Abstract:

- In order to estimate extreme quantiles from independent and identically distributed random variables, we propose and study a novel folding procedure that improves quantile estimates obtained from the classical Peaks-Over-Threshold method (POT) used in Extreme Value Theory. The idea behind the folding approach is to connect the part of a distribution above a given threshold with the one below it. A simplified version of this approach was studied by You et al. (2010). In this paper, an extension based on two thresholds is proposed to better combine the folding scheme with the POT approach. Simulations indicate that this new strategy leads to improved extreme quantiles estimates for finite samples. Asymptotic normality of the folded POT estimators is also derived.

Key-Words:

- extreme quantile estimation; peaks-over-thresholds; generalized Pareto distribution; folding; generalized probability-weighted moments estimators.

AMS Subject Classification:

A Folding Method for Extreme Quantiles Estimation

1. MOTIVATION

The study of extremes has grown steadily since the pioneering work of Fisher & Tippett (1928). One of the most famous approaches in Extreme Value Theory is the Peaks-Over-Threshold (POT) method which can be described as follows. Let \(\mathcal{X} := \{X_1, \ldots, X_n\} \) be a sample of independent random variables from an unknown distribution function \(F \) and consider the \(N_u \) exceedances above a fixed threshold \(u \), that is \(Y_1, \ldots, Y_{N_u} \) where \(Y_j := X_{ij} - u_n \), when \(X_{ij} > u_n \). According to Pickands (1975), for a large class of underlying distributions \(F \), as the threshold \(u_n \) increases, the distribution of the exceedances \(F_{u_n}(t) := \mathbb{P}(X - u_n \leq t \mid X > u_n) \) asymptotically converges to a Generalized Pareto Distribution (GPD) defined as

\[
G_{\gamma, \sigma_n}(x) = \begin{cases}
1 - \left(1 + \frac{x}{\sigma_n}\right)^{-1/\gamma} & \text{if } \gamma \neq 0, \\
1 - \exp\left(-\frac{x}{\sigma_n}\right) & \text{if } \gamma = 0,
\end{cases}
\]

where \(\sigma_n = \sigma(u_n) > 0 \) and \(x \geq 0 \) if \(\gamma \geq 0 \) and \(0 \leq x < -\sigma_n/\gamma \) if \(\gamma < 0 \). This result leads to the so-called POT estimator of a high quantile \(x_p := F^{-1}(1 - p) \) with \(F^{-1} \) the inverse function of \(F \)

\[
\hat{x}_p(u_n) = u_n + \hat{\sigma} \left\{ \left(1 - \frac{p}{1 - F_n(u_n)}\right)^{-\hat{\gamma}} - 1 \right\},
\]

where \((\hat{\gamma}, \hat{\sigma}) \) are some estimators of the parameters \((\gamma, \sigma_n) \) and \(F_n(x) := \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\{X_i \leq x\} \) denotes the empirical distribution function.

Recently, You et al. (2010) proposed a so-called folding procedure to improve the estimation of \(x_p \). This approach is inspired by perfect sampling techniques used in simulation studies (Corcoran & Schneider, 2003) and the idea is to connect the lower and upper parts of a distribution. More precisely the explicit formulation of this folding transformation and its fundamental property are encapsulated in their Proposition 1 which is recalled below.

Proposition 1.1. Let \(X \) be a random variable with an absolutely continuous distribution function \(F, u \) a real number such that \(u < \tau_F \) where \(\tau_F = \sup\{x \in \mathbb{R} : F(x) < 1\} \) is the right endpoint of \(F \) and \(H \) another absolutely continuous distribution function with the same support as \(F \) and such that \(H(u) \geq F(u) \). Define the following random variable

\[
X^{(H,F)}(u) := \begin{cases}
H^{-1}\left(\frac{F(u)}{F(u)} F(X) + F(u)\right) & \text{if } X < u, \\
X & \text{if } X \geq u,
\end{cases}
\]

