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1. INTRODUCTION

1.1. Aim of errors in variables modelling

Given a set of variables, a common statistical procedure is to try and find

relationships between them. A technique that may aid with this is regression,

which can provide an estimate of the formulaic relationship between these vari-

ables. The relationships between these variables, if they exist, may be linear or

non-linear. Commonly the variables are split into dependent and independent

variables, and regression analyses are concerned with writing the dependent vari-

ables in terms of some function of the independent variables. Standard regression

procedures assume that the independent variables are measured without error,

and that the error inherent in the model is associated with the dependent vari-

ables only. The theory of fitting such models is plentiful, and is well documented

in the literature. An obvious extension to this model is to assume that there is

error also present in the independent variables. This has become known as the

errors in variables situation. There are errors in the measurement of both the

independent and dependent variables, and so usually a different tack is called for.

Indeed, in [9] Casella and Berger wrote that the errors in variables model “is so

fundamentally different from the simple linear regression (...) that it is probably

best thought of as a different topic.”

1.2. Common applications

Errors in variables models have been successfully applied to a number of

different subject areas over the years. Indeed, different ways of solving the prob-

lem of having errors in variables have become associated with different subject

areas. For example, the method of using instrumental variables had its origins

in the economic literature, but this technique is not restricted to economic appli-

cations. Use of errors in variables methodology has proved fruitful in areas as

diverse as astrostatistics, as a method to cope with astronomical measurement

error, in fisheries statistics, as a way of looking at fish stocks, in medical statistics,

commonly in method comparison studies when a number of methods of measure-

ment are compared and much more. The errors in variables problem is also one

that is inherently interesting theoretically, and a number of theoretical develop-

ments in their own right have been made. In particular, numerical analysts have

been interested in the development and study of particular types of numerical

algorithms to solve the errors in variables problem.
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Errors in variables models tend to be appropriate when all variables are ex-

perimentally observed. Each variable is then subject to its own inherent measure-

ment error. Despite their common application, errors in variables methodology

is still quite neglected in practice. This could be for a number of reasons. Firstly,

the literature on errors in variables topics is widely scattered, appearing in a

range of journals, in a number of different contexts. Secondly, the notation used

for errors in variables models varies tremendously. Thus it is sometimes difficult

to read papers from different sources. Finally, there are a number of different

approaches to fit an errors in variables model. Some of these will be described

in this paper. The aim of this paper is to bring ideas from this widely scattered

literature together, and to explain the development of key methodologies and

links between them.

For brevity, this paper will focus on the linear structural model which is

a commonly fitted errors in variables type model. Section 2 describes the linear

structural model. Section 3 outlines the main approaches that have been adopted

to estimate the parameters of the linear structural model.

2. AN INTRODUCTION TO THE LINEAR STRUCTURAL

MODEL

Consider two variables, ξ and η which are linearly related in the form

ηi = α+ β ξi , i= 1, ..., n .

However, instead of observing ξi and ηi, we observe

xi = ξi + δi ,

yi = ηi + εi = α+ β ξi + εi ,

where δi and εi are considered to be random error components, or noise.

It is assumed that E[δi] = E[εi] = 0 and that Var[δi] = σ2
δ , Var[εi] = σ2

ε for

all i. Also the errors δi and εi are mutually uncorrelated. Thus

Cov[δi, δj ] = Cov[εi, εj ] = 0 , i 6= j ,

Cov[δi, εj ] = 0 , ∀ i, j .

It is possible to rewrite the above model as

yi = α+ βxi + (εi − βδi) , i= 1, ..., n .

This highlights the difference between this problem and the standard regression

model. The error term is clearly dependent on β. In addition to this term (ε−βδ)

is correlated with x. Indeed,

Cov[x, ε− βδ] = E
[

x(ε− βδ)
]

= E
[

(ξ+ δ)(ε− βδ)
]

= −β σ2
δ
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and is only zero if β = 0 or σ2
δ = 0. If σ2

δ = 0, the model is equivalent to standard

y on x regression, and the usual results apply. See [16] for details on standard

regression models.

There have been several reviews of errors in variables methods, notably [9],

[10], [20], [37] and [55]. Unfortunately the notation has not been standardised.

This paper closely follows the notation set out by Cheng and Van Ness in [10]

but for convenience, it has been necessary to modify parts of their notation.

All notation will be carefully introduced at the appropriate time.

Errors in variables modelling can be split into two general classifications de-

fined in [35], and [36], as the functional and structural models. The fundamental

difference between these models lies in the treatment of the ξi’s:

The functional model – This assumes the ξi’s to be unknown, but fixed

constants µi.

The structural model – This model assumes the ξi’s to be a random

sample from a random variable with mean µ and variance σ2. The linear struc-

tural model is thus the linear model described above, with the ξi’s taken in a

structural setting.

Due to the wealth of literature available this paper will focus mainly on the

linear structural model. It will however prove prudent at times to mention the

linear functional model at certain places in the text. Further information on the

linear functional model is provided in [26].

