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Abstract:

• Biomedical research often involves the measurement of multiple outcomes in differ-
ent scales (continuous, binary and ordinal). A common approach for the analysis of
such data is to ignore the potential correlation among the outcomes and model each
outcome separately. This can lead not only to loss of efficiency but also to biased esti-
mates in the presence of missing data. We address the problem of missing data in the
context of multiple non-commensurate outcomes. The consequences of missing data
when using likelihood and quasi-likelihood methods are described, and an extension
of these methods to the situation of missing observations in the outcomes is proposed.
Two real data examples illustrate the methodology.
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1. INTRODUCTION

Many biomedical studies involve measurements of multiple outcomes on

each subject. When the outcomes are commensurate, i.e., are measured on the

same scale and are measuring the same underlying variable, classical tools of

multivariate statistics can be used. However, multivariate methods to analyze

outcomes measured on different scales or measuring different underlying vari-

ables, i.e., non-commensurate outcomes, are less common and rarely used in data

analysis. A common solution used in the presence of non-commensurate out-

comes is to analyze each outcome separately, ignoring the potential correlation

between the outcomes. There are several disadvantages of this approach. First,

there might be a loss of efficiency by ignoring the extra information contained in

the correlation between the outcomes. Second, with separate analysis it is harder

to answer intrinsic multivariate questions such as the existence of a covariate ef-

fect on the underlying outcome. Third, if some outcomes are missing for some

individuals, different samples of individuals will be included in the analysis of

the effect of exposure on different outcomes. Finally, the situation of missing

data may also produce biased results if the missing data depends on the other

outcomes.

The main difficulty of modeling non-commensurate variables is that there

is no obvious multivariate distribution. Mainly, three approaches to model non-

commensurate outcomes have been described in the literature. The first has its

roots in the general location model ([10]) and has been extended to accommo-

date covariates ([2]) and clustered data ([6], [12]). The key idea is to factorize the

likelihood as the product of marginal and conditional distributions, and model

each term of the product. However, this approach does not generalize easily when

the number of outcomes is increased. The second approach uses latent variables

to induce the correlation between the outcomes and assumes that conditional on

these latent quantities, the outcomes are independent ([14], [17], [5]). The third

approach extends the framework of generalized estimating equations (GEE) to

multivariate discrete and continuous outcomes ([11], [20], [19]). The main advan-

tages of the GEE over likelihood methods is the lack of assumptions regarding the

distribution of the data and its robustness to misspecification of the correlation

between the outcomes. Naturally this will lead to less efficient but more robust

estimates (see Teixeira-Pinto and Normand ([19]) for a summary of these and

other approaches).

With the measurement of multiple outcomes there is a higher risk of miss-

ing data. Few authors have addressed the problem of missing data in the set-

ting of non-commensurate outcomes. Fitzmaurice and Laird ([7]) proposed the

use of the EM-algorithm ([3]) to fit the extension of the general location model

in the presence of missing data. Shafer ([15]) described likelihood-based data
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augmentation approaches to missing data assuming a general location model.

In Little and Rubin’s ([9]) nomenclature, the missing data is defined as miss-

ing at random (MAR) if it only depends on the observed data. If the missing

data does not depend on the observed or unobserved data, the missing data is

designated as missing completely at random (MCAR). In contrast, if the the

missing data depends on unobserved data, the missing mechanism is said to be

missing not at random (MNAR). The GEE gives consistent estimates in the

presence of missing data only if the data are MCAR. This would also apply to

the GEE extension proposed by several authors ([11], [20] and, [19]). However,

Robins et al. ([13]) extended the common GEE methodology to situations of MAR

by weighting each observation by its inverse probability of being observed.

In this paper we describe the properties of the latent variable model under

missing data and extend the weighted GEE (WGEE) to multiple non-commen-

surate outcomes for MAR data. A study investigating the association between

participation in a managed behavioral health care carve-out and quality of health

care measured using bivariate mixed outcomes ([4]), and a study evaluating

health-related quality of life after discharge from an intensive care unit using

the Euroqol-5d instrument([8]), illustrate our methods.

