} satisfies a suitable mixing condition, such as

that in Definition 2.1, and call π the probability mass function of the size of a

cluster of extreme values of mean size θ−1. Suppose that we wish to estimate θ

based on apparently stationary time series data of length n. The blocks esti-
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mator of θ is computed using the empirical counterpart of (2.1), by selecting

a value r, dividing the sample into [n/r] disjoint contiguous blocks of length r,

and then counting exceedances over a high threshold u in those blocks containing

exceedances. The proportion of blocks with k exceedances estimates the proba-

bility π(k) and the average number of exceedances per block having at least one

exceedance estimates θ−1. Likewise the runs estimator is the empirical counter-

part of (2.2). Computations in Smith & Weissman (1994) suggest that the runs

estimator has lower bias, and therefore is the preferable of the two. Ancona-

Navarrete & Tawn (2000) compare the then-known estimators of the extremal

index, using both nonparametric and parametric approaches.

In subsequent work Ferro & Segers (2003) proposed the intervals estimator,

based on a limiting characterization of the rescaled inter-exceedance intervals:

with probability θ an arbitrary exceedance is the last of a cluster, and then

the time to the next exceedance has an exponential distribution with mean 1/θ;

otherwise the next exceedance belongs to the same cluster, and occurs after a

(rescaled) time 0. Thus the inter-exceedance distribution is (1 − θ)δ0 + θ exp(θ),

where δ0 and exp(θ) represent a delta function with unit mass at 0 and the

exponential distribution with mean 1/θ. The parameter θ can be estimated from

the marginal inter-exceedance distribution in a variety of ways, of which the best

seem to be due to Süveges (2007). The intervals estimator can be made automatic

once the threshold has been chosen, and it also provides an automatic approach

to declustering and thus to the estimation of cluster characteristics, including

the cluster size distribution π. It can also be used to diagnose inappropriate

thresholds (Süveges and Davison, 2010).

Laurini & Tawn (2003) suggest a two-thresholds approach, according to

which a cluster starts with an exceedance of a higher threshold and ends either

when the process drops below a lower threshold before another such exceedance,

or after a sufficiently long period below the higher threshold. Although theoretical

investigation of its properties is difficult, they establish numerically that their

estimator is more stable than most of those above.

One reason to attempt declustering is that, as mentioned above, under

the limiting model for threshold exceedances, the marginal distribution of an

exceedance is the same as that of a cluster maximum; this is a consequence of

length-biased sampling. Thus reliable estimates and uncertainty measures of the

generalized Pareto distribution of exceedances may be obtained from the (essen-

tially independent) cluster maxima; this is the basis of the peaks over threshold

approach to modelling extremes. Its application requires reliable identification

of cluster maxima, however, and Fawcett & Walshaw (2007, 2012) establish that

the difficulty of this can lead to severe bias. This bias can be reduced by using all

exceedances to estimate the GPD, though then the standard errors must be mod-

ified to allow for the dependence. Eastoe & Tawn (2012) suggest an alternative

sub-asymptotic model for cluster maxima, with diagnostics of its appropriateness.
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The threshold approach allows the modelling of cluster properties, for ex-

ample using first-order Markov chains (Smith et al., 1997; Bortot & Coles, 2003),

which are estimated using a likelihood in which the extremal model is presumed

to fit only those observations exceeding the threshold, with the others treated as

censored. Standard bivariate extremal models can be used to generate suitable

Markov chains, and so can near-independence models (Ledford & Tawn, 1997;

Bortot & Tawn, 1998; Ramos & Ledford, 2009; de Carvalho & Ramos, 2012).

Further papers on modelling dependence in clusters include Coles et al. (1994) and

Fawcett & Walshaw (2006a,b). The use of self-exciting process models for clus-

tering of extreme events in financial time series is described by Chavez-Demoulin

et al. (2005) and Embrechts et al. (2011). Nonparametric estimation of cluster

properties is discussed by Segers (2003).