3. AN OVERVIEW OF ERRORS IN VARIABLES MODELLING

3.1. Origins and beginnings

The author first associated with the errors in variables problem was Adcock

([1], [2]). In the late 1800s he considered how to make the sum of the squares of

the errors at right angles to the line as small as possible. This enabled him to

find what he felt to be the most probable position of the line. Using ideas from

basic geometry, he showed that the errors in variables line must pass through

the centroid of the data. However, Adcock’s results were somewhat restrictive in

that he only considered equal error variances (σ2
δ = σ2

ε ). These ideas are linked

to what is commonly referred to as orthogonal regression. Orthogonal regression

minimises the orthogonal distances (as opposed to vertical or horizontal distances

in standard linear regression) from the data points onto the regression line.
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Adcock’s work was extended a year later by Kummel in [38]. Instead of

assuming equal error variances, he assumed that the ratio λ = σ2
ε

σ2

δ

was known

instead. Kummel derived an estimate of the line which clearly showed the relation

between his and Adcock’s work. Kummel argued that his assumption of knowing λ

was not unreasonable. He suggested that most experienced practitioners have

sufficient knowledge of the error structure to agree a value for this ratio. Use

of the orthogonal regression line has been questioned by some authors on the

grounds that if the scale of measurement of the line is changed, then a different

line would be fitted. However, this is only going to be true if λ is not modified

along with the scale of measurement. If λ is modified along with the scale of

measurement, the same line is fitted.

The idea of orthogonal regression was included in a book by Deming in

[15], and so orthogonal regression is sometimes referred to as Deming regression,

particularly in the medical literature. He noted that just as the orthogonal pro-

jections from the data to the regression line may be taken, so can any other

projection. This would then take account of unequal error variances. The least

squares method can then be used to minimise this residual error. This assumes

that the error structure is homoscedastic, otherwise this method cannot be used.

Lindley in [39] found that adding a weighting factor when minimising the sum of

squares of the orthogonal projections, allowed one to minimise projections other

than orthogonal.

Another early paper on this subject was by Pearson ([49]). He extended the

ideas of previous authors to allow the fitting of lines and hyperplanes of best fit.

Pearson was able to show that the orthogonal regression line lies between the

y on x, and x on y regression lines.

3.2. Grouping methods

A different approach was suggested by Wald in [62]. Wald described a

method that did not make an assumption regarding the error structure. He

stressed that there was no justification in making assumptions such as λ = 1,

and that the regression line would not be invariant under transformations of the

coordinate system (this criticism has been dealt with in the previous section).

Wald suggested splitting the observations into two groups, G1 and G2, where G1

contains the first half of the ordered observations
(

x(1), y(1)

)

, ...,
(

x(m), y(m)

)

and

G2 contains the second half
(

x(m+1), y(m+1)

)

, ...,
(

x(n), y(n)

)

. An estimate of the

slope is then

β̃W =

(

y(1) + · · · + y(m)

)

−
(

y(m+1) + · · · + y(n)

)

(

x(1) + · · · + x(m)

)

−
(

x(m+1) + · · · + x(n)

) .
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A problem here is that the grouping must be based on the order of the true values,

otherwise, in general, the groups are not independent of the error terms δ1, ..., δn.

Wald countered this by proving that, at least approximately, grouping with re-

spect to the observed values is the same as grouping with respect to the true

values. Properties of this estimator for finite samples, as well as approximations

of the first four moments can be found in [29].

The idea of grouping the observations was further developed by Bartlett

in [6]. Instead of separating the ordered observed values into two groups, he

suggested that greater efficiency would be obtained by separating the ordered

observations into three groups, G1, G2 and G3. G1 and G3 are the outer groups,

and G2 is the middle group. (Nair and Banerjee [44]) show that for a functional

model, Bartlett’s grouping method provided them with a more efficient estimator

of the slope than Wald’s method. In Bartlett’s method the slope is found by

drawing a line through the points (x̄G1
, ȳG1

) and (x̄G3
, ȳG3

), where (x̄G1
, ȳG1

)

and (x̄G3
, ȳG3

) are the mean points of the observations in G1 and G3 respectively.

In effect, the observations in G2 are not used after the data are grouped. In [25]

advice on how to place the data into these three groups to obtain the most efficient

estimate of the slope is given. How the data should be grouped depended on the

distribution of ξ. A table summarising their results for a variety of distributions

of ξ can be found in the review paper [40].

Neyman and Scott in [46] suggested another grouping method. The method-

ology they used is as follows. They suggested fixing two numbers, a and b

such that a 6 b. The numbers a and b must be selected so P [x6 a] > 0 and

P [x > b] > 0. The observations xi are then divided into three groups, G1, G2 and

G3. If xi 6 a those observations are put into G1, if a < xi 6 b those observations

are put into G2, and if xi > b those observations are put into G3. A further two

numbers −c and d are then found such that P [−c 6 δ 6 d] = 1. An estimator of

the slope is then given by

β̃NS =
ȳG3

− ȳG1

x̄G3
− x̄G1

and is a consistent estimator of β if

P
[

a− c < ξ 6 a+ d
]

= P
[

b− c < ξ 6 b+ d
]

= 0 .

