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Abstract:

• A range of different approaches have been suggested for the multivariate modelling of
the geographical distribution of different but potentially related diseases. We suggest
an addition to these methods which incorporates a discrete mixture of latent factors, as
opposed to using CAR or MCAR random effect formulations. Our proposal provides
for a potentially richer range of dependency structures than those encompassed in
previously used models in that it is capable of representing an enhanced range of
correlation structures between diseases at the same time as implicitly allowing for less
restrictive spatial correlation structures between geographical units. We illustrate
results of using the model on data taken from cancer registries on four carcinomas in
some 300 UK geographical areas.
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1. INTRODUCTION

The literature in spatial epidemiology contains a growing number of refer-

ences to multivariate modelling of the geographical distribution of morbidity or

mortality rates for potentially related diseases. Dabney and Wakefield [9] suggest

that the two main motivations for this interest are firstly, to explore similarities

or dissimilarities in the geographical risk distribution for the different diseases,

and, secondly, to ‘borrow strength’ across disease rates to shrink the uncertainty

in geographical risk assessment for any one of the individual diseases. Regardless

of the relative balance of interest between these two motivations, it is clear that

achievement of either objective will be limited if the structure of the multivari-

ate model used is inadequate and/or its related assumptions are unrealistic. In

particular, the possible dependency structure (either between diseases, or across

geographical units) should not be overly constrained by the model structure.

For example, it may not be the case that relationships between diseases are the

same in, say, rural versus urban environments, nor that dependency between

disease rates in neighbouring small areas will be homogeneous at a larger geo-

graphical scale where spatial discontinuities may well be present. The model

structure should provide a sufficiently rich range of dependency structures to

encompass such possibilities.

Various approaches to spatial modelling of multivariate disease rates have

been proposed. Many of these may be characterised as generalised linear mixed

models (GLMMs) of varying descriptions in which the dependence structure not

explained by covariates is represented in terms of random effects which are cor-

related between diseases and across geographical units. The Multivariate Condi-

tional Autoregressive (MCAR) model is one popular approach for dealing with

multivariate disease rates in small areas (e.g. [13, 26, 10]) but some have com-

mented that MCAR formulations remain difficult to fine tune because the cor-

relations in random effects between diseases and/or across spatial units are not

easy to disentangle. Models which incorporate more explicit latent structure also

feature in multivariate modelling of disease rates. Held et al. [22] review a range

of approaches to joint disease modelling including shared latent processes. Early

examples include that used by Knorr-Held and Best [24] to identify a shared

spatial component in the geographical distribution of bivariate disease rates and

the simple latent variable formulation employed by Wang and Wall [36] to model

Minnesota cancer rates. More recently, Liu et al. [27] have proposed a Structural

Equation Model (SEM) for cancer rates where the three cancers have a single

shared spatially structured latent variable. Latent structure models are not re-

stricted to area applications. Christensen and Amemiya [6] have suggested an

approach applicable to point data which has been illustrated by Minozzo and

Fruttini [30] who examined bivariate point measures of types of diabetes morbid-

ity.
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MCAR versus explicit latent structure aside, there are two assumptions

which dominate most of these previously described multivariate models. First,

that spatial dependency across small areas is essentially ‘smooth’ and not subject

to global spatial discontinuities. Second, that it is reasonable to assume that a

single relationship between diseases counts applies to all types of areas. In some

(perhaps many) applications the dependence structure may well be more com-

plex than that implied by these rather broad assumptions. Normand et al. [31]

highlight that in the absence of adequate covariate information, simple exchange-

ability assumptions across areas may not be valid in many of the GLMMs used

to analyse healthcare provision. In a multivariate setting these exchangeability

concerns across areas remain, but are compounded by additional concerns over

whether the dependence structure between diseases varies geographically.

We therefore propose a model for use in such contexts which potentially

provides a richer range of dependency structures than those encompassed by

previous approaches. Rather than representing the dependence structure not

explained by covariates in terms of correlated random effects, we suggest that it is

preferable to formulate correlations in terms of an explicit latent structure similar

to that arising in factor analysis. Our model is based on latent structure mixtures

and we argue that incorporating a discrete mixture into the latent structure

loadings in the model simultaneously provides potential to represent an enhanced

range of correlation structures between diseases, at the same time as allowing for

less restrictive spatial correlation structures between geographical units.