2.3. Extremogram

The correlogram plays a central role in the exploratory analysis of time

series, and attempts have been made to extend it to extremes, the goal being to

try and estimate the limiting probabilities

ρh = lim
u→∞

P
(

Xh > u | X0 > u
)

,

or, if ρh = 0, to attempt to distinguish different rates at which the convergence

takes place. Under the assumptions that the marginal distribution of {Xi} is

unit Fréchet and that P(Xh > u | X0 > u) ∼ Lh(u)u1−1/η for some slowly-varying

function Lh and some ηh ∈ (0, 1], Ledford & Tawn (2003) suggest plotting esti-

mates of ρh and Λh = 2 ηh −1 as functions of h. If ηh = 1 and Lh(u) → ρh > 0 as

u → ∞, then X0 and Xh are asymptotically dependent, so the first of these plots,

called an extremogram by Davis & Mikosch (2009b), provides an estimate of the

extremal dependence at lag h. By contrast, if ηh < 1, then the limiting probabil-

ity will equal zero, and the values of Λh better summarize the level of dependence

among the asymptotically-independent extremes: Λh > 0 corresponds to positive

extremal association, Λh = 0 to so-called near-independence, and Λh < 0 to neg-

ative extremal association. Natural estimators of ρh may be defined in terms of

ratios of indicator functions for finite u, and their significance assessed by per-

muting the original series (Davis & Mikosch, 2009b), but the joint probability

model corresponding to the equivalence above is needed to estimate Λh using

maximum likelihood (Ledford & Tawn, 2003).

Figure 2, which shows the daily returns of Google from 19 August 2004 to

10 February 2012, displays the volatility clustering that is often seen in finan-

cial time series. This is supported by the upper panels of Figure 3, which show

the correlograms for the returns themselves and for their absolute values; the

correlogram for the values themselves shows little structure, while that of the ab-
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solute values shows rather long-term volatility. The lower panels show estimates

of ρh, with u taken at the 99% quantile of the absolute values of the log returns.

Figure 2: Google daily returns, from 19 August 2004 to 10 February 2012.

There is again little structure in the plot for the returns themselves, but that for

their absolute values shows positive dependence of extremes over around 5 days.

The computations of Davis & Mikosch (2008, 2009a) imply that a GARCH model

would be preferred here, rather than a stochastic volatility model.

Figure 3: Correlogram (upper panels) and extremogram (lower panels) of the
Google returns (left panels) and absolute returns (right panels),
with 95% confidence bands for independence.
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In the asymptotically dependent case (Davis & Mikosch, 2009b) extend the

idea to broader sets of events A and B bounded away from zero, defining

ρA,B(h) = lim
u→∞

P
(

Xk
h ∈ uB | Xk

0 ∈ uA
)

, h = 0, 1, 2, ... ,

if it exists, where Xk
h denotes (Xh, ..., Xh+k) for some finite k, which yields ρh

when A=B=(1,∞) and k = 0, but encompasses also events such as A= {X0 > u},

B = {X1 > u} ∪ ··· ∪ {Xk > u}, corresponding to at least one large positive value

in the k time steps following a large positive value. The idea can be extended to

multiple time series (Huser & Davison, 2012).

2.4. Hill’s estimator

Let {Xi} denote a sequence of random variables with common marginal

distribution F , where F̄ = 1 − F is regularly varying at ∞, i.e., there exists an

α > 0 such that

F̄ (tx)/F̄ (x) → t−α , t > 0 , x → ∞ ,

or equivalently F̄ (x) = x−αL(x), x > 0, for some slowly varying function L(x).

Given a sequence X1, ..., Xn with j th-largest value X(j), the Hill estimator

Hn = k−1
k

∑

j=1

(

log X(j) − log X(k+1)

)

is widely used to estimate α−1. This estimator and its variants are widely used for

independent heavy-tailed data, and it has been intensively studied. Beirlant et al.

(2012) give a recent overview of its properties, and Beirlant et al. (2004, §10.6)

discuss then-known results for dependent data; see also Drees (2003). When

covariates are recorded simultaneously with the variable of interest, estimators of

the tail index that depend on the covariates have been suggested by Beirlant &

Goegebeur (2003), Wang & Tsai (2009) and Gardes et al. (2011).