where \(F := 1 - F \) and \(H^{-1} \) is the inverse function of \(H \). Then

\[
\mathbb{P}(X^{(H,F)}(u) > x) = \mathbb{P}(X > x \mid X > u) + \frac{F(u)}{F(u)} \left(\overline{F}(x) - F(x)\right), \quad x > u.
\]
A very important special case occurs when H is chosen to be equal to F in (1.2). In this context, the random variable $X^{(F,F)}(u)$ has the same probability distribution as the conditional variable $[X|X > u]$, the latter being the variable of interest for the aforementioned POT method. We call $X^{(F,F)}(u)$ the folded transformation of X and we denote it as $X^{(F)}(u) := X^{(F,F)}(u)$. In practice, F is unknown and the folding transformation cannot be applied directly. One must substitute the unknown F by suitable proxies. The choice of a proxy is especially sensitive for the inverse function F^{-1}. This explains the introduction of H in the definition of $X^{(H,F)}(u)$. To study the effect of choosing the proxy H instead of F in the folding procedure, we introduce the difference $\Delta^{(H,F)}_u(x) := \left| \mathbb{P}(X^{(H,F)}(u) \leq x) - \mathbb{P}(X^{(F,F)}(u) \leq x) \right|$ for $x > u$. According to Proposition 1.1, we can write

$$\Delta^{(H,F)}_u(x) = \frac{F(u)}{F(u)} \left| \mathcal{H}(x) - \mathcal{F}(x) \right|.$$

Second-order extreme value theory (e.g. de Haan & Ferreira, 2006) provides the necessary tools to characterize the behavior of $\Delta^{(H,F)}_u(x)$ for a specific H.

Proposition 1.2. Assume that F satisfies the following second-order condition. There exists some positive function $a(\cdot)$ and some positive or negative function $A(\cdot)$ with $\lim_{t \to \infty} A(t) = 0$ such that

$$\lim_{t \to \infty} \frac{1}{A(t)} \left(\frac{U(t) - U(t)}{a(t)} - D_\gamma(x) \right) = B(x) , \quad x > 0 ,$$

where $U := (1/F)^{-1}$, $D_\gamma(x) := \frac{x^{\gamma-1}}{\gamma}$ if $\gamma \neq 0$ and $\log x$ if $\gamma = 0$, and B is some function that is not a multiple of D_γ. If the tail distribution $\mathcal{H}(x) := 1 - H(x)$ is chosen to behave as a GPD tail such that

$$\mathcal{H}(x) = \mathcal{F}(u) \overline{\mathcal{G}}_{\gamma,\sigma(u)}(x - u) ,$$

with $x > u$ and $\sigma(u) = a(1/F(u))$, then for all y satisfying $1 + \gamma y > 0$, we have

$$\lim_{u \to \infty} \frac{1}{\alpha(u)} \left[\frac{\Delta^{(H,F)}_u(u + \sigma(u)y)}{\alpha(u)} \right] = \lim_{u \to \infty} \frac{1}{\alpha(u)} \left(\frac{\mathcal{F}(u + \sigma(u)y)}{\mathcal{F}(u)} - \overline{\mathcal{G}}_\gamma(y) \right) = \left(\overline{\mathcal{G}}_\gamma(y) \right)^{1+\gamma} |B_{\gamma,\rho}(1/\overline{\mathcal{G}}_\gamma(y))|$$

where $\overline{\mathcal{G}}_\gamma := \overline{\mathcal{G}}_{\gamma,1}$, $\alpha(u) := A(1/F(u))$ and

$$B_{\gamma,\rho}(x) := \begin{cases} \frac{1}{\rho} \left(\frac{x^{\gamma+\rho} - 1}{\gamma + \rho} - \frac{x^\gamma - 1}{\gamma} \right) & \text{if } \gamma \neq 0, \ \rho \neq 0 , \\ \frac{1}{\gamma} \left(x^\gamma \log x - \frac{x^{\gamma-1}}{\gamma} \right) & \text{if } \rho = 0 \neq \gamma , \\ \frac{1}{\rho} \left(\frac{x^{\rho} - 1}{\rho} - \log x \right) & \text{if } \rho \neq 0 = \gamma , \\ \frac{1}{2} (\ln x)^2 & \text{if } \rho = \gamma = 0 . \end{cases}$$
The first equality in (1.6) tells us that choosing H as a GPD approximation, see (1.5), implies that the rate of convergence of $\Delta_{n}^{(H,F)}$ towards zero is identical to the one obtained by working with exceedances. The second equality in (1.6) simply restates the result derived by de Haan & Ferreira (2006, p. 48) about the relationship between the rate of convergence and the second-order auxiliary function $A(\cdot)$. The main consequence of Proposition 1.2 is that a GPD can be viewed as the appropriate choice for the distribution function H. In real applications, we do not know the parameters of such a GPD and a first estimation has to be given before implementing our folding procedure. This also means that any reasonable GPD estimation procedure can be used to initialize our algorithm, the better the estimation of $\sigma(u)$ and γ, the better the efficiency of the folding procedure. Still, our main goal in this paper is not to compare all existing GPD estimation methods (e.g., Smith, 1987; Greenwood et al., 1979) and to find the best one (if one could do that). Instead, our aim is to study our folding approach with a specific estimation method for which we have experience with (Diebolt et al., 2004, 2007).