2. LATENT VARIABLE MODEL FOR MULTIPLE CONTINU-

OUS AND BINARY OUTCOMES

Let (y1i, ..., yqi) represent a multivariate outcome for the ith-individual

(i = 1, ..., n). We will use the symbol · in the subscript of yk·
to designate all

the observations for outcome k or y
·i to indicate all the outcomes for the indi-

vidual i. Let xji represent a vector of covariates for the ith-individual associated

with the j th-outcome. We allow each outcome to be associated with its own set

of covariates. Let Rji be an indicator variable with value 1 if yji is observed and

0 otherwise. The superscript ‘obs’ is used to denote observed data. We assume

throughout that the covariates are fixed and completely observed, and thus will

be suppressed when writing the conditional distributions.

2.1. Latent variable model with outcome data MAR

One approach to model non-commensurate outcomes in a multivariate

framework is to introduce latent variables, ui = (u1i, ..., upi; p < q), to induce

the correlation between the outcomes. Conditional on the latent variables u the

outcomes are assumed to be independent ([5]). We assume that one of the out-

comes, y1i, has some missing observations and that these observations are MAR,
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i.e., P
(

R1i = 1 | y
·i, xji

)

depends on the observed data, for example, y2i, ..., yqi

and x1i. Let θ be the vector of parameters associated with the distribution of

y
·i |xji. The log-likelihood for the observed data is given by

log L
(

θ; yobs
1·

, ..., yq·
, R1·

, xji

)

∝ log
n
∏

i=1

(

f(y
·i |xji)P

(

R1i =1 | y
·i, xji

)

)R1i

(2.1)
×
(∫

f(y
·i |xji)P

(

R1i = 0 | y
·i, xji

)

∂y1i

)(1−R1i)

.

With some algebraic manipulation and using the fact that R1i does not depend

on y1i we can re-write (2.1) as

=
n
∑

i=1

(

R1i logf(y
·i |xji) + (1−R1i) logf(y2i, ..., yqi |xji)

)

(2.2)
+

n
∑

i=1

(

R1i log
(

P
(

R1i = 1 | y2i, ..., yqi, xji

)

)

+ (1−R1i) log
(

P
(

R1i = 0 | y2i, ..., yqi, xji

)

)

)

.

The terms in the log-likelihood involving the missingness mechanism P
(

R1i |
y2i, ..., yqi, xji

)

will not involve the parameters θ associated with the distribution

of y
·i |xji. These terms will not contribute for the estimation of θ and for this

reason they can be ignored. Therefore, the log-likelihood can be written as the

sum of terms associated with the distribution for complete observations and terms

associated with the distribution for incomplete observations. Thus, the presence

of missing data does not add extra difficulty to the maximization of the likelihood.

In this case we say that the likelihood can be directly maximized because it does

not require a more complex method, such as the EM-algorithm nor multiple

imputation, to compute the maximum likelihood estimates.

Consider the case of a binary outcome, y1·
, and a continuous outcome, y2·

,

where some entries of y1·
are missing. In this case q = 2 and p =1. We assume

the following model for the outcomes:

probit
(

E(y1i |x1i, ui)
)

= β∗T
1 x1i + ui ,

(2.3)
y2i |x1i, ui = βT

2 x2i + σ2ui + ǫ2i ,

where ǫ2i ∼ N(0, σ2
2) and ui is a latent variable with ui ∼ N(0, σ2

u). The latent

variable ui in the model induces the correlation between the outcomes and the

parameter σ2 that multiplies the latent variable is introduced to standardize the

different scales of the two outcomes. For more details see Teixeira-Pinto and

Normand ([19]).



42 A. Teixeira-Pinto and S.L. Normand

The log-likelihood for the observed data can be written as

log L
(

θ; yobs
1·

, y2·
, R1·

, x1i, x2i

)

∝(2.4)

∝
n
∑

i=1

(

R1i logf(y1i, y2i |x1i, x2i) + (1−R1i) logf(y2i |x2i)
)

=
n
∑

i=1

(

R1i log

∫

f(y1i |x1i, ui) f(y2i |x2i, ui) f(ui) ∂ui + (1−R1i) logf(y2i |x2i)

)

.

Depending on the link functions used for each outcome it might be possible to

have a closed-form representation for the marginal distribution of each outcome.

