
REVSTAT – Statistical Journal

Volume 9, Number 2, June 2011, 115–126

A MEASURE OF DEPARTURE FROM AVERAGE

MARGINAL HOMOGENEITY FOR SQUARE CON-

TINGENCY TABLES WITH ORDERED CATEGORIES

Authors: Kouji Yamamoto

– Center for Clinical Investigation and Research, Osaka University Hospital,
2-15, Yamadaoka, Suita, Osaka, 565-0871, Japan
yamamoto-k@hp-crc.med.osaka-u.ac.jp

Shuji Ando

– Graduate School of Sciences and Technology, Tokyo University of Science,
Noda City, Chiba, 278-8510, Japan

Sadao Tomizawa

– Department of Information Sciences, Faculty of Science and Technology,
Tokyo University of Science, Noda City, Chiba, 278-8510, Japan
tomizawa@is.noda.tus.ac.jp

Received: February 2010 Revised: November 2010 Accepted: December 2010

Abstract:

• For the analysis of square contingency tables, Tomizawa, Miyamoto and Ashihara
(2003) considered a measure to represent the degree of departure from marginal ho-
mogeneity. However, the maximum value of this measure cannot distinguish two
kinds of marginal inhomogeneity. This paper proposes a measure which can distin-
guish two kinds of marginal inhomogeneity for square tables with ordered categories.
The measure is constructed using the arc-cosine function of symmetric cumulative
probabilities. Especially the proposed measure is useful for representing the degree
of departure from marginal homogeneity when the extended marginal homogeneity
model holds. Examples are given.
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1. INTRODUCTION

Consider an R×R square contingency table with the same row and column

classifications. Let pij denote the probability that an observation will fall in the

i-th row and j-th column of the table (i = 1, ..., R; j = 1, ..., R), and let X and Y

denote the row and column variables, respectively. The marginal homogeneity

model is defined by

Pr(X= i) = Pr(Y = i) for i = 1, ..., R ,

namely

pi· = p· i for i = 1, ..., R ,

where pi · =
∑R

k=1 pik and p· i =
∑R

k=1 pki. See, for example, Stuart (1955), Bishop,

Fienberg and Holland (1975, p. 294).

Let

G1(i) =
i

∑

s=1

R
∑

t=i+1

pst

[

= Pr(X≤ i, Y ≥ i + 1)
]

,

and

G2(i) =
R

∑

s=i+1

i
∑

t=1

pst

[

= Pr(X≥ i + 1, Y ≤ i)
]

,

for i = 1, ..., R −1. Then, by considering the difference between the cumulative

marginal probabilities, FX
i − F Y

i for i = 1, ..., R −1, where FX
i = Pr(X≤ i) and

F Y
i = Pr(Y ≤ i), we see that the marginal homogeneity model may also be ex-

pressed as

G1(i) = G2(i) for i = 1, ..., R −1 .

Namely, this model also states that the cumulative probability that an observation

will fall in row category i or below and column category i + 1 or above is equal

to the cumulative probability that the observation falls in column category i or

below and row category i + 1 or above for i = 1, ..., R −1.

When the marginal homogeneity model does not hold, we are interested in

measuring the degree of departure from the marginal homogeneity model.

For square contingency tables with ordered categories, Tomizawa, Miyamoto

and Ashihara (2003) proposed the following measure Γ(λ) to represent the degree

of departure from marginal homogeneity: assuming that {G1(i) + G2(i) 6= 0}, for

λ > −1,

Γ(λ) =
λ(λ + 1)

2λ − 1

R−1
∑

i=1

(

G∗

1(i) + G∗

2(i)

)

I
(λ)
i

(

{

Gc
1(i), G

c
2(i)

}

;

{

1

2
,
1

2

})

,
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where

∆ =
R−1
∑

i=1

(

G1(i) + G2(i)

)

,

G∗

1(i) =
G1(i)

∆
, G∗

2(i) =
G2(i)

∆
,

Gc
1(i) =

G1(i)

G1(i) + G2(i)
, Gc

2(i) =
G2(i)

G1(i) + G2(i)
,

with

I
(λ)
i (·; ·) =

1

λ(λ + 1)

[

Gc
1(i)

{

(Gc
1(i)

1/2

)λ

− 1

}

+ Gc
2(i)

{

(Gc
2(i)

1/2

)λ

− 1

}]

,

and the value at λ = 0 is taken to be the limit as λ → 0. Note that I
(λ)
i (·; ·) is

the Cressie and Read (1984) power-divergence between two distributions (also

see Read and Cressie, 1988, p. 15).