At this stage, our approach can be viewed as the mixing of two elements, the folding procedure described by Proposition 1.1 and the POT method. Each element is associated with a particular threshold choice. For the sake of simplicity, You et al. (2010) considered that both thresholds were equal. This is not necessary. One threshold could be chosen for computing the preliminary GPD parameters estimates and another one for the folding transformation itself. In this paper, we follow this path. We propose and study a novel folding approach based on two thresholds u_n and u'_n such that $u_n = \sigma(u'_n)$. Compared to a conventional approach and to our past folding procedure, simulations clearly indicate that this new double-threshold folding approach significantly reduces the mean squared error of extreme quantile estimates, particularly for small and moderate sample sizes (see Section 4). Asymptotic properties of our GPD parameters estimators are derived (see Section 3). The proof of our results are postponed to the appendix. Results presented in Sections 3 and 4 solely focus on heavy tailed distributions because our previous study (You et al., 2010) indicated that the folding gain is the strongest for this type of tails.

2. A NEW FOLDING PROCEDURE WITH TWO THRESHOLDS

Suppose that the variable $[X - u_n | X > u_n]$ approximatively follows a GPD(γ, σ_n) for some large threshold u_n. The thresholding stability property of the GPD basically means that $[X - u'_n | X > u'_n]$ can also be approximated by a GPD($\gamma, \sigma_n + \gamma(u'_n - u_n)$) for any $u'_n > u_n$. In other words, the tail $\bar{F}(t) = \bar{F}_{u'_n}(t - u'_n) \bar{F}(u'_n)$ can be approximated by $\bar{G}_{\gamma, \sigma_n + \gamma(u'_n - u_n)}(t - u'_n) \bar{F}(u'_n)$. In terms of inverse distributions, this approximation can be expressed as $\bar{F}^{-1}(t) \simeq \bar{G}^{-1}(t) \bar{F}^{-1}(u'_n)$.
\(\overline{G}_{\gamma, \sigma_n + \gamma(u'_n - u_n)} \left(\frac{t}{F(u'_n)} \right) + u'_n \). According to Proposition 1.1, the folded variable \(X^{(F)}(u'_n) \) can be rewritten as

\[
X^{(F)}(u'_n) = F^{-}\left(F(u'_n) \left[1 - \frac{F(X)}{F(u'_n)} \right] \right), \quad \text{if } X < u'_n.
\]

By plugging the approximation for \(F^{-} \) in the expression of \(X^{(F)}(u'_n) \), it is natural to define the following folded variables

\[
\tilde{X}_i^{(F)}(u'_n) = \begin{cases}
\overline{G}_{\tilde{\gamma}, \tilde{\sigma}}^{-}\left(1 - \frac{F_n(x)}{F_n(u'_n)} \right) + u'_n, & \text{if } F_n(x) < F_n(u'_n), \\
X_i, & \text{if } F_n(x) \geq F_n(u'_n),
\end{cases}
\tag{2.1}
\]

where \(\tilde{\gamma} := \tilde{\sigma} + \tilde{\gamma}(u'_n - u_n) \) and \((\tilde{\gamma}, \tilde{\sigma}) \) are estimated from the exceedances \((Y_1, \ldots, Y_{N_n}) \). Note that the folding transformation given by (2.1) does not depend on the numerical values of the observations \(X_i \) when \(X_i < u'_n \) but only on their ranks because \(nF_n(X_i) \) is equal to the rank of the observation \(X_i \).