Using the identity link for the continuous outcome and the probit link for the

binary as in (2.3), the model for the marginal means of each outcome can be

written as

probit
(

P (y1i =1 |x1i)
)

= probit

(∫

P (y1i =1 |x1i, ui) f(ui) dui

)

=
β∗T

1 x1i
√

1+ σ2
u

,

(2.5)
y2i |x2i = βT

2 x2i + ǫ∗2i , where ǫ∗2i ∼ N
(

0, σ2
2(1+ σ2

u)
)

.

If instead we choose a logit link for the binary outcome in equation (2.3), the

model for the marginal mean does not have a closed-form representation.

3. WEIGHTED GENERALIZED ESTIMATING EQUATIONS

FOR NON-COMMENSURATE OUTCOMES

3.1. WGEE with data MAR

Suppose we are in the same setting as in the previous section with a binary

and a continuous outcome to motivate the WGEE. We adapt the WGEE proposed

by Robins et al. ([13]) to the situation of multiple non-commensurate outcomes.

The generalization to multiple outcomes is relatively straightforward but

some remarks will be made.

Let y
·i = (y1i, y2i)

T be a vector of a binary and a continuous outcome with

the following marginal model for the outcomes:

µji = g−1
j (βT

j xji) ,(3.1)

where µji = E(yji |xji), j = (1, 2), gj is the probit link for j = 1 and the identity

link for j = 2. If both outcomes are completely observed, the estimating equation
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is

n
∑

i=1

DT
i V −1

i (y
·i − µ

·i) = 0(3.2)

and has a solution that is a consistent and asymptotically normal estimator for

βj ([20], [19]) with variance Γ−1ΩΓ−1, where Di =
(

∂µ
·i

∂β

)

j
, Vi is a ‘working’ co-

variance matrix for y1i and y2i, Γ = E(DT
i V −1Di) and Ω =E

(

DT
i V −1(y

·i −µ
·i)·

· (y
·i − µ

·i)
T V −1Di

)

. Typically, Di is a block-diagonal matrix because the equa-

tions for each outcome do not share the regression parameters. The solution for

the estimating equation is a consistent estimator of β even if Vi is misspecified.

In the case of missing data, this result holds if the data are MCAR but not for

MAR.

Suppose that some observations of y1i are missing and the missing mech-

anism depends on y2i and xji. If the variables y2i and xji are always observed

then y1i is MAR. In this case E(yobs
1i |xji) 6= µ1i because

E(yobs
1i |xji) = E(R1i y1i |xji) = E

(

E(R1i y1i | y1i, y2i, xji)
)

= E
(

y1i E(R1i | y2i, y1i, xji)
)

.
(3.3)

R1i does not depend on y1i because the data are MAR, and E
(

y1i E(R1i | y2i, y1i,

xji)
)

simplifies to E
(

y1i P (R1i = 1 | y2i, xji)
)

. Therefore, this expectation is not

equal to µ1i so the solution for the equation (3.2) is no longer a consistent estimate

of β1. However, if we weight y1i by its inverse probability of being observed

π1i = P (R1i | y2i, xji), we have:

E

(

R1i

π1i
(y1i−µ1i) | x1i

)

= E

(

E

(

R1i

π1i
(y1i−µ1i) | y1i, y2i, xji

)

∣

∣ x1i

)

and, because E(R1i |y2i,xji) = π1i,

= E
(

y1i −µ1i |x1i

)

= 0 .

This motivates the following weighted estimating equation:

n
∑

i=1

DT
i V −1

i ∆i(y·i − µ
·i) = 0(3.4)

and

∆i =

(

R1i π−1
1i 0

0 1

)

.(3.5)

The estimating equation (3.4) has a solution β̂ which is a consistent estimate

of β and has an asymptotic normal distribution with a consistent estimator
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of its variance given by Γ̂−1
(
∑n

i=1 Ĉi ĈT
i

)

Γ−1T
where Γ̂ =

∑n
i=1(D

T
i V −1∆iDi),

Ĉi = DT
i V −1(y

·i − µ
·i) −

(
∑n

i=1 DT
i V −1(y

·i − µ
·i)ST

i

) (
∑n

i=1 Si S
T
i

)

Si and Si is

the score component for the ith-individual from the model for π1i.