However, whether this condition is one that is obtainable in practice is open to

debate.

Grouping methods, in particular Wald’s method, have been criticised by

Pakes in [47]. He claimed that the work of in [29] is unnecessary as Wald’s

estimate is, strictly speaking, inconsistent. Letting β̃W denote Wald’s estimate

for the slope, Pakes showed

∣

∣p lim β̃W

∣

∣ = |β|

∣

∣

∣

∣

(x̄G2
− x̄G1

)

(x̄G2
− x̄G1

) + E
[

δ|x ∈G2

]

− E
[

δ|x ∈G1

]

∣

∣

∣

∣

∣

< |β| ,
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which shows that, in general, Wald’s estimate will underestimate the value of the

true slope.

However, this expression derived by Pakes offers a similar conclusion to

that of Neyman and Scott ([45]). As long as the error δ is bounded (or not too

significant) so that the ranks of ξ are at least approximately equal to the ranks

of x, then grouping methods should provide a respectable estimator for the slope

as the expression E
[

δ|x ∈G2

]

− E
[

δ|x ∈G1

]

should be negligible.

3.3. Instrumental variables

Extensive consideration of this method has appeared in the econometrics

literature. Essentially, the instrumental variables procedure involves finding a

variable w that is correlated with x, but is uncorrelated with the random error

component, δ. The estimate for the slope is then

β̃IV =
syw

sxw
,

where, syw and sxw are the usual second order sample moments defined as

sab =
1

n

n
∑

i=1

(ai− ā)(bi − b̄) ,

and ā = n−1
∑n

i=1 ai is the sample mean. In practice however, it is difficult to

obtain a good instrumental variable which meets the aforementioned criteria.

The method of grouping can be put into the context of instrumental vari-

ables. In [41] it was showed that Wald’s grouping method is equivalent to using

the instrumental variable

wi =

{

1 if xi > median(x1, ..., xn) ,

−1 if xi < median(x1, ..., xn) ,

and similarly Bartlett’s grouping method is equivalent to using

wi =















1 for the largest n
3 observations ,

−1 for the smallest n
3 observations ,

0 otherwise .

An idea using the ranks of the xi was proposed by Durbin in [19]. He suggested

an estimator of the form

β̃D =

∑n
i=1 i y(i)

∑n
i=1 i x(i)
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where
(

x(1), y(1)

)

,
(

x(2), y(2)

)

, ...,
(

x(n), y(n)

)

are the ordered observations. However,

as with grouping methods, it is unlikely that the ranks of the observed data

will match the ranks of the true data. So as in Wald’s method this estimate is

inconsistent.

3.4. Geometric mean

Other than grouping the data, or looking for an instrumental variable,

another approach is to simply take the geometric mean of the y on x regression

line, and the reciprocal of the x on y regression line. This leads to the estimate

β̃GM = sign(sxy)

√

syy

sxx
.

There is a geometric interpretation of the line having this slope — it is the line

giving the minimum sum of products of the horizontal and vertical distances of

the observations from the line (Teissier [58]). However, for the estimate to be

unbiased (see [32] for example), one must assume that

(3.1) λ = β2 =
σ2
ε

σ2
δ

.

This is due to

β̃GM −→

√

β2σ2 + σ2
ε

σ2 + σ2
δ

6= β .

A technical criticism of the use of this estimator is that it may have infinite

variance (Creasy [13]). This happens when the scatter of the observations is so

great that it is difficult to determine if one line or another perpendicular to it

should be used to represent the data. As a result, it may be difficult to construct

confidence intervals of a respectable finite width. Geometric mean regression

has received much attention, primarily in the fisheries literature. Ricker in [50]

examined a variety of regression methods applied to fish biology, and promoted

the use of geometric mean regression. He claimed that in most situations it is

superior to grouping methods, and the geometric mean regression line is certainly

one of the easiest to fit. In addition, Ricker also warned that regression theory

based on assuming that the data are from a normal distribution may not apply

to non-normally distributed data. Great care must be taken by the statistician

to ensure the proper conclusions are obtained from the data.

Jolicoeur in [32], again in the fisheries literature, discussed the paper by

Ricker. He stated that as geometric mean regression is equivalent to the assump-

tion in equation (3.1) it is difficult to interpret the meaning of the slope, as the

error variances σ2
δ and σ2

ε only contaminate and cannot explain the underlying
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relationship between ξ and η. Ricker replied to the paper by Jolicoeur in a letter,

and claimed that the ratio (3.1) may not be linked to the presence or the strength

of the underlying relationship, but the correlation coefficient will always give an

idea as to the strength. Ricker reiterated that geometric mean regression is an

intuitive approach, and as long as the assumption (3.1) holds, is a perfectly valid

regression tool.