The structure we propose could be considered similar to a ‘mixture of factor

analysers’. Such models (mostly for Gaussian responses) have been reported in

other contexts in the statistical literature and elsewhere. For example, Mclachlan

and Peel [29] discuss mixtures of factor analysers, Lee and Song [25] report on

mixtures in relation to Structural Equation Modelling, and Viroli [35] describes

‘independent factor analysis’ based upon approaches developed in the signal pro-

cessing literature. Many insights into the properties of GLMMs for multivariate

disease rates can be gained from studying recent developments in factor anal-

ysis which has been enjoying somewhat of a methodological renaissance in a

Bayesian setting [1] with a number of useful results emerging. The development

of our latent structure mixture model for joint disease modelling in this paper

is encouraged by these results and draws upon our belief in the value of viewing

correlated random effects in a factor analysis framework.

In Section 2 we develop our model and describe fitting strategy. In Sec-

tion 3 we introduce an illustrative data set on which to demonstrate results which

concerns four cancers in some 300 geographical units in England, Scotland and

Wales. We present model results for these data in Section 4 and then go on to

discuss conclusions in Section 5.
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2. MODEL FORMULATION

The basic structure of the problem we consider is that we have data, yij ,

representing the number of cases in area i for disease j (i = 1, ..., n; j = 1, ..., p).

The corresponding expected number of cases eij is also known, this being based

on age/sex standardised rates for the whole of the study region, or for some

appropriate alternative reference population (equivalently, we may know yij along

with the standard morbidity ratio (SMR) yij/eij , for disease j in area i). Where

appropriate we will refer to the vector of disease counts in each area as yi =

(yi1, ..., yip) and the corresponding vector of expected counts as ei = (ei1, ..., eip).

In a practical setting we may well also have a vector of covariates xi (i = 1, ..., n)

measured in each area, but for simplicity of exposition we will assume throughout

this paper that such covariates are not available. If required these can be included

into the models we develop in an obvious and straightforward fashion.

It is usual to assume disease counts are Poisson distributed viz: yij |λij ∼

Pois(eijλij), with the mean vector, λi = (λi1, ..., λip), in each area then being

modelled through an appropriate link function by a suitable linear predictor.

In developing our modelling framework we build upon proposals made by Wang

and Wall [36] mentioned in Section 1 which used a log link and a simple linear

predictor involving a single area specific latent variable with a disease specific

loading, so that: log(λij) = φi δj , where δj is the disease specific loading and

φi is the area specific latent (unmeasured) variable which was in turn assumed

to follow a Conditional Auto-Regressive Gaussian (CAR) distribution over the

areas. In this model correlation between diseases within an area is reflected

through the shared latent variable and spatial correlation across areas is achieved

via the CAR). However, the simple structure only provides for a limited range of

correlation structures between diseases (same for all areas) and makes possibly

unrealistic assumptions about the spatial dependence (it is ‘smooth’ — there is no

possibility of global spatial discontinuity). We therefore consider ways to provide

more complex possibilities for dependencies between diseases and across areas.

First, to allow potential for a more complex dependence structure between

diseases, we include q latent variables. So that the model becomes

(2.1) log(λij) =

q
∑

h=1

φih δjh ,

where δjh is a disease specific loading for area specific latent variable φih (h=1,...,q).

We can express this more succinctly as

(2.2) log(λi) = φi∆ ,

where it is understood that log(λi)=(logλi1, ..., logλip) and where φi =(φi1, ..., φiq)
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is the vector of latent variables for area i and ∆ is the q×p matrix of loadings:

∆ =







δ11 · · · δp1
...

. . .
...

δ1q · · · δpq






.

This formulation raises identifiability problems (e.g. rotational indeterminacy) so

we follow Lopes and West [28] and constrain the loading matrix ∆ so that it is

upper triangular with the diagonal strictly positive, i.e.:

∆ =













δ11 δ21 · · · δp1

0 δ22
. . . δp2

...
...

. . .
...

0 0 · · · δpq













.

To incorporate a richer range of dependency across areas we then further

extend model (2.2) to a mixture model across s sets of q latent variables in each

area, with φ
(k)
i =

(

φ
(k)
i1 , ..., φ

(k)
iq

)

denoting the kth set of latent variables. So that

the model becomes

yij |λ
(1)
ij , ..., λ

(s)
ij ∼

s
∑

k=1

πik Pois
(

eijλ
(k)
ij

)

,

with πik denoting mixing probabilities (
∑

k πik = 1) and with

log
(

λ
(k)
i

)

= φ
(k)
i ∆(k) ,

where ∆(k) is a q×p matrix of loadings for the the kth set of latent variables

(k = 1, ..., s) and with each such matrix is subject to the constraints described

earlier. The latent variables φ
(k)
ih are assumed to follow independent Gaussian

distributions with means µ
(k)
h for k = 1, ..., s, h = 1, ..., q and i = 1, ..., n.