The last entry in the matrix ∆i is 1 because only y1·
is missing for some

subjects and y2·
is always observed. The weights πji are unknown and have to

be estimated. We can use, for example, a logistic regression to estimate π1i =

P (R1i = 1 | y2i, xji) as in (3.6) and plug in the estimates in equation (3.4).

logit(π1i) = ζ0 + ζ1y2i + ζ2 xji .(3.6)

The assumption of MAR implies that if Rji depends on the other outcomes,

then only one outcome can have missing observations. However, if there are

missing observations in y2i or in one of the covariates involved in the model (3.6),

we no longer have a case of MAR and we are not able to estimate all the weights

π1i.

3.2. Estimation of the Covariance Parameters

Although we are mainly interested in the estimation of the parameters βj ,

consistent estimators for the parameters in Vi =

(

σ2
1 ρ σ2 σ1

ρ σ2 σ1 σ2
2

)

are needed

in equation (3.4). One way of obtaining these estimators is to add estimating

equations for these parameters. Because we are not concerned about estimating

σ1, σ2 and ρ efficiently, we can use the following unbiased equations based on the

method of moments:

∑ R1i

π1i

(

σ1 −
√

∑

(y1i − µ1i)2

n

)

= 0 ,(3.7)

∑

(

σ2 −
√

∑

(y2i − µ2i)2

n

)

= 0 ,(3.8)

∑ R1i

π1i

(

ρ −
∑

(y1i − µ1i) (y2i − µ2i)

σ2

√

n
∑

(y1i − µ1i)2

)

= 0 .

Equations (3.4) and (3.7) can be solved jointly to obtain estimates for all the

parameters. If instead of missing observations in y1i we had missing observations

in y2i, then the terms in equation for σ2 would also require to be weighted in

order to obtain an unbiased estimator for σ2.

This entire approach can be applied to more than two outcomes. However,

the assumption of MAR implies that missingness mechanism has to depend only

in completely observed outcomes. If this is not the case the data are MNAR.
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4. SIMULATION STUDY

Data were generated using the model

(y∗1i, y2i) | (xi, z1i, z2i) ∼ MV N

(

(

.5 + 2xi + 2 z1i

5 + 10xi + 2 z2i

)

,

(

1 6×1×.8
36

)

)

,(4.1)

with xi generated from a Bernoulli(.5), z1i generated from a Uniform(−1, 0) and

z2i from N(1, 4). Then, y∗1i was categorized in the following way:

(4.2) y1i =

{

0 , if y∗1i ≤ 0 ,

1 , if y∗1i > 0 .

By using a probit link to model y1i as probit
(

P (y1i = 1 |xi, zi)
)

= α1+β1xi+γ1zi,

we have P (y1i = 1 |xi, zi) = P (y∗1i > 0 |xi, zi) = Φ
(

.5+2 xi+2 zi

σ1

)

. By construction

σ1 = 1 thus, the true parameters for the probit regression maintain the same

value as in (4.1), i.e., α1 = .5, β1 = 2 and γ1 = 2.

We generated 1000 datasets with 400 bivariate observations each. Some

observations for the continuous outcome were deleted according to the model

logit
(

P (R2i = 1 | y1i, xi)
)

= .5 − 3.5 y1i − xi. The parameters were chosen to ob-

tain approximately 25% of missing observations (about 40% of missing y2i when

xi = 0 and 5% when xi = 1).

4.1. Univariate analysis

We fit separate regressions for each outcome, ignoring the missingness mech-

anism and the correlation between the outcomes. We used a probit regression for

the binary outcome (4.3) and a linear regression for the continuous (4.4):

probit
(

E(y1i |xi, z1i)
)

= α1 + β1xi + γ1z1i ,(4.3)

E(y2i |xi, z2i) = α2 + β2xi + γ2z2i .(4.4)

4.2. Latent variable model

We fit the latent variable model,

probit
(

E(y1i |xi, z1i, ui)
)

= α∗

1 + β∗

1xi + γ∗

1 z1i + ui ,(4.5)

E(y2i |xi, z2i, ui) = α2 + β2xi + γ2z2i + σ2ui .(4.6)
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It can shown that the above model is the correct model for the data generation

process. To obtain marginal effects of the covariates as in the other models we

have to average over the latent variable ui. In this case the marginal effects can

be obtained by dividing the parameters by
√

1 + σ2
u, for example, the marginal

effect of x on y1 is β1 =
β∗
1√

1+σ2
u

. We used PROC NLMIXED from SAS to fit

the latent variable model. The initial parameters were obtained by fitting sepa-

rate regressions for each outcome (univariate analysis). The initial value for the

correlation parameter was set to be 0.5.