Further discussion on this estimate was initiated by Sprent and Dolby ini-

tially in [57]. They discouraged the use of geometric mean regression, due to the

unrealistic assumption of (3.1). They both however sympathised with practition-

ers, especially those in fish biology, who do not have any knowledge regarding λ.

In addition, they commented that the correlation coefficient might be mislead-

ing in an errors in variables model, due to each of the observations containing

error. They did however suggest that a correlation coefficient may be useful in

determining if a transformation to linearity has been successful.

An alternative way of looking at geometric mean regression was provided

by Barker et al. in [4]. Instead of looking at it as a geometrical average, it can be

derived in its own right by adopting a so-called least triangles approach. This is

where the sum of the areas of the right-angled triangles formed from the horizontal

discrepancies from the data point to the regression line, the vertical discrepancies

from the data point to the regression line, and the regression line itself, are mini-

mised. They also showed a connection between geometric mean regression and

the correlation coefficient, thus refuting the claim by Sprent and Dolby made in

[57] that the correlation coefficient has little value in errors in variables modelling.

3.5. Cumulants

Another method of estimation that has been used in errors in variables

modelling is the method of moments. A closely related approach to this is using

cumulants, which were proposed by Geary in the series of papers [21], [22], [24],

[23]. Cumulants can be defined as follows. Assume that X and Y are jointly

distributed random variables. Then, provided the expansions are valid in the

given domain, the natural logarithm of the joint characteristic function can be

written as

(3.2) ψ(t1, t2) = ln
[

φ(t1, t2)
]

= ln
[

E
(

eit1X+ it2Y
)]

=
∞

∑

r,s=0

κ(r, s)
(it1)

r

r!

(it2)
s

s!
.

Here, ψ is the so-called joint cumulant generating function, and, if r 6= 0 and

s 6= 0 then κ(r, s) is called the r, s product cumulant of X and Y. The slope can

be estimated via the method of cumulants as follows.

If the true values ξ and η are centred with respect to their true mean, then
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the intercept vanishes, and we can write the structural relationship in the form

(3.3) βξ − η = 0 .

Letting κ(x,y) denote the cumulants of (x, y), and κ(ξ,η) denote the cumulants of

(ξ, η) we have

κ(x,y)(r, s) = κ(ξ,η)(r, s) .

This follows from the following important properties of bivariate cumulants (see,

for example [10], [48]):

• The cumulant of a sum of independent random variables is the sum of

the cumulants.

• The bivariate cumulant of independent random variables is zero.

The joint characteristic function of (ξ, η) is

(3.4) φ(t1, t2) = E
[

eit1ξ+ it2η
]

.

It follows from (3.3) and (3.4) that

β
∂φ

∂ it1
−

∂φ

∂ it2
= E

[

(βξ− η)eit1ξ+ it2η
]

= 0 .

If we replace the joint characteristic function φ by the cumulant generating func-

tion ψ we obtain

(3.5) β
∂ψ

∂ it1
−

∂ψ

∂ it2
=

1

φ

(

β
∂φ

∂ it1
−

∂φ

∂ it2

)

= 0

and it follows from (3.2) and (3.5), for all r, s > 0

βκ(r+1, s) − κ(r, s+1) = 0 .

If κ(r+1, s) 6= 0 an estimate for the slope is then

β̃C =
κ(r, s+1)

κ(r+1, s)
.

In reality, the cumulants κ(r, s) will have to be replaced by their sample equiva-

lents K(r, s). Details of how these sample cumulants may be computed as func-

tions of sample moments are included in [21].

3.6. Method of moments

Instead of tackling the problem via cumulants, the method of moments

can be used. Briefly, this is where a set of estimating equations are derived

by equating population moments with their sample equivalents. The method of
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moments approach is considered in detail in [27], and so only a brief survey of the

existing literature is given here. Kendall and Stuart in [37] derived the five first

and second order moment equations for the structural errors in variables model.

However, there are six parameters, µ, α, β, σ2
x , σ

2
δ and σ2

ε for the structural model.

So in order to proceed with the method of moments, some information regarding a

parameter must be assumed known, or more estimating equations must be derived

by going to the higher moments. Details on the various assumptions that can

be made are included in [10], [18], and [37], as well as others. Dunn in [18] gave

formulae for many of the estimators of the slope that are included in [27]. However

he did not give any information regarding estimators based on higher moments.

Neither did he give information about the variances of these estimates. Work on

the higher order moment estimating equations has been done in [17], and more

recently in [48], [61], [60] and [12]. Drion, in a paper that is infrequently cited [17],

looked at an estimate that could be derived through the third order non-central

moment equations for a functional model. Drion computed the variances of all

the sample moments that he used, and showed that his estimate of the slope is

consistent. Prior to this work, Scott in [52] considered the structural model, and

also found an estimate based on the third moments. Scott was able to show that

if the third central moment of ξ exists, and is non-zero, then the equation

Fn,1(b) =
1

n

n
∑

i=1

[

yi− ȳ − b(xi− x̄)
]3

= 0

has a root b̂ which is a consistent estimate of β. This is because the stochastic

limit of Fn,1(b) is (β− b)3µξ3, where µξ3 denotes the third central moment of ξ.