3. BAYESIAN MODELLING

The use of Bayesian methods in statistics has grown vastly over the past

two decades, owing to the development of computational tools for fitting complex

models, and although Coles & Powell (1996) could write that ‘there are only very

few papers linking the themes of extreme value modelling and Bayesian inference’,

the situation has since greatly changed. From a practical viewpoint Bayesian

methods have several advantages: they allow the insertion of prior information
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leading to coherent inference; they may correspond to penalized estimators that

result in stable inferences; and they provide a computationally straightforward

way to ‘borrow strength’ across many related datasets through hierarchical mod-

elling. As in other applications, the main difficulties are the logical status and

appropriateness of the prior, and the computational burden, which can lead to

too much effort being placed on programming and related matters, and too little

on sensitivity analysis and other scientifically relevant aspects. In the study of

sample extremes, appropriate prior information can be particularly valuable, be-

cause of the sparsity of rare events, but this implies that particular care is needed

when choosing priors and assessing their effects. Moreover heavy tails may lead

to problems with convergence of empirical estimates of posterior predictive dis-

tributions; similar problems arise with the bootstrap (Wood, 2000).

In the simplest setting of estimation based on independent annual maxima,

it is straightforward to compute posterior distributions for the GEV parameters

and quantities such as return levels, for example using the R package evdbayes.

Very often the prior is chosen in a semi-automatic way, for example using a

trivariate normal prior for the location, log-scale and shape parameters of the

GEV distribution, but Coles & Tawn (1996) suggest that it will be easier for

an expert to formulate prior beliefs in terms of its quantiles. They propose

using independent gamma priors for differences of three quantiles, though clearly

there are alternatives, such as placing beta priors on probabilities of exceeding

certain levels. More general discussion of prior elicitation based on quantiles is

given in Dey & Liu (2007). Quantiles may however be more strongly dependent

a priori than are location and scale parameters, so that prior information on

their dependence is needed, and this may be hard to elicit reliably. Ribereau

et al. (2011) discuss the implications for estimation of parameter orthogonality

for the GPD. As is often the case, weak prior information provides inferences that

are essentially indistinguishable from those based on likelihood alone, whereas an

informative prior may strongly influence extrapolation beyond the data, greatly

reducing the associated uncertainty.

A common problem when fitting the GEV or GPD to small samples is

absurd estimates of the shape parameter, owing to its large uncertainty. One

way to deal with this is through robust estimation (Dupuis & Field, 1998; Dupuis

& Morgenthaler, 2002; Dupuis, 2005), but another is through a penalty function

corresponding to a prior. Martins & Stedinger (2000) suggest the use of maximum

likelihood estimation modulated by a beta prior ensuring that |ξ̂| < 1/2, and

this does indeed produce improved estimators for the hydrological studies they

consider, essentially by trading a small potential bias for a large variance reduction.

In more complex settings it is common to allow the parameters of extremal

models to vary with space, time or some covariate. Examples are Coles & Casson

(1998), Casson & Coles (1999), Fawcett & Walshaw (2006a), Cooley et al. (2006),

Cooley et al. (2007) and Sang & Gelfand (2009). In such models the location and
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log-scale parameters are commonly assumed to be sampled from an underlying

Gaussian process, whose spatial structure allows both smooth local variation in

these parameters and borrowing of strength across locations, leading to better

estimates than would be provided using individual station data. Depending on

the setting, it may be useful to constrain the parameters: very often the difficulty

of estimating the shape parameter means that a common value is used, and

sometimes the (scale parameter)/(location parameter) ratio is close to constant;

if so, the complexity of the prior can be reduced; see §4.3. The simplest such

models treat the data as independent, conditional on these processes, but more

sophisticated models using copulas to allow spatial dependence beyond this have

been suggested by Sang & Gelfand (2010) and Fuentes et al. (2012). Cooley et al.

(2012) and Davison et al. (2012) give more extensive reviews of spatial extremes,

including Bayesian modelling.

4. NON-STATIONARITY

4.1. Generalities

Stationary time series rarely arise in applications, where seasonality, trend,

regime changes and dependence on external factors are the rule rather than the

exception, and this must be taken into account when modelling extremes. There

are broadly two strategies: first, to use the full dataset to detect and estimate non-

stationarities, and then to apply methods for stationary extreme-value modelling

to the resulting residuals; and, second, to fit an non-stationary extremal model

to the original data. An example of the first strategy is McNeil & Frey (2000),

who use the GPD to estimate conditional value-at-risk and expected shortfall in

financial data after first removing volatility clustering by fitting a GARCH model.