4.3. Weighted generalized estimating equations

We assumed the following model for the means of the outcomes:

probit
(

E(y1i |xi, z1i)
)

= probit(µ1i) = α1 + β1xi + γ1z1i ,(4.7)

E(y2i |xi, z2i) = µ2i = α1 + β1xi + γ1z2i .(4.8)

We solved the WGEE:

n
∑

i=1

















−φ(Ai) 0
−xi φ(Ai) 0
−z1i φ(Ai) 0

0 1
0 xi

0 z2i

















(

σ2
1 ρ σ2 σ1

ρ σ2 σ1 σ2
2

)

−1(
1 0

0 R2i

π̂2i

)(

y1i − µ1i

y2i − µ2i

)

= 0(4.9)

with Ai = α1 + β1xi + γ1z1i and σ1 =
√

Φ(Ai) (1 − Φ(Ai)). The weights π̂2i were

estimated using the logistic regression

logit
(

R2i = 1 | y1i, xi

)

= logit(π2i) = ζ0 + ζ1y1i + ζ2 xi .(4.10)

Two additional equations were added to the system of equations (4.9) to

obtain estimates of the unknown parameters σ2 and ρ:

∑ R2i

π2i

(

σ2 −
√

∑

(y2i − µ2i)2

n

)

= 0 ,(4.11)

∑ R2i

π2i

(

ρ −
∑

(y1i − µ1i) (y2i − µ2i)

σ2

√

n
∑

(y1i − µ1i)2

)

= 0 .

The WGEE were solved using a program developed in SAS with PROC IML.
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4.4. Results

The results of the simulations are summarized in Tables 1 and 2. Over-

all, the latent variable model performed better than the univariate approach

and the WGEE. The estimates of the parameters associated with the continu-

ous outcome, α̂2 and β̂2, were biased for the univariate model, and the mean

square errors (MSE) were about 4 and 6 times higher than the correspond-

ing MSE estimates obtained from the latent variable model. The remaining

estimates for the univariate approach were not biased but they had slightly

higher standard errors than the latent model. This is explained by the fact

that the latent variable model uses the additional information of the correla-

tion between the outcomes as described by Teixeira-Pinto and Normand ([19]).

Table 1: Estimates and standard errors averaged over the results of 1000
simulated datasets with sample size equal to 400. About 25%
data were deleted for the continuous outcome using a model for
the missingness mechanism that depends on the binary outcome.

Univariate Latent WGEE
Estimates (true value)

Mean (SE) Mean (SE) Mean (SE)

Binary outcome
α̂1 (α1 = .5) 0.521 (0.167) 0.521 (0.148) 0.519 (0.159)

β̂1 (β1 = 2) 2.025 (0.181) 2.025 (0.172) 2.019 (0.181)
γ̂1 (γ1 = 2) 2.045 (0.305) 2.044 (0.257) 2.035 (0.288)

Continuous outcome
α̂2 (α2 = 5) 6.523 (0.581) 5.009 (0.556) 5.033 (0.601)

β̂2 (β2 = 10) 8.737 (0.702) 9.980 (0.685) 9.944 (0.737)
γ̂2 (γ2 = 2) 2.001 (0.170) 1.999 (0.145) 1.999 (0.171)

Table 2: Mean square error (MSE) and relative bias (estimate/true value)
averaged over the results of 1000 simulated datasets with sample
size equal to 400. About 25% data were deleted for the contin
uous outcome using a model for the missingness mechanism that
depends on the binary outcome.

Mean square error Relative bias
Estimates

Univ. Latent WGEE Univ. Latent WGEE

Binary outcome
α̂1 0.030 0.024 0.027 1.042 1.042 1.037

β̂1 0.033 0.031 0.038 1.013 1.013 1.009
γ̂1 0.097 0.071 0.089 1.023 1.022 1.018

Continuous outcome
α̂2 2.669 0.317 0.371 1.305 1.002 1.007

β̂2 2.108 0.494 0.857 0.874 0.998 0.994
γ̂2 0.028 0.021 0.031 1.001 1.000 1.000
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The WGEE estimates had very similar bias to the latent variable model, although

the MSEs for all estimates were higher in the WGEE due to higher variances

for the estimates. This loss of efficiency is expected when compared to a full

likelihood method such as the latent variable model. The sandwich estimator for

the variance of the estimates is robust to the misspecification of the correlation

between the outcomes and for this reason is more conservative.