The estimate of the slope is then a function of the third order sample moments.

Scott was able to generalise this result. If the random variable ξ has central

moments up to and including order 2m+1 and if at least one of the first m odd

central moments µξ,2k+1 (k = 1, 2, ...,m) differs from zero, then the equation

Fn,m(b) =
1

n

n
∑

i=1

[

yi− ȳ − b(xi− x̄)
]2m+1

= 0

has a root b̂ which is a consistent estimate of β. Scott did warn however, that

estimates based on the lower order moments are likely to be more precise than

those based on higher order moments. Unfortunately, Scott did not provide a

method of extracting the root which will provide the consistent estimate.

More recently, Pal in [48] further examined the possibilities of the mo-

ment equations in a structural model. He stated that in economics, the errors in

variables situation cannot be ignored, and as a result, least squares estimation

is the wrong way to proceed. Pal derived six possible estimators of the slope,

but showed that three of these are functions of the other slope estimates, and

concluded that there must be infinitely many consistent estimates which can be

obtained by taking different functions of the slope estimates he derived. For each
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of the six estimates, Pal found their asymptotic variances when the error terms

were assumed to follow a normal distribution. He then went on to consider a va-

riety of regression scenarios, such as
σ2

δ

σ2 = 0, to offer advice as to which estimator

has the smallest variance. The asymptotic efficiency of a particular estimate with

respect to the least squares estimate was also provided, for different distributions

of ξ. A brief review of the method of cumulants, and how errors in variables

modelling might be extended to a multiple linear regression model was included

towards the end of the paper.

Van Montfort et al. in [61] gave a detailed survey on estimators based on

third order moments. They provided an optimal estimate of the slope which is

a function of three slope estimates. In order to obtain this optimal estimate, the

variance-covariance matrix if not known, has to be estimated. By replacing the

variance-covariance matrix with its estimate, the optimal estimator is no longer

a function of moments up to order three since moments of order lower than three

appear in the estimation of the variance-covariance matrix. Van Montfort et al.,

through a simulation study, demonstrated that the optimal estimate behaves well

for a sample size of 50, and is superior to any other third moment estimator. The

same study was replicated for a sample size of 25. For this sample size, they stated

that the third moment estimates performed badly. A standard assumption is to

assume that the errors δ and ε are independent. Van Montfort et al. showed that

even if δ and ε are linearly related, then their optimal estimator of the slope is

still optimal for all consistent estimators of β which are functions of the first,

second and third order moments. In addition, the asymptotic properties of the

slope estimate are not altered.

A detailed account of alternative approaches to errors in variables mod-

elling was written by Van Montfort in [60]. This text included estimation based

on third order moments, extensions to polynomial regressions, using characteristic

functions and links to the factor analysis model. More details on the asymptotic

variances and covariances of the third order moment slope estimates were pro-

vided. This text is an extension of the details included in [61].

The most recent account on using higher moments was that by Cragg in

[12]. He extended the work on the moment equations to include those of the fourth

order. A problem with moment based estimators however, is stability. It is well

known that as the order of the moment increases they become progressively more

difficult to estimate and larger sample sizes will be needed to obtain a reliable

estimate. Cragg applied a minimum χ2 approach to the second, third and fourth

moments in order to obtain an efficient general moment estimator. This approach

again involves finding an estimated variance-covariance matrix. As Cragg noted,

this may be difficult as it will involve the eighth order moments. He suggested

avoiding this problem by replacing the variance-covariance matrix with some

weighting matrix. This will result in less asymptotic efficiency however. In his

simulations Cragg used a diagonal weighting matrix with elements 1
2 ,

1
15 and 1

96
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depending on whether the moment equations are based on the second, third or

fourth moments respectively. This may be deemed inappropriate as these values

correspond to the theoretical variances of the second, third and fourth powers of

a normally distributed variable with zero mean and unit variance, even though a

normal distribution will not be applicable for every structural model.

A somewhat different use of the method of moments was suggested by

Dagenais and Dagenais in [14]. They proposed a consistent instrumental variable

estimator for the errors in variables model based on higher moments. In addition,

they showed how a regression model may be tested to detect the presence of

errors in both variables. Dagenais and Dagenais illustrated their ideas through a

number of numerical simulations and showed that their estimator is superior to

the ordinary least squares estimate.