Equation (2.1) allows us to describe our new folding procedure as follows:

Step 1. Select one threshold \(u_n \) and estimate \((\tilde{\gamma}, \tilde{\sigma}) \) of the GPD parameters \((\gamma, \sigma_n) \) from the exceedances above \(u_n \). Select a second threshold \(u'_n > u_n \) and calculate \(\tilde{\sigma} := \tilde{\sigma} + \tilde{\gamma}(u'_n - u_n) \).

Step 2. Build the folded version \(\tilde{N}^{(F)} := \left\{ \tilde{X}_1^{(F)}(u'_n), \ldots, \tilde{X}_n^{(F)}(u'_n) \right\} \) using transformation (2.1).

Step 3. Estimate the GPD parameters \((\tilde{\gamma}(F), \tilde{\sigma}(F)) \) from the folded sample \(\tilde{N}^{(F)} \).

Step 4. Compute the POT extreme quantile estimator \(\tilde{x}_p^{(F)}(u'_n) \) (according to (1.1)) with the estimates \((\tilde{\gamma}(F), \tilde{\sigma}(F)) \).

In steps 1 and 3, any reasonable GPD estimator of \((\gamma, \sigma_n) \) could be used. Here we implement the generalized probability-weighted moments (GPWM) (Diebolt et al., 2004, 2007). This is an extension of the classical probability-weighted moments method (Greenwood et al., 1979) and it can be described as follows. Let \(\omega \) be a continuous function, null at zero, and which admits a right derivative at zero. The GPWM is defined as \(\nu_\omega = \mathbb{E}[Z \omega(G_{\gamma, \sigma}(Z))] \) where \(Z \) follows a GPD(\(\gamma, \sigma \)) with \(\gamma < 2 \). If we denote by \(W \) the primitive of \(\omega \) null at zero, then an integration by parts allows us to write \(\nu_\omega \) as \(\nu_\omega = \int_0^\infty W(G_{\gamma, \sigma}(x)) \, dx \).

Diebolt et al. (2004, 2007) proposed and studied \(\hat{\nu}_{\omega} = \int_0^\infty W(T_{n, u_n}(x)) \, dx \) as an estimator of \(\nu_\omega \), where \(T_{n, u_n} \) corresponds to the exceedances empirical survival function defined by \(T_{n, u_n}(x) = \frac{1}{N_n} \sum_{i=1}^{N_n} \mathbb{1}\{X_i - u_n > x\} \). To estimate \((\gamma, \sigma_n) \) by implementing a method-of-moments approach, two GPWMs are needed. In this work, the two functions \(\omega_1 \) and \(\omega_2 \) are equal to \(\omega_1(x) = x \) and \(\omega_2(x) = x^{3/2} \) (see Diebolt et al., 2004, for a justification of these choices).
3. ASYMPTOTIC NORMALITY

Before stating our main result, we need to prove the asymptotic normality of the pair \((\hat{\gamma}, \hat{\sigma}/\sigma'_n)\).

Lemma 3.1. Let \(F\) be three times differentiable such that its inverse \(F^{-1}\) exists. Let \(V\) and \(M\) be two functions defined as \(V(t) = F'(e^{-t})\) and \(M(t) = V''(\ln t)/V'(\ln t) - \gamma\). Suppose the following conditions hold

\[
\exists \rho < 0 : |M| \in RV_\rho \text{ with a normalized slowly varying function}
\]

(3.1) \(M\) is of constant sign at \(\infty\)

and

(3.2) \(\exists \rho < 0 : |M| \in RV_\rho\) with a normalized slowly varying function

(see Bingham et al., 1987).