5. EXAMPLES

5.1. Example 1: Managed Care and Quality of Care for Schizophrenia

Dickey et al. ([4]) conducted a prospective observational study of 420 adults

with schizophrenia who sought care for a psychiatric crisis. The main objective

of the study was to compare care for patients who were and were not enrolled in

managed care because advocates for those with mental illness worried that pa-

tients who had their care managed may have worse care than those who did not.

Two outcomes, one binary (whether the patient was prescribed an atypical anti-

psychotic medication) and one continuous (self-reported quality of interpersonal

interactions between patient and clinician) were measured for the 197 patients

who had their care managed and the 223 patients whose care was not managed.

The self-reported quality of interpersonal interactions between patient and clini-

cian was missing for 26 patients (6%). The information regarding the prescription

of an atypical anti-psychotic was available for all the subjects. There was a sig-

nificant difference in the proportion of patients who were prescribed an atypical

anti-psychotic medication between the group without data on the quality of in-

terpersonal interactions between patient and clinician (50%) and the group of

patients with data on this outcome (71%) (χ2
2 = 5, p-value = 0.03). This result

suggests that the data are MAR. There was no statistical significant association

between the missing indicator and the sociodemographic characteristics using a

significance level of 0.05.

We used separate regression models for each outcome (the univariate ap-

proach) ignoring the correlation between the outcomes and the missing data

(equations 4.3 and 4.4). We fit the latent variable model (4.5) and the WGEE

(4.9). For the latent variable model we computed the marginal effects estimates of

managed care on the outcomes by dividing the regression coefficients by
√

1 + σ2
u

as described in section 2.1. The weights for the WGEE were obtained from

a logistic model for the probability of missing observation in the self-reported

quality of interpersonal interactions between patient and clinician outcome us-

ing the prescription of an atypical anti-psychotic and managed care status as

covariates. The estimates for the weights were given by the inverse of the esti-

mated probabilities from the logistic model, logit(π̂2i) = logit
(

P̂ (R2i | y1i, xi)
)

=

2.23 + 0.88 y1i − 0.11 xi.
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The mean (SD) age of patients was 40 (8.5) and 41 (7.9) in the managed

care and not managed care group, respectively. Other sociodemographic char-

acteristics of the patients are described in Table 3. No significant differences

were observed for the two outcomes analyzed regarding the sociodemographic

characteristics. Seventy one percent of the patients in the managed care group

received atypical anti-psychotic medication versus 68% in the not managed care

group. The mean (SD) self-reported quality of interpersonal interactions between

patient and clinician was 3.20 (0.67) for the managed care group and 3.21 (0.65)

for the not managed group.

Table 3: Sociodemographic characteristics of 420 patients with schizophrenia.

Sociodemographic
characteristics

Type of care

Managed Not Managed
(n = 197) (n = 223)

p-value

Age
< 35 years 24 21
35–44 years 46 44 0.338
45–54 years 21 29
55–64 years 8 6

Male sex 47 66 < 0.001

Race or Ethnicity
White 51 66
African American 31 22 0.005
Other 18 12

Never married 64 68 0.364

High school education or less 74 59 0.002

Homeless 15 9 0.069

English speaking 90 93 0.277

The effect estimates of managed care on the outcomes were identical and

not statistically significant at the 0.05 level for all the models (Table 4). This sug-

gests no difference in the quality of care between the managed and not managed

care groups. For the outcome with some missing observations, patient/clinician

relationship outcome, the estimated effect of managed care was the same for the

latent variable model and the WGEE (β̂2 = −0.019). The effect estimate for the

univariate approach was slightly smaller (β̂2 = −0.017). Although this result is

consistent with the simulation study, it is hard to argue that such a small dif-

ference is a consequence of ignoring the MAR mechanism rather than random

variation. The WGEE provided identical standard errors of the estimators to the

other two approaches. This can be explained by the low correlation between the

outcomes (0.059 as estimated by the WGEE).
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Table 4: Managed care effect on the two outcomes related to quality of care:
“patient/clinician relationship” and “prescription of anti-psychotic
medication”. Data on 420 patients with schizophrenia but only 394
patients had information regarding patient/clinician’s relationship.