3.7. Maximum likelihood

The vast majority of the papers available on errors in variables modelling

have adopted a maximum likelihood approach to estimate the parameters. Only

a selection of the large number of papers shall be mentioned here. These papers

assumed that the pairs of observations (xi, yi) are jointly normally and identically

distributed. Lindley was one of the first authors to use maximum likelihood

estimation for the errors in variables model in [39]. Lindley commented that the

likelihood equations are not consistent, unless there is some prior information

available on the parameters. He suggested that the most convenient assumption

to make is to assume that the ratio λ is known. Estimates of all the relevant

parameters are then derived and discussed.

Kendall and Stuart again in [37] reviewed the topic of estimation in an errors

in variables model, but concentrated their efforts on the maximum likelihood

principle. They commented that the sample means, variances and covariances

form sufficient statistics for a bivariate normal distribution. As a result, the so-

lutions of the method of moment estimating equations for the unknown parame-

ters µ, α, β, σ2
x , σ

2
δ are also maximum likelihood solutions, provided that these

solutions give admissible estimates (namely, positive estimators for the variances

in the model). The conditions to obtain admissible estimates are then outlined.

Further details on these conditions, and estimating using the method of moment

estimating equations is included in [27]. More detail was given on the problem of

having five moment estimating equations, and six parameters to estimate. They

suggested various ‘cases’, each of which consist of a different assumption regarding

a subset of the parameters. Estimates for the parameters are derived for each

of these ‘cases’, and advice is given on how to construct confidence intervals.

A brief survey on cumulants, instrumental variables and grouping methods was

also included in their work.
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A disadvantage of the likelihood method in the errors in variables prob-

lem is that it is only tractable if all the distributions describing variation in the

data are assumed to be normal. In this case a unique solution is only possible if

additional assumptions are made concerning the parameters of the model, usu-

ally assumptions about the error variances. Nevertheless, maximum likelihood

estimators have certain optimal properties and it is possible to work out the

asymptotic variance-covariance matrix of the estimators. These were given for a

range of assumptions by Hood et al. in [30]. In addition, Hood et al. conducted

a simulation study in order to determine a threshold sample size to successfully

estimate their variance-covariance matrix. They concluded that this threshold

was approximately 50.

Other papers on the likelihood approach have tended to focus on a partic-

ular aspect of the problem. For example, Wong in [63] considered the likelihood

equations when the error variances were assumed to be known, and equal. This

case has attracted much attention, as if both error variances are known, the

problem is overidentified — there are four parameters to be estimated from five

estimating equations (be it likelihood equations, or moment equations). To sim-

plify the procedure, Wong used an orthogonal parameterisation in which the slope

parameter is orthogonal to the remaining parameters. Approximate confidence

intervals for the parameters, information on testing hypotheses about regarding

the slope, and the density function for the slope are also included. Prior to

this, Barnett also commented on the inherent difficulties in using the maximum

likelihood technique in [5].

Again for the structural model, Birch in [7] showed that the maximum

likelihood estimate for the slope is the same when both error variances are known,

and when the ratio of the error variances, λ is known. He also commented that the

maximum likelihood estimates provided by Madansky in [40] are inconsistent, and

as a result need to be modified. Some discussion on the admissability conditions

was also included.

A key author in this area was Barnett ([5]). His paper on the fitting of

a functional model with replications commented on the importance of errors in

variables modelling in the medical and biological areas. The paper adopted the

maximum likelihood technique for estimating the parameters, but no closed form

solution could be found. He mentioned that the maximum likelihood method

tends to run into computational problems due to the awkward nature of the

likelihood equations. Barnett also considered alternative error structures which

might be applicable to biological and medical areas.

Solari in [54] found that the maximum likelihood solution for the linear

functional model discussed by many authors was actually a saddle point, and

not a maximum. She said that although the point was purely academic, it was

still one worth making. A detailed analysis of the form of the likelihood surface
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was given, and and she concluded that a maximum likelihood solution for the

linear functional model does not exist, unless one has some prior distribution

to place on a parameter. Solari commented that this problem might appear in

other estimation problems. Detailed consideration must be given to see if the

maximum likelihood solution is indeed a maximum. Sprent considered Solari’s

work and further noted the practical implications of her findings in [56].

Copas in [11] extended the work of Solari [54]. He showed that when

‘rounding-off’ errors for the observations are considered, then the likelihood sur-

face becomes bounded. This allows for a different consideration of the likelihood

surface. An estimate for the model can be found, which is approximately maxi-

mum likelihood. In other words, a point close to the global supremum was used

instead. Copas’ solution for the slope is equivalent to using either the x on y

estimate or the y on x estimate. The y on x regression estimate is used if the line

corresponding to the geometric mean estimate lies within 45◦ of the x-axis. The

x on y estimate is used if the geometric mean estimate lies within 45◦ of the y-axis.

A numerical example was provided to illustrate his suggested methodology, and

the likelihood surface for this example was drawn.