The measure Γ(λ) has characteristics that:

(i) it lies between 0 and 1;

(ii) Γ(λ) = 0 if and only if the marginal homogeneity model holds;

(iii) Γ(λ) = 1 if and only if the degree of departure from marginal homo-

geneity is maximum (that is, G1(i) = 0 (then G2(i) > 0) or G2(i) = 0

(then G1(i) > 0) for all i = 1, ..., R−1).

However, using the measure Γ(λ), we cannot distinguish two kinds of marginal

inhomogeneity, namely, that the marginal inhomogeneity is which of

(i) G1(i) = 0 (then FX
i < F Y

i ) for all i = 1, ..., R −1,
or

(ii) G2(i) = 0 (then FX
i > F Y

i ) for all i = 1, ..., R −1.

Since these two kinds of marginal inhomogeneity indicate the opposite differ-

ent maximum departures from marginal homogeneity, we are now interested in

proposing a measure which can take the different values for them.

The purpose of this paper is to propose such a measure which can distin-

guish two kinds of marginal inhomogeneity for square contingency tables with

ordered categories. We note that Tahata, Yamamoto, Nagatani and Tomizawa

(2009) investigated average symmetry. In the present paper, we consider the

average marginal homogeneity using a similar ideas to Tahata et al. (2009) and

using as example the same data.
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2. A MEASURE FOR MARGINAL HOMOGENEITY

Consider an R×R table with ordered categories. Let

∆ =
R−1
∑

i=1

(

G1(i) + G2(i)

)

,

and

G∗

1(i) =
G1(i)

∆
, G∗

2(i) =
G2(i)

∆
, for i = 1, ..., R −1 .

Assuming that
{

G1(i) + G2(i) 6= 0
}

, consider a measure defined by

Ψ =
4

π

R−1
∑

i=1

(

G∗

1(i) + G∗

2(i)

)

(

θi −
π

4

)

,

where

θi = cos−1





G1(i)
√

G2
1(i) + G2

2(i)



 .

Noting that the range of θi is 0 ≤ θi ≤ π/2, we see that the measure Ψ lies

between −1 and 1. The measure Ψ has characteristics that:

(i) Ψ =−1 if and only if G2(i) = 0 (then FX
i > F Y

i ) for all i = 1, ..., R−1,

[marginal inhomogeneity with all probabilities zero of lower left trian-

gle (say, L-marginal inhomogeneity)];

(ii) Ψ = 1 if and only if G1(i) = 0 (then FX
i < F Y

i ) for all i = 1, ..., R −1,

[marginal inhomogeneity with all probabilities zero of upper right tri-

angle (say, U-marginal inhomogeneity)].

In addition, Ψ = 0 indicates that the weighted average of {θi − π
4 } equals zero.

Thus when Ψ = 0, we shall refer to this structure as the average marginal ho-

mogeneity. We note that if the marginal homogeneity holds then the average

marginal homogeneity holds, but the converse does not hold.

Therefore, using the measure Ψ, we can see whether the average marginal

homogeneity departs toward the L-marginal inhomogeneity or toward the

U-marginal inhomogeneity. As the measure Ψ approaches −1, the departure

from the average marginal homogeneity becomes greater toward the L-marginal

inhomogeneity. While as the Ψ approaches 1, it becomes greater toward the

U-marginal inhomogeneity.
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3. RELATIONSHIPS BETWEEN THE MEASURE AND SOME

MODELS

First, we consider the relationship between the measure Ψ and the extended

marginal homogeneity model. The extended marginal homogeneity model con-

sidered by Tomizawa (1984), is defined by

G1(i) = τ G2(i) for i = 1, ..., R −1 .

A special case of this model obtained by putting τ = 1 is the marginal homo-

geneity model. If the extended marginal homogeneity model holds true, then the

measure Ψ can be expressed as

Ψ =
4

π
cos−1

(

τ√
τ2 + 1

)

− 1 .(1)

Therefore, Ψ = 0 if and only if the marginal homogeneity model holds, i.e., τ = 1,

thus G1(i) = G2(i) for i = 1, ..., R −1. As the value of τ approaches the infinity, the

measure Ψ approaches−1. While as the value of τ approaches zero, Ψ approaches1.

Thus when the extended marginal homogeneity model holds in a table, the mea-

sure Ψ represents the degree of departure from marginal homogeneity toward the

L-marginal inhomogeneity or toward the U-marginal inhomogeneity.

Next, consider the conditional symmetry model (McCullagh, 1978) defined

by

pij = τ pji for i < j .