An example of the second strategy is Maraun et al. (2009), who fit the GEV with

seasonally-varying parameters to monthly maxima of many parallel time series, in

a study of seasonal variation in heavy precipitation across the United Kingdom.

A benefit of the first strategy, i.e., using the full dataset, is that any non-

stationarities will be estimated much more precisely than would be the case based

on the extremal data alone. If the extremes of the residuals of this fit are hetero-

geneous, however, then it will be necessary to model this directly. With daily

temperature data, for example, residuals for summer maxima may have shorter

tails than do those for winter maxima, so even if seasonal variation in the loca-

tion and scale of the bulk of the data has been removed, non-stationarity persists

in the extremes. Thus two models for non-stationarity are needed, one for the

bulk of the data, and another for the extremes, and as in other two-stage fit-

ting procedures, it may be awkward to combine their respective uncertainties.
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Thus it is critical that the model for the bulk also removes non-stationarities in

the extremes, so far as possible. One approach to this is described by Eastoe &

Tawn (2009), who apply the Box–Cox transformation

Y
λ(xi)
i − 1

λ(xi)
= µ(xi) + σ(xi)Zi

to the original time series {Yi}, where the power transformation λ(xi) and the lo-

cation and log scale parameters µ(xi) and logσ(xi) depend linearly on covariates xi,

which themselves vary with time. The residuals, which are estimates of the se-

ries {Zi}, are modeled using a fixed threshold and a possibly time-varying GPD

distribution. Eastoe & Tawn (2009) show that this approach can be appreciably

more efficient than direct modelling of the extremes, even though the latter is

typically simpler, at least when a fixed threshold is applied.

The main benefit of the alternative approach is its simplicity: a fixed thresh-

old is applied, and its exceedance probability and the GPD parameters are mod-

eled directly, without reference to the bulk of the data. A fixed threshold will

often have a simple interpretation in terms of the underlying problem, making

this strategy attractive despite the loss of statistical efficiency. However a time-

varying threshold is preferable for more precise estimation of regression effects.

It can be estimated using for example quantile regression (Northrop & Jonathan,

2011), trigonometric functions (Coles et al., 1994) or by other approaches (e.g., de

Carvalho et al., 2012), though the difficulty of combining uncertainties from two

separate models, one for the threshold and another for the extremes, again arises.

An alternative that avoids modelling the threshold (Frossard, 2010; Chavez et al.,

2011; Frossard et al., 2012) is to divide the data into homogeneous blocks, and

then to base estimation on the largest r observations in each block, with param-

eters dependent on time and other covariates. In effect this takes the rth largest

observation in the block as the threshold, but includes its contribution to the

likelihood, so there is just one model to be estimated; this will give results similar

to the ideas in Smith (1989).

Using either strategy it is best to use the GEV parametrization of the

extremal model, because the GPD parameters are not threshold-invariant.

If the scale and shape parameters of the fitted GPD at threshold u are σu(x)

and ξ(x), where x is a covariate, then at a higher threshold v they become

σv(x) = σu(x)(v − u) + ξ(x) and ξ(x), so as the threshold changes the scale pa-

rameter varies with covariates in an unnatural way, unless ξ(x) ≈ 0. Typically the

covariates will enter the model linearly for the location, log scale and shape param-

eters, though other forms of dependence may be suggested in particular contexts.

The wide variety of possible ways in which covariates might enter the model

makes likelihood estimation attractive: not only is it efficient when the model is

well-chosen, but it can deal with censoring, rounding and related issues in a sim-

ple and unified way. Typically the clustering of rare events will be difficult to
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model parametrically, however, and if the main goal is to model non-stationarity,

it will be simpler to use an independence likelihood, which treats extreme obser-

vations as if they were independent, but then inflates standard errors to allow

for unmodelled dependence (Chandler & Bate, 2007). As the limiting marginal

distributions of cluster maxima and exceedances are the same, no bias should be

incurred, provided the marginal model is correctly specified. The block bootstrap

can also be used to assess uncertainty; it is typically applied to residuals, as in

Chavez-Demoulin & Davison (2005).