So each area is now a mixture of s types of areas, with each type of area

being associated with a different set of q latent variables and corresponding load-

ings. Note there is no explicit spatial dependence (e.g. CAR or MCAR) in the

above formulation. However, implicit spatial dependence arises through groups

of areas being free to share a similar pattern of mixing probabilities over the sets

of latent variables and loadings. This type of spatial dependence is potentially

very flexible since it does not necessarily impose undue global spatial smoothness.

Finally, we incorporate additional unstructured area and disease specific

random effects into the linear predictor of our formulation above in order to

deal with possible overdispersion. These additional random effects are effectively

equivalent to ‘uniqueness’ in the traditional factor analysis literature.

So the final model then becomes

(2.3) log
(

λ
(k)
i

)

= φ
(k)
i ∆(k) + ζi ,
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where the random effects, ζi = (ζi1, ..., ζip), are independent zero mean Gaussian

with variances drawn from inverse Gamma hyperpriors.

Using mixture models as in the above formulation, raises a number of fitting

and identifiability issues Mclachlan and Peel [29]. We use an MCMC fitting ap-

proach with a flat hyperprior for the group means µ
(k)
h of the latent variables; and

with loadings δjh (subject to the identifiability constraints described earlier) given

zero mean Gaussian priors with inverse Gamma hyperpriors for their distinct as-

sociated variances. The model involves both unknown numbers of latent variables

and mixture components, but there is considerable complexity in using dimension

changing methods (e.g. RJMCMC) even with just unknown numbers of latent

variables (e.g. [28]) let alone when this is compounded with an unknown number

of mixture components. We therefore follow suggestions made by Green [19] and

use a strategy whereby distinct models are fitted to distinct dimensionalities. In

selecting the number of mixture components we draw on similarities between our

latent structure mixture and the ‘mixture of factor analysers’ model [29, Chap 8].

We note that in the machine learning literature, ‘Variational Bayes’ approaches

are used to fit ‘mixtures of factor analysers’ [17, 3] which are essentially equivalent

to minimising the Kullback–Leibler distance between the factorised approxima-

tion and the joint posterior. We have therefore selected a strategy based on the

Kullback–Leibler distance in order to select the number of mixture components.

We use this measure to assess the distance between our fitted model and a model

which assumes the two closest mixture components have been merged. An ap-

proximation to the Kullback–Liebler distance can be generated as a byproduct of

Gibbs sampling [32] and we use this to guide model selection with respect to the

number of substantive mixture components which may be supported by the data.

We follow Celeux et al. [5] by not placing any constraints on the ordering of the

mixture group means and deal with label-switching by post-processing the output

of our MCMC sampler. Mixture group memberships for loadings and latent vari-

ables (where applicable) were assumed to be categorical variables with a Dirichlet

prior for the probabilities, πi = (πi1, ..., πis), of belonging to the different groups,

i.e.

p(πi1, ..., πis) =
Γ(α1 · · ·αs)

Γ(α1) · · · Γ(αs)
πα1−1

i1 · · · παs−1
is ,

where αk represents the prior group weights for each of the k = 1, ..., s mixing

components.

Routine checks for MCMC convergence were used involving Gelman and

Rubin’s R [15], Geweke’s statistic [16] and Heidelberger and Welch’s statistic [21].

These are slow models to fit, running multiple chains is therefore somewhat time

consuming but it is essential given the level of cross-correlation possible due the

model formulation. Whilst somewhat slower than using customised code, we used

the widely accessible WinBUGs software package [34] to fit models.
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Overall model fit was assessed by a number of measures. In addition to

assessing mixture group membership in terms of Kullback–Leibler distance, we

also considered Posterior Predictive Loss as proposed by Gelfand and Ghosh [14]

as well as a variant on this proposed by Gneiting and Raftery [18] which enjoys

the advantage of being a proper scoring rule and has been examined specifically

in respect of count data by Czado et al. [8]. We refer to this proper score as

the ‘Dawid and Sebastiani score’ following earlier work reported in Dawid and

Sebastiani [11].

We also validated the performance of our model by means of out of sample

predictions using the posterior predictive distribution of the relative risks for

each disease for each area studied. We removed one tenth of the observations

at random, and fitted the model to these data. The posterior predictive density

for these deleted observations was collected during the model fitting process, and

compared with the observed data.