This model implies the extended marginal homogeneity model. Therefore, if the

conditional symmetry model holds true, then the measure Ψ can also be expressed

as (1).

Therefore for comparisons in several tables, if it can be estimated that there

is a structure of extended marginal homogeneity or conditional symmetry in each

table, then the measure Ψ would be adequate for representing and comparing

the degree of departure from the marginal homogeneity toward the L-marginal

inhomogeneity and U-marginal inhomogeneity.

The measure Ψ should be applied to the ordinal data of square tables with

the same row and column classifications because the Ψ is not invariant under

arbitrary similar permutations of row and column categories.
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4. APPROXIMATE CONFIDENCE INTERVAL FOR THE MEA-

SURE

Let nij denote the observed frequency in the i-th row and j-th column

of the table (i = 1, ..., R; j = 1, ..., R). Assuming that a multinomial distribution

applies to the R×R table, we shall consider the approximate variance for es-

timated measure and large-sample confidence interval for the measure Ψ using

delta method, the descriptions of which are given by, e.g., Bishop et al. (1975,

Sec. 14.6). The sample version of Ψ, i.e., Ψ̂, is given by Ψ with {pij} replaced by

{p̂ij}, where p̂ij = nij/n and n =
∑∑

nij . Using delta method,
√

n(Ψ̂−Ψ) has

asymptotically (as n → ∞) a normal distribution with mean zero and variance,

σ2[Ψ] =
∑∑

k<l

(

pkl D
2
kl + plk D2

lk

)

,

where for k < l,

Dkl =
4

π∆

l−1
∑

i=k



cos−1





G1(i)
√

G2
1(i)+G2

2(i)



−
G2(i)

(

G1(i) + G2(i)

)

G2
1(i) + G2

2(i)



− (l− k) (Ψ +1)

∆
,

Dlk =
4

π∆

l−1
∑

i=k



cos−1





G1(i)
√

G2
1(i)+G2

2(i)



+
G1(i)

(

G1(i) + G2(i)

)

G2
1(i) + G2

2(i)



− (l− k) (Ψ +1)

∆
.

Let σ̂2[Ψ] denote σ2[Ψ] with {pij} replaced by {p̂ij}. σ̂[Ψ]/
√

n is an es-

timated standard error for Ψ̂, Ψ̂ ± zp/2 σ̂[Ψ]/
√

n is an approximate 100(1− p)%

confidence interval for Ψ, where zp/2 is the percentage point from the standard

normal distribution that corresponds to a two-tail probability equal to p.

The maximum likelihood estimates of expected frequencies under each of

the marginal homogeneity, extended marginal homogeneity and average marginal

homogeneity models can be obtained using the Newton–Raphson methods to the

log-likelihood equations. The marginal homogeneity, extended marginal homo-

geneity and average marginal homogeneity models can be tested for goodness-

of-fit by, e.g., the likelihood ratio chi-squared statistic with R −1, R − 2, and 1

degrees of freedom, respectively.
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5. ANALYSIS OF DATA

5.1. Analysis of Table 1(a)

Consider the data in Table 1(a) taken from Stuart (1955). These are data

on unaided distance vision of 7477 women aged 30 to 39 employed in Royal

Ordnance factories in Britain from 1943 to 1946. These data have been analyzed

by many statisticians, e.g., including Stuart (1955), Caussinus (1965), Bishop et

al. (1975, p. 284), McCullagh (1978), Goodman (1979), Agresti (1983), Tomizawa

(1993), and Tomizawa and Tahata (2007), etc.

Table 1: The unaided vision data of
(a) 7477 women in Britain (from Stuart, 1955),
(b) 3242 men in Britain (from Stuart, 1953),
(c) 4746 students in Japan (from Tomizawa, 1984).

(a) Women in Britain

Right eye
grade

Left eye grade

Best (1) Second (2) Third (3) Worst (4)
Total

Best (1) 1520 266 124 66 1976
Second (2) 234 1512 432 78 2256
Third (3) 117 362 1772 205 2456
Worst (4) 36 82 179 492 789

Total 1907 2222 2507 841 7477

(b) Men in Britain

Right eye
grade

Left eye grade

Best (1) Second (2) Third (3) Worst (4)
Total

Best (1) 821 112 85 35 1053
Second (2) 116 494 145 27 782
Third (3) 72 151 583 87 893
Worst (4) 43 34 106 331 514

Total 1052 791 919 480 3242

(c) Students in Japan

Right eye
grade

Left eye grade

Best (1) Second (2) Third (3) Worst (4)
Total

Best (1) 1291 130 40 22 1483
Second (2) 149 221 114 23 507
Third (3) 64 124 660 185 1033
Worst (4) 20 25 249 1429 1723

Total 1524 500 1063 1659 4746
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We see from Table 2 that for the data in Table 1(a), the value of estimated

measure Ψ̂ is −0.102 and all values in the confidence interval for Ψ are nega-

tive. Therefore, the average marginal homogeneity for the women’s right and

left eyes departs toward the L-marginal inhomogeneity. Table 3 gives the values

of likelihood ratio chi-squared statistic for testing goodness-of-fit of each model.