4.2. Semi-parametric models

Non- or semi-parametric modelling, in which more flexible forms of depen-

dence on covariates are used to supplement parametric forms, may be useful,

particularly for exploratory analysis or for model-checking. There are two main

approaches to this, based on local likelihood estimation and based on penalized re-

gression, and we now briefly describe these. For purposes of exposition we suppose

that the location parameter of the GEV distribution is to be modeled as a linear

function of covariates x and as an unspecified function of a further covariate t,

so that we take µ(x, t) = xTβ + g(t), where g is a smooth nonlinear function to

be estimated from the data. In principle it is straightforward to include several

smooth terms depending on different covariates, or to include smooth formu-

lations for the shape and scale parameters, though in practice limitations may

be imposed by computational considerations or parametrization issues (Chavez-

Demoulin & Davison, 2005). Hastie & Tibshirani (1990), Green & Silverman

(1994), Fan & Gijbels (1996), Denison et al. (2002), Ruppert et al. (2003) and

Wood (2006) give some entry points to the vast literature on nonparametric re-

gression.

Local likelihood estimation involves polynomial expansion of g(t) around

a target value t0 at which estimation is required, for example writing g(t)≈

g(t0)+ (t− t0) g′(t0), and then estimating g(t0) by maximizing a locally-weighted

likelihood, in which observations with t distant from t0 are given less weight than

those for which t − t0 is small. The procedure is then repeated for a range of

values of t0, and the corresponding estimates of g(t0) are interpolated to form an

estimate of g(t). The relative weights given to the observations are determined

by a bandwidth, a key parameter that can be varied to see the effects of different

degrees of smoothing or chosen automatically, for example by cross-validation.

The degree of smoothness is often expressed in terms of an equivalent degrees of

freedom, which is a decreasing function of the bandwidth. The use of an odd-

order polynomial reduces boundary bias, and thus typically a linear polynomial

expansion is used. Davison & Ramesh (2000), Hall & Tajvidi (2000), Ramesh

& Davison (2002), Butler et al. (2007) and Süveges (2007) have applied this in
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different settings, including spatial extremal analysis for oceanography and time-

varying estimation of the extremal index.

An alternative and in many ways more satisfactory approach is to replace

the function g(t) with a linear combination of suitable basis functions, α0 +α1t+

B(t) γ, where the columns of the matrix B(t) are typically chosen to span a space

orthogonal to that generated by the term α0+α1t. Spline or other basis functions

with bounded support are generally used in order to limit the impact of outliers

and non-local effects, to which polynomial fits are vulnerable. Spline modelling is

underpinned by an elegant theory with links to optimal prediction of stochastic

processes, has generally good computational properties, and suitable software

is widely available. The number of basis functions may be fixed in advance,

or may increase with sample size; in the latter case the penalized likelihood

ℓ(β, γ, σ, ξ) − λγTKγ/2 is maximized, where the penalty depends on a positive

definite matrix K that depends on the basis functions. The weight given to the

penalty is determined by a positive quantity λ, with larger λ giving a strong

penalization and thus a smoother fit, and conversely. Thus λ plays the same role

as the bandwidth in local likelihood estimation, though an elegant link to random

effects models may be used to choose λ by maximizing a marginal likelihood

(Padoan & Wand, 2008). This approach fits readily into a general regression

framework and has been thoroughly investigated (Ruppert et al., 2003); it can

also be easily applied using Bayesian computational tools (Laurini & Pauli, 2009).

The penalized likelihood approach has been applied to various extremal models by

Pauli & Coles (2001) and Chavez-Demoulin & Davison (2005). Yee & Stephenson

(2007) place it in a general computational setting.