Estimated effects

Model

Univariate Latent WGEE

β (Std. Error) β (Std. Error) β (Std. Error)
p-value p-value p-value

Binary: Prescription of
anti-psychotic (n = 420)

Intercept 0.549 (0.089) 0.548 (0.089) 0.549 (0.088)
≤ 0.001 ≤ 0.001 ≤ 0.001

Managed care −0.081 (0.129) −0.079 (0.129) −0.081 (0.128)
0.530 0.538 0.527

Continuous: Patient/clinician
relationship (n = 394)

Intercept 3.213 (0.045) 3.213 (0.045) 3.213 (0.045)
≤ 0.001 ≤ 0.001 ≤ 0.001

Managed Care −0.017 (0.066) −0.019 (0.066) −0.019 (0.067)
0.799 0.775 0.771

σ̂2 0.656 0.630 0.656
σ̂u — 0.286 —
ρ̂ — — 0.059

5.2. Example 2: Quality of life after discharge from Intensive Care

Granja et al. ([8]) evaluated the health-related quality of life (HRQOL) of

adult patients discharged from an intensive care unit (ICU) located in Portugal.

The 485 patients who agreed to participate in the study were asked to complete

the Euroqol 5D (EQ-5D) instrument to evaluate their HRQOL ([1]), 6 months

after discharge from ICU. This instrument includes two main sections. The first

contains five questions that measure functional dimensions of HRQOL (mobility,

self-care, usual activities, pain/discomfort and anxiety/depression) and it is sum-

marized by a general score designated as the EQ-5D index. The EQ-5D index

varies from 0 to 100, where 100 indicates no disability in the 5 dimensions. The

second part of the instrument is a visual analogue scale (VAS) in which patients

mark their perception of their health state in a 0 to 100 scale (100 – best imag-

inable state, 0 – worst imaginable state). For the analysis the VAS scale was

dichotomized using the middle point of its scale (less or equal to 50 and more

than 50).
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In this example we will focus on the impact of patient’s severity when

admitted to the ICU (measured by the Apache II score) on the HRQOL after

discharge (measured by the EQ-5D index and dichotomized VAS). Some stud-

ies reported that most of the patients who survive ICU do not show significant

decrease in physical ability but they report psychological problems ([18], [16]).

This finding suggests that the effect of the severity of the episode that led to ICU

admission may be different for functional HRQOL and for patient’s perception of

their HRQOL. If this is the case, both aspects of HRQOL should be reported in

HRQOL studies.

The effect of patient’s severity at ICU admission on HRQOL should be

adjusted to age and previous health state (non-chronic disease, chronic disease

with no disability and chronic disease with disability). All the patients completed

the first part of the questionnaire involved in the calculation of the EQ-5D index,

but only 366 completed the VAS question.

Table 5 summarizes some demographic and clinical information from the

485 patients. The mean (SD) age of the 485 patients was 55.2 (17.4) years old.

Twenty eight percent (28%) of the patients reported that they had no chronic

disease prior to admission to ICU and 21% reported they had chronic disease

that caused some kind of disability. The remaining 51% indicated that they

had chronic disease with no disability before admission to ICU. The mean (SD)

Apache II score at admission was 13.0 (6.8). For the 366 patients who completed

the VAS scale, 64% reported a value above 50. The mean (SD) for the EQ-5D

index was 74.2 (17.4). The group of patients that completed both parts of the

questionnaire had significantly higher EQ-5D index than those who did not com-

pleted the VAS question (77.9 vs. 52.6, p-value < 0.001).

Table 5: Demographic and clinical characteristics of 485 patients that
participated in the study of HRQOL after ICU admission.