3. DATA

As an illustrative application to demonstrate model performance, we con-

sider data on reported numbers of cases of four types of cancer in some 300

geographical units covering England, Wales and Scotland. These data were ob-

tained from the 9 cancer registries in England as well as the cancer registries in

Scotland and Wales and comprise the number of cases reported between 1999 and

2001 of, ‘Lung cancer’ (ICD-10 classified sites C33-C34, i.e. Trachea, Bronchus

and Lung cancer), ‘Oral cancer’ (C00-C14, i.e. Lip, Oral Cavity and Pharynx),

Breast cancer (C50) and Cancer of the Cervix (C53). Data were collected on

prevalence for males and females for the first two cancers, but only for females

in respect of breast and cervical cancer. Direct standardisation [7] was used to

estimate associated expected morbidity based on quinary age bands for the whole

of the study region.

These data refer to the smallest administrative geographical unit available,

i.e. the 303 Primary Care Trusts (PCT) in England, the 22 Local Health Boards in

Wales and the 14 National Health Service Boards in Scotland. For convenience we

will subsequently refer to all such units by the name given to the majority, namely

‘PCTs’. The English and Welsh entities are comparable in size, for example the

mean population within an English PCT is 163,000 with a minimum 63,700 and

a maximum 372,600 whereas the Welsh Local Health Board mean population

was 131,900 with a minimum of 56,500 and a maximum of 310,300. Scotland

is dominated by a couple of very large NHS Boards, the mean population was

720,320 with a minimum of 38,400 and a maximum of 1,736,300. Some caution

may therefore be needed when comparing results from England and Wales with
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those of Scotland due to aggregation effects alone. We concentrate here on those

335 ‘PCTs’ which are entirely based on the mainland, i.e we exclude islands.

It should be noted for later reference that one of the mainland PCTs in Cornwall

(the far South West of our maps) contains an aggregate of data from the Isles of

Scilly.

Basic information about the number of cancers registered under each diag-

nosis in each PCT are contained in Table 1. As is usual with administratively

collected data, there are some provisos over accuracy. Particular problems with

UK cancer registry data are documented in Best and Wakefield [4], and we note

that it may not be entirely reasonable to assume that each cancer registry collects

the data in exactly the same way.

Table 1: Summary information on the mean, standard deviation,
minimum and maximum number of cancer cases regis-
tered for each of the six diagnosis groups in each of the
335 non-island PCTs in England, Scotland and Wales.

Oral (F) Lung (F) Oral (M) Lung (M) Breast Cervix

Mean 16.25 132.81 28.65 205.06 359.99 26.68

Std. Dev. 11.62 107.06 23.04 136.67 184.47 17.62

Minimum 1 29 3 41 107 4

Maximum 133 1333 276 1653 1832 175

Table 2 gives the observed correlation coefficients between the various can-

cer rates. It can be seen for example that Lung cancer rates are highly correlated

between males and females (0.88), the same is not so true of oral cancer rates

(0.31). Figure 1 provides the same information in graphical form.

Table 2: Observed correlation between cancer rates for the four cancers,
male and female data shown separately.

Oral (F) Lung (F) Oral (M) Lung (M) Breast Cervix

Oral (F) 1.00 0.23 0.31 0.24 0.04 0.22

Lung (F) 0.23 1.00 0.52 0.88 −0.32 0.47

Oral (M) 0.31 0.52 1.00 0.52 −0.18 0.35

Lung (M) 0.24 0.88 0.52 1.00 −0.39 0.49

Breast 0.04 −0.32 −0.18 −0.39 1.00 −0.18

Cervix 0.22 0.47 0.35 0.49 −0.18 1.00
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Figure 1: Pairwise scatter plots for the six age standardised cancer rates.

4. RESULTS

Models were fitted as described in Section 2, using the priors and conver-

gence criteria indicated there. A standard burn in period of 50,000 iterations was

used, a further 100,000 samples thinned by a factor of 20 were used for posterior

inference. As mentioned previously, all results reported here were obtained using

the WinBUGs software package [34].

We fitted a range of models with differing numbers of latent variables and

differing numbers of mixture components. Given p = 6 disease counts we con-

sidered all the classically identifiable possibilities, i.e. k = 1, ..., 3 latent variables.