Table 2: The estimates of Ψ, estimated approximate standard errors
for Ψ̂, and approximate 95% confidence intervals for Ψ,
applied to Tables 1(a), 1(b) and 1(c).

Applied Estimated Standard Confidence
data measure error interval

Table 1(a) −0.102 0.029 (−0.160, −0.045)
Table 1(b) 0.038 0.044 (−0.048, +0.123)
Table 1(c) 0.128 0.040 (+0.049, +0.206)

We see from Table 3 that each model of marginal homogeneity and average

marginal homogeneity fits the data in Table 1(a) poorly, but the extended marginal

homogeneity model fits these data well. So we can see from the estimated mea-

sure that the degree of departure from marginal homogeneity for the vision data

in Table 1(a) is estimated to be 10.2 percent of the maximum departure toward

the L-marginal inhomogeneity. This indicates that the right eye is better than

her left eye for all women.

Table 3: The values of likelihood ratio chi-squared statistic for the models of
marginal homogeneity, average marginal homogeneity and extended
marginal homogeneity, applied to Tables 1(a), 1(b) and 1(c).

Table 1(a)

Applied models degrees of freedom Likelihood ratio chi-square

Marginal homogeneity 3 11.99∗

Average marginal homogeneity 1 11.98∗

Extended marginal homogeneity 2 0.005

Table 1(b)

Applied models degrees of freedom Likelihood ratio chi-square

Marginal homogeneity 3 3.68
Average marginal homogeneity 1 0.73
Extended marginal homogeneity 2 2.94

Table 1(c)

Applied models degrees of freedom Likelihood ratio chi-square

Marginal homogeneity 3 11.18∗

Average marginal homogeneity 1 9.94∗

Extended marginal homogeneity 2 0.56

∗ means significant at the 0.05 level.
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5.2. Analysis of Table 1(b)

Consider the data in Table 1(b) taken from Stuart (1953). These are data

on unaided distance vision of 3242 men in Britain.

We see from Table 2 that for the data in Table 1(b), the value of measure Ψ̂

is 0.038 and the confidence interval for Ψ includes zero. So this would indicate that

there is a structure of average marginal homogeneity in the data in Table 1(b).

Also we see from Table 3 that the marginal homogeneity model fits these data

well, and each model of average marginal homogeneity and extended marginal

homogeneity also fits these data well. Therefore, it is estimated that there is

a structure of marginal homogeneity for the data in Table 1(b), and also the

estimated measure Ψ̂ would indicate it.

5.3. Analysis of Table 1(c)

Consider the data in Table 1(c) taken from Tomizawa (1984). These are

data on unaided distance vision of 4746 students aged 18 to about 25 including

about 10% women in Faculty of Science and Technology, Science University of

Tokyo in Japan examined in April 1982.

For the data in Table 1(c), we see from Table 2 that the value of Ψ̂ is

0.128 and all values in the confidence interval for Ψ are positive. Therefore, the

average marginal homogeneity for the students’ right and left eyes departs toward

the U-marginal inhomogeneity. This is a contrast to the women’s vision data

in Table 1(a). We see from Table 3 that each model of marginal homogeneity

and average marginal homogeneity fits the data in Table 1(c) poorly, but the

extended marginal homogeneity model fits these data well. So we can see from

the estimated measure that the degree of departure from marginal homogeneity

for the vision data in Table 1(c) is estimated to be 12.8 percent of the maximum

departure toward the U-marginal inhomogeneity. This indicates that the left eye

is better than his/her right eye for all students.

In addition, when we compare the data in Tables 1(a) and 1(c) using the

estimated measure Ψ̂, the degree of departure from the marginal homogeneity for

the right and left eyes is greater in the students data in Table 1(c) than in the

women data in Table 1(a) (see Table 2). Since the Ψ̂ is negative for the women

vision data and positive for the students vision data, a woman’s right eye tends

to be greater than her left eye, and a student’s left eye tends to be greater than

his/her right eye.
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