Demographic and clinical characteristics (n = 485)

Age (mean (SD)) 55.2 (17.4)

Male sex (n (%)) 275 (57)

Apache II score (mean (SD)) 13.0 (6.8)

Previous health state (n (%))

non-chronic disease 138 (28)
chronic disease with no disability 245 (51)
chronic disease with disability 102 (21)

ICU length of stay in days (median (IQR)) 2 (1–6)

Similarly to example 1, we run separate models for each outcome (a linear

regression for the EQ-5D index and a probit regression for the dichotomized

VAS) and we fit the latent model and WGEE using the same link functions as
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the univariate models. The effect of previous health state on both measures of

HRQOL was linear for the three categories, so it entered the model as an interval

variable with no need to create dummy variables for the categories. The weights

for the WGEE were obtained from a logistic model for the probability of missing

observation in the VAS question using the EQ-5D index, Apache II score, age and

the previous health state as covariates. The estimates for the weights were given

by the inverse of the estimated probabilities from the logistic model, logit(π̂1i) =

logit
(

P̂ (R1i | y2i, x1i, x2i, x3i)
)

= 0.85 + 0.04 y1i − 0.03 x1i − 0.04 x2i − 0.17 x3i.

The results are summarized in Table 6. The HRQOL is associated with

patient’s age and the health state previous to admission. The severity at ad-

mission measured by Apache II is not associated with the functional aspect

of HRQOL (p-value = 0.999). These results were consistent in all approaches.

Table 6: Effect of severity at admission to ICU (Apache II), adjusted to age
and previous health state, on health-related quality of life measured
(D-VAS and EQ-5D index), 6 months after discharge from an ICU.
A total of 485 patients entered the study but only 366 completed the
question regarding D-VAS.

Estimated effects

Model

Univariate Latent WGEE

β (Std. Error) β (Std. Error) β (Std. Error)
p-value p-value p-value

Binary: D-VAS (n = 366)

Intercept −2.069 (0.290) 2.018 (0.280) 2.027 (0.280)
< 0.001 < 0.001 < 0.001

Age −0.011 (0.004) −0.009 (0.004) −0.012 (0.004)
0.014 0.029 0.014

Previous health state −0.460 (0.111) −0.494 (0.106) −0.442 (0.111)
< 0.001 < 0.001 < 0.001

Apache II −0.018 (0.011) −0.028 (0.011) −0.025 (0.012)
0.093 0.009 0.040

Continuous: EQ-5D (n = 485)

Intercept 100.3 (3.902) 100.3 (3.886) 103.3 (3.489)
< 0.001 < 0.001 < 0.001

Age −0.244 (0.061) −0.244 (0.061) −0.244 (0.055)
< 0.001 < 0.001 < 0.001

Previous health state −8.116 (1.540) −8.116 (1.533) −8.115 (1.458)
< 0.001 < 0.001 < 0.001

Apache II ≈ 0 (0.157) ≈ 0 (0.157) ≈ 0 (0.163)
0.999 0.999 0.999

σ̂2 21.94 14.86 21.94
σ̂u — 1.086 —
ρ̂ — — 0.532
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The major difference between the univariate and the multivariate methods is the

result for the effect of Apache II on the dichotomized VAS. The estimate in the

latent model and WGEE is higher than that in the univariate approach and it

becomes statistically significant at the 0.05 level. This may indicate that the

patient’s perception about his or her own HRQOL is affected by the degree of

severity of the episode leading to ICU admission. This fact would not be identified

in the univariate analysis.

6. CONCLUSION

We developed likelihood and quasi-likelihood methods to analyze multiple

non-commensurate outcomes in the presence of missing data. Although this type

of data is common in biomedical studies, the usual approach is to analyze each

outcome separately ignoring the correlation among the outcomes. This can lead

to loss of efficiency and biased estimates in the case of MAR. The WGEE has the

advantage of being robust to the misspecification of the correlation between the

outcomes and MAR while the latent variable model is a full likelihood approach

which typically gives more efficient estimates but assumes that the mean and

covariance models are correctly specified. Another alternative to WGEE is to use

the multiple imputation methodology. We could assume a model to impute values

for the missing observations and repeat the process to create several complete

datasets. Then we could solve a regular GEE for each dataset and obtain the

estimates of the regression parameters as the mean over the estimates obtained

in each complete dataset.

We have shown both in simulations and in real data analysis that the esti-

mation of associations can be biased in situations of MAR in the outcomes. The

bias can be substantially reduced by jointly model the outcomes in a multivariate

framework.
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