It was found feasible to fit a three latent variable model and we prefer that both

because it has the greatest potential to model a complex dependence structure

and because it has the lowest posterior predictive score. In general, the posterior

predictive Dawid and Sebastiani score tends to favour models with a larger num-

ber of mixture components. However, Kullback–Leibler tends to favour a two

component solution. Figure 2 contains a density plot of the sampled values for

the approximate Kullback–Leibler distance between a two component mixture

and a one component model and indicates a considerable distance between the

two and one component means of the second latent variable. Given this support

from the Kullback–Leibler distance we accept a two component solution despite
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the fact that this fits slightly less well than higher numbers of components on the

Dawid and Sebastiani score.
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Figure 2: Approximate Kullback–Leibler distance between two and one
component latent structure mixture model with three latent
variables when considering each of the latent variables.

Figure 3 presents maps of the geographical distribution of raw and model

estimated posterior mean relative risk for Breast cancer. The model achieves

a degree of shrinkage in terms of the posterior mean of the relative risks when

compared with the raw data. Maps for the other cancer counts reveal a similar

story.

Observed RR

Posterior median

0.72  to  0.93
0.93  to  0.99
0.99  to  1.02
1.02  to  1.07
1.07  to  1.30

Latent Structure Mixture Model posterior RR

Posterior median

0.84  to  0.96
0.96  to  0.99
0.99  to  1.02
1.02  to  1.06
1.06  to  1.22

Figure 3: Breast cancer raw rates and posterior mean relative risk
from latent structure mixture model.
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Perhaps more interesting, is that with this model it is possible to examine

posterior mean mixing probabilities for each PCT. Figure 4 gives the posterior

groupings of PCTs associated with this measure. It is clear that although no

explicit spatial structure is imposed in this model, the mixture groups appear to

be highlighting a spatial pattern that has a substantive interpretation (Scotland

and industrial areas in England and Wales). There does therefore appear appear

to be some interesting possibilities in using this type of model formulation.

Posterior probability for group 1 memberships

ππ(Group 1)

<33%

33 to 66%

>67%

Figure 4: Posterior probability of PCT group membership for
latent structure mixture model with two components
and three latent variables.

Finally, we present illustrative results demonstrating the out of sample

performance of the model. A random 35 PCTs had data removed for a a randomly

selected cancer site (Female Lung Cancer). Results are depicted in Figure 5 which

contrasts the posterior predictive density for the omitted data with the actual

data that had been excluded from the model.
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Figure 5: Out of sample posterior predictive density for 35 ‘PCTs’
randomly removed from the Female Lung Cancer site.
The actual removed data points have been superimposed.

5. DISCUSSION

We believe that the latent structure mixture model developed in this paper

provide a tractable approach to handling situations in joint disease modelling

where it may be anticipated that a single dependence structure, either between

diseases or across geographical units, is overly restrictive. We also believe that

such situations are not uncommon and that aspects of the illustrative cancer mor-

bidity data we have examined substantiate the argument for employing mixture

models as a way of avoiding unreasonable exchangeability assumptions.

Our primary focus has been on statistical methodology, rather than iden-

tifying any substantive epidemiological issues arising from the particular cancer

morbidity data we have examined. That said, there could well be interesting

epidemiological distinctions between the areas discriminated using our approach

as reported in Section 4. It is quite striking that the areas with lowest proba-

bility of group 1 membership tending to correspond to former industrial areas of

Scotland, North England and Wales, those PCTs with the highest probability of

group 1 membership tending to correspond to more affluent and rural areas in

Southern England. This fits well with the epidemiology of these diseases, lifestyle

factors such as alcohol and tobacco consumption being more dominant in the
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non-group 1 areas (hence greater lung and oral cancer) and other factors being

responsible for greater breast cancer risk in the group 1 areas. However, we are

cautious of over-interpretation in this regard. Further work is needed to deal with

these models in such a way that the mixtures on the loadings can be disentangled

from the mixtures on the latent variables, but it does appear from our results

that the two structures do act differently.

We have concentrated on modelling dependency structure and not explicitly

addressed use of additional covariate information on geographical units other

than routine standardisation for age/sex population structure. We appreciate

that in practice it is very likely that relevant additional covariate information

will be available on the geographical units concerned. If so, then this can easily

be handled by simply including relevant fixed effects into the linear predictor of

the model we have proposed and does not present any additional methodological

challenges.

In summary, we believe that incorporating a mixture distribution into a la-

tent structure model has considerable potential in modelling multivariate disease

rates. The advantages of using a latent structure model relate to the transpar-

ent way in which correlation structure is represented in the model allowing the

modeller to tune this accordingly. It is less obvious how to do this within, say,

the MCAR formulation where the latent structure is not explicit. We appreciate

that in this paper we have not carried out any formal comparison of the fit of our

proposed model to other formulations such as the MCAR. This topic is taken up

and reported elsewhere in an expanded version of this paper (see [23]).
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