4.3. Examples

Figure 4 shows the superposed monthly maximum river flow at the station

Muota-Ingenbohl, Switzerland, for the years 1923–2008. There is an exceptionally

high value in August 2005, though it does not appear to be an outlier. The non-

stationarity of the monthly maxima can be fitted by a nonparametric GEV with

time dependent location parameter µ = µ(m, t) where m is the month and t the

year. We suppose that the scale parameter satisfies σ(m) = c µ(m, t), for some

c > 0, and adapt the nonparametric smoothing approach of Chavez-Demoulin &

Davison (2005) for peaks over thresholds to our GEVmodel, which can be written

as

(4.1) Zm,t ∼ GEV
(

µ
(

{m, dfm}; {t, dft}
)

, cµ
(

{m, dfm}; {t, dft}
)

, ξ
)

,

where dfm and dft stand for “degrees of freedom” and control the smoothness

of the fitted curves for months and years. Technical details for the peaks over

threshold setting, including selection of the degrees of freedom and confidence

interval calculation, are given in Chavez-Demoulin & Davison (2005).
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Figure 4: Monthly maximum river flow (m3s−1), jittered,
at Muota-Ingenbohl, Switzerland, for the years 1923–2008.

The estimated curves

µ̂
(

{m, d̂fm}; {t, d̂ft}
)

, σ̂
(

{m, d̂fm}; {t, d̂ft}
)

and estimated parameter ξ̂ are shown in Figure 5. The constant c is estimated to

be 0.64, with 95% confidence interval [0.61, 0.66], so σ̂(m) has the same shape as
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Figure 5: Muota-Ingenbohl data. The upper left panel shows the estimated location
parameter µ̂(m, t) over month for the year t = 1924 (black) and t = 2005
(red, upper), with 95% pointwise bootstrap confidence intervals (dots).
The upper middle panel shows the estimated scale parameter σ̂ = ĉ µ̂(m, t)
for the year t = 1924 (black) and t = 2005 (red, upper). The upper right

panel shows the estimated shape parameter ξ̂. The lower left panel shows
the estimated location parameter µ̂(m, t) over year for July, m = 7, (black)
and January, m = 1, (green, lower). The lower middle panel shows the
estimated scale parameter σ̂ = ĉ µ̂(m, t) over year for July, m = 7, (black)
and January, m = 1, (green, lower).
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the location parameter curve. The model selected using the AIC has d̂fm = 2

for the variable month and a linear trend (d̂ft = 1) for the year, with slope

0.22m3 s−1/year, giving an annual increase of both location and scale parameters.

Figure 6 shows the estimated 100-year return level curve against month

for t = 2005 and the estimated 100-year return level curve against year for July.

The points in the left panel are the largest monthly values for 2005; they show

how unusual the August value that year was. Those in the right panel are July

observations from 1923 to 2008, which have been used to estimate the GEV

parameters. The 100-year return level slope evaluated in July has an annual

increase of 0.53 m3 s−1. The upper confidence interval bound was exceeded once,

so the estimation appears realistic. The confidence limits are rather narrow, but

there are 12 times more observations than appear in the panel.
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Figure 6: Muota-Ingenbohl data. Left panel: estimated 100-year return level curve
against month for t = 2005. The dotted lines are pointwise 95% con-
fidence intervals. The points are the largest monthly values of 2005.
Right panel: Estimated 100-year return level curve against year for July,
m = 7. The points are 30 observations during July from 1923 to 2008.

As a second example, we take data from the US National Oceanic and

Atmospheric Administration (http://www.ngdc.noaa.gov/) on Japanese tsunamis

from 1400–2011. The upper panel of Figure 7 shows the log maximum water

height above sea level in meters (not to be confused with the elevation at the

limit of inundation, called a run-up height) during a tsunami due to a preceding

earthquake. The maximum water height of 85.4m appeared in 1771, due to

a earthquake of magnitude 7.4 in Ryukyu Islands that led to around 13,500

deaths. The most recent events are the 54m water height in Sea of Japan that

succeeded an earthquake of magnitude 7.7 in 1993, leading to 208 deaths, and

the 2011 event in Honshu, with a preceding earthquake of magnitude 9, which led

to 15,550 deaths. With such data there are obvious concerns about changes in
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measurement and estimation of the earlier heights, and the increasing frequency