Essentially, Copas introduced a modified likelihood function

L =
∏

i

Pi(xi)Qi(yi)

where Pi(x) = P
(

x− h
2 ≤ ξi < x+ h

2

)

and Qi(x) = P
(

y− h
2 ≤ βξi < y+ h

2

)

(note

that Copas’ model did not include an intercept). The value h was introduced to

allow a discrepancy when (ξi, β ξi) were recorded or measured. The saddle point

noted by Solari, according to Copas, is a direct consequence of the likelihood

function having singularities at all points within the sets

A =

{

β, σδ, σε, ξ :
∑

(xi− ξi)
2 = 0, σδ = 0

}

and

B =

{

β, σδ, σε, ξ :
∑

(yi− βξi)
2 = 0, σε = 0

}

.

Copas showed that within these sets A and B his modified likelihood function

reduces to the likelihood function for y on x regression and x on y regression

respectively. This however is to be expected as set A essentially assumes that

there is no horizontal error (δ) present and set B essentially assumes that there is

no vertical error (ε) present. In addition, Copas’ analyses assume that h is small,

which will also imply that the simple linear regression techniques such as y on x

and x on y regression are appropriate.

In summary, Copas’ method is equivalent to using y on x regression if it

appears that ξi is close to xi, and x on y regression if βξi is close to yi. The

choice of which regression to use depends on the location of the geometric mean
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regression line. Copas admitted that the y on x and x on y regression estimators

do not maximise his likelihood function L. So, as it is well known that y on x

and x on y regression are biased, and can only offer a crude approximation to the

true line, the method proposed by Copas must be questioned.

3.8. Total least squares

Total least squares is a method of estimating the parameters of a general

linear errors in variables model and was introduced by Golub and Van Loan in

[28], which is frequently cited in the computational mathematics and engineering

literature. Broadly speaking, total least squares may be viewed as an optimisation

problem with an appropriate cost function. The standard formulation of the total

least squares problem is as follows. Consider a linear measurement error model

AX ≃ B

where A = A0 +Ã and B = B0 + B̃. It is assumed that the underlying physical

relationship A0X0 = B0 exists.

In total least squares estimation, a matrix D = [AB] is constructed which

contains the measured data, and the parameter matrix X is to be estimated.

There is an assumption that there exists a true unknown value of the data D0 =

[A0B0] and a true value of the parameters X0 such that A0X0 = B0. However,

the measured data D depends on some additive error D̃ = [ÃB̃] so that D =

D0 + D̃.

The ordinary least squares method gives a solution X such that the Euclid-

ean norm ‖AX − B‖ is minimised. The total least squares technique applies

a small correction (measured by the Euclidean norm) ∆D = [∆A ∆B] to the

matrix D such that the equations (A+∆A)X = B+∆B are readily solved.

Solutions for this system of equations are obtained by computing its singular

value decomposition, and this is the precise topic of the paper [28] mentioned

earlier.

The total least squares methodology has been extended to generalised total

least squares (where the errors are allowed to be correlated), and more recently

element-wise total least squares (which deals with non-identically distributed er-

rors). For a brief review of total least squares and its related methods, see for

example [42]. A complete monograph on the topic has been written and is con-

tained in [59]. Cheng and Van Ness in [10] noted that total least squares is in its

most simple version, orthogonal regression. Hence, this methodology may not be

appropriate when there is some different information available on a parameter.
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3.9. LISREL

As well as total least squares, another method of estimation which had

its origins from computational mathematics is LISREL (which stands for Linear

Structural Relationships). LISREL is an example of a structural equation model,

and computer software to implement such a model was created by Joreskog and

Sorbom (see for example [33]). To use their notation, the LISREL model is

formulated as follows:

η = Bη + Γξ + ζ ,(3.6)

Y = Λy η + ε ,(3.7)

X = Λx ξ + δ ,(3.8)

where η is a (m×1) vector, B is a square (m×m) matrix, Γ is a (m×n) matrix,

ξ is a (n×1) vector, ζ is an (m×1) vector, Y is a (p×1) vector, Λy is a (p×m)

matrix, ε is a (p×1) vector, X is a (q×1) vector, Λx is a (q×n) matrix, and δ is a

(q×1) vector. At a first glance, the LISREL model combines two factor analysis

models, (3.7) and (3.8) into the structural setting of equation (3.6).

The linear structural model outlined in Section 2 may be fitted into a

LISREL format as follows. Take m = n = p = q = 1, B = 0, ζ = 0, Γ = β and

Λx = Λy = 1. The standard assumption of the LISREL model is to take E[ξ] =

E[η] = 0. This constrains us to take µ = α = 0 for our model in Chapter 1. The

remaining parameters to be estimated are β, σ2, σ2
δ and σ2

ε .

A LISREL model usually cannot be solved explicitly, and in this scenario

an iterative procedure to estimate the parameters is adopted. Essentially, this

involves constructing a set of estimating equations for the parameters. The usual

methodology is to set the sample variance-covariance matrix equal to the the-

oretical variance-covariance matrix. The elements of the theoretical variance-

covariance matrix are nonlinear functions of the model parameters Λx, Λy, Γ and

the variance-covariance matrices of ξ, ζ, δ and ε.