of events is probably also due to improved record-keeping. With this in mind

we focus on the amplitudes, using a GPD model for the water heights above

a threshold of 0.6m. The lower panel of Figure 7 shows the logarithm of the

maximum water height above the sea level in meters against the logarithm of

the earthquake magnitude preceding the tsunami for such events. We model the

maximum tsunami water height as a function of the magnitude x of the preceding

earthquake, plus a function of year t, giving

β0 + β1m(x) + g(t) ≈ β0 + β1a1(x) + ··· + βq aq(x) + γ1b1(t) + ··· + γp bp(t) ,

in terms of suitable basis functions.
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Figure 7: Tsunami data: The upper panel shows the logarithm of maximum water
height above the sea level in meters for each tsunami from 1403 to 2011,
the horizontal red line is the threshold 0.6m in logarithm. The lower panel
shows the logarithm of the maximum water height for each tsunami above
the sea level in meters above a threshold of 0.6m against the logarithm of
the earthquake magnitude preceding the tsunami.

As pointed out by Yee & Stephenson (2007), nonparametric estimation

of both scale and the shape parameters may be problematic in small datasets,

owing to the difficulty in estimating the shape, and the non-orthogonality of these

parameters. In this case the model selected among the various parametric and
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nonparametric models, fitted using the approach of Chavez-Demoulin & Davison

(2005), gives ξ̂ = 0.47 (0.12), linear dependence on earthquake magnitude and

three degrees of freedom for the dependence on time; see the lower panels of

Figure 8. This figure also shows the corresponding estimates for the GPD vector

generalized additive model of Yee & Stephenson (2007) and the generalized linear

mixed model representation for the extreme value spline model of Laurini & Pauli

(2009). There is reassuringly little to choose between the fits. The approach of

Laurini & Pauli (2009) is slowest but uncertainty on the equivalent degrees of

freedom is accounted for, and this leads to slightly wider confidence intervals,

whereas the Yee & Stephenson (2007) approach is overall somewhat less flexible

in terms of the modelling possibilities.
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Figure 8: Tsunami data. Nonparametric estimation of the logarithm of the GPD
scale parameter using methods of Yee & Stephenson (2007) (upper panels),
Laurini & Pauli (2009) (middle panels) and Chavez-Demoulin & Davison
(2005) (lower panels). The left panels show the estimated dependence on
year and the right panels show the estimated dependence on earthquake
magnitude, with 95% pointwise confidence intervals.
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5. DISCUSSION

Although impressive progress has been made in modelling time series ex-

tremes over the past two decades, certain topics still require further investigation.

One, an overarching theme in extreme-value statistics, is the relevance of asymp-

totic theory to applications. At the sub-asymptotic levels that can be observed in

practice the limiting results provide approximations that may be poor in certain

cases, and it is necessary to expand the theory. The resulting pre-asymptotic

models often prove difficult to fit, however, and so care is needed when providing

tools that are useful for practice. For example, it would be valuable to have avail-

able some broad classes of models for clusters, beyond first-order Markov chains

and able to encompass both dependent and near-independent extremes, perhaps

based on developments of Heffernan et al. (2007), Fougères et al. (2009) or Bortot

& Gaetan (2011). One interesting class of models for multivariate series is the

so-called multivariate maxima of moving maxima process (Zhang & Smith, 2010),

and it would be valuable to further develop suitable inference procedures, for ex-

ample along the lines suggested by Süveges and Davison (2012), and more broadly

to assess whether such models are broadly adequate for use in applications;

there is a close connection to extremal modelling with mixtures. A related topic

of interest is further investigation of extremal properties of standard time se-

ries models, including the effect of discretisation of continuous-time processes.

A potentially important advance would be the development of full likelihood in-

ference for time series extremes, perhaps based on an EM algorithm or suitable

Kalman filter. Absent this, it is tempting to use the independence likelihood

(Chandler & Bate, 2007) or related approaches for estimating marginal proper-

ties of extremal time series, but inference for this could be further developed.

Analogues of the extremal index beyond time series are well-studied for

asymptotically dependent data, but deserve fuller attention for near-independence

models.

Various classical topics also merit further study. One is the choice of thresh-

old for peaks over threshold analysis of dependent data, based on many related

series that display seasonality; the methods reviewed by Scarrott & MacDonald

(2012) are relevant. Others are extremal index estimation at sub-asymptotic

levels, particularly in many series and detection of regime change — often con-

founded with long-range dependence in classical time series — in extremes.
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