The LISREL model, (as in factor analysis), implies a particular structure

for the theoretical variance-covariance matrix. Johnson and Winchern in [31]

gave details of the structure, and stated the following identities (they took B = 0

to simplify proceedings)

E
[

Y Y T
]

= Λy

(

Γ ΦΓT + ψ
)

ΛT
y + Θε ,

E
[

XXT
]

= ΛxΦΛT
x + Θδ ,

E
[

X Y T
]

= Λy Γ ΦΛT
x ,

where E
[

ξ ξT
]

= Φ, E
[

δ δT
]

= Θδ, E
[

ε εT
]

= Θε and E
[

ζ ζT
]

= ψ. It is assumed
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that the variables ζ, δ and ε are mutually uncorrelated. Also ζ is uncorrelated

with ξ, ε is uncorrelated with η and δ is uncorrelated with ξ.

The iteration procedure mentioned above begins with some initial param-

eter estimates, to produce the theoretical variance-covariance matrix which ap-

proximates the sample theoretical variance-covariance matrix. However, for this

estimation procedure to occur, there must be at least as many estimating equa-

tions as parameters. Indeed Johnson and Winchern state that if t is the number

of unknown parameters then the condition

t ≤
1

2
(p+ q) (p+ q +1)

must apply to allow estimation of the parameters. For our model of Section 2,

t = 4 (β, σ2, σ2
δ and σ2

ε ) and 1
2 (p+ q)(p+ q +1) = 3 and so we cannot use the

LISREL environment to estimate our parameters unless we assume something

further is known. This ties in with the thoughts of Madansky who stated in [40]

that

“To use standard statistical techniques of estimation to estimate β,

one needs additional information about the variance of the estimators.”

Also, comparisons may be drawn between LISREL, the method of moments and

maximum likelihood, as both of the latter methods also assume that there is some

parameter known to allow identifiability of the model.

Applying the LISREL methodology to the linear structural model of Sec-

tion 2, we get

E
[

Y Y T
]

= β2σ2 + σ2
ε ,

E
[

XXT
]

= σ2 + σ2
δ ,

E
[

X Y T
]

= βσ2 ,

since for our model Φ = σ2, ψ = 0, Θδ = σ2
δ and Θε = σ2

ε . We can now equate the

theoretical variance-covariance matrix to the sample variance-covariance matrix

to construct the following three equations

σ2 + σ2
δ =

1

n

n
∑

i=1

(xi − x̄)2 = sxx ,(3.9)

β2σ2 + σ2
ε =

1

n

n
∑

i=1

(yi − ȳ)2 = syy ,(3.10)

βσ2 =
1

n

n
∑

i=1

(xi − x̄)(yi − ȳ) = sxy ,(3.11)

which are identical to the method of moment estimating equations (and subse-

quently the maximum likelihood estimating equations) outlined in [27].
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The first order moment equations µ= x̄ and α+βµ= ȳ are missing as the

LISREL model assumes the data are centred, so µ and α are taken as known in

the assumption E[ξ] = E[η] = 0. There are three equations (3.9), (3.10), (3.11)

and four parameters to be estimated. Hence, in order to solve these equations

explicitly we need to restrict the parameter space by assuming something known

(e.g. assume σ2
δ is known). So LISREL for our model is identical to the method

of moments, and thus maximum likelihood. As stated earlier, the method of

moments is discussed in [27].

3.10. Review papers and monographs

Over the years several authors have written review articles on errors in

variables regression. These include [35], [36], [19], [40], [43] and [3]. Riggs et al.

in [51] performed simulation exercises comparing some of the slope estimators that

have been described in the literature. There are two texts devoted entirely to the

errors in variables regression problem, Fuller in [20] and Cheng and Van Ness

with [10]. Casella and Berger in their general text [9] has an informative section

on the topic, [55] contains chapters on the problem, as do [37] and [18]. Draper

and Smith in [16] on the other hand, in their book on regression analysis, devoted

only 7 out of a total of almost 700 pages to errors in variables regression. The

problem is more frequently described in econometrics texts, for example [34].

In these texts the method of instrumental variables is often given prominence.

The text [8] described errors in variables models for non linear regression, and

Seber and Wild in [53] included a chapter on this topic.

3.11. Conclusion

The papers described in this presentation are definitive papers that dictated

the path of further research in the topic. The sporadic nature of the literature

can be seen by looking at the journals from which the papers in this presentation

came. Procedures for fitting errors in variables models have been developed in

the medical literature, economics literature and statistics literature. There are

a plethora of papers available on the linear structural model, and even more on

errors in variables in general. The list of references given in this paper are by

no means exhaustive, but it is hoped that consolidating some of the key ideas

involved in errors in variables modelling into this paper will help stimulate further

research into a problem that has existed since the 1800s, and that has interested

people in a variety of academic disciplines.
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