Then, for \(\gamma \in (0, 3/2)\) and for all \(C^1\)-functions \(\omega_1\) and \(\omega_2\), null at 0, conditionally on \(\{N_u = k_n\}\) and \(\{N_u' = k'_n\}\) with \(u_n = o(u'_n)\), and for all intermediate sequences \(k_n > k'_n \to \infty\) such that \(\sqrt{k_n} a_n \to \lambda \in \mathbb{R}\), we have that

\[
\sqrt{k_n} \left(\frac{\hat{\gamma} - \gamma}{\hat{\sigma}} - 1 \right) \xrightarrow{d} N^\prime \left(\lambda \left(\frac{1}{\gamma} \right) B_1, \left(\frac{1}{\gamma} \right) \Sigma \right),
\]

where

\[
\begin{aligned}
 a_n &:= M \left(e^{V^{-1}(u_n)} \right), \quad \sigma'_n := V''(V^{-1}(u'_n)), \\
 B &:= \begin{pmatrix} B_1 \\ B_2 \end{pmatrix} = A C \quad \text{where} \quad A := DT(\omega_1, \omega_2)(\nu^1_{\omega_1}, \nu^1_{\omega_2}), \\
 C &:= \begin{pmatrix} C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} \phi_1(\gamma + \rho) - \phi_1(\gamma) \\ \phi_2(\gamma + \rho) - \phi_2(\gamma) \end{pmatrix} \quad \text{where} \quad \phi_j(\gamma) := \int_0^1 W_j(u) u^{-\gamma - 1} du, \quad j \in \{1, 2\}, \\
 \Sigma &:= \begin{pmatrix} \Sigma_{1,1} & \Sigma_{1,2} \\ \Sigma_{2,1} & \Sigma_{2,2} \end{pmatrix} = A \Gamma A^T,
\end{aligned}
\]

and \(\Gamma\) is the variance-covariance matrix of the pair \((Y_{\omega_1}, Y_{\omega_2})\) defined as

\[
Y_{\omega_1} = \int_0^1 t^{-\gamma - 1} \omega_1(t) \mathbb{B}(t) \, dt \quad \text{and} \quad Y_{\omega_2} = \int_0^1 t^{-\gamma - 1} \omega_2(t) \mathbb{B}(t) \, dt
\]

with \(\mathbb{B}\) a Brownian bridge on \([0, 1]\).

The case \(\rho = 0\) is excluded from Lemma 3.1. This corresponds to \(M(t) = \ell(t)\), a slowly varying function, since in that case the limiting distribution depends explicitly on \(\ell(\cdot)\), and the two sequences \(u_n\) and \(u'_n\). Also this restriction is not really a problem since most of the classical distributions in the Fréchet domain of attraction have a second order parameter \(\rho < 0\) (except the loggamma).
Now, we can establish our main asymptotic result which shows that, in the case where $\gamma \in (0, 3/2)$, the estimators based on the double-threshold folding approach have a similar asymptotic normality as the one derived in You et al. (2010) in case of one threshold.

Theorem 3.1. Under the same assumptions stated in Lemma 3.1, we have

$$\sqrt{k_n} \left(\frac{\hat{\nu}_{1,n}^{(F)}}{\sigma_n} - \nu_{1} \right) \xrightarrow{d} N\left(\lambda B_1 F, \begin{bmatrix} F_1 & 0 \\ 0 & F_1 \end{bmatrix} \right)$$

where

$$F := \begin{pmatrix} \frac{1}{\lambda} \int_0^1 u^{-\gamma} \ln u \omega_1(u) \, du \\ \frac{1}{\lambda} \int_0^1 u^{-\gamma} \ln u \omega_2(u) \, du \end{pmatrix}$$

and

$$\nu_{1,j} = \int_0^\infty W_j(G_{\gamma,1}(x)) \, dx \quad \text{for} \quad j = 1, 2.$$

Note that this convergence in distribution does not hold in case $\gamma \leq 0$.

4. A SIMULATION STUDY

The aim of this section is to illustrate the superiority of the double-threshold folding over the conventional (Diebolt et al., 2007) and the simple folding approaches (You et al., 2010), in particular in terms of the mean squared error for small and moderate sample sizes. Simulations were performed for four sample sizes $n = 100, 500, 1000$ and 5000 from a Burr $(1, 2, 0.5)$ distribution defined by $F(x) = (1 + x^2)^{-1/2}$ and from a standard Fréchet distribution defined by $F(x) = 1 - e^{-1/x}$, respectively. For these two distributions, $\gamma = 1$ and $\rho < 0$. For each value of n, 5000 samples were generated and k_n was chosen such that the condition $\sqrt{k_n} a_n \rightarrow \lambda$ was satisfied, which corresponds to $k_n \simeq c_1 n^{4/5}$ for the Burr distribution and to $k_n \simeq c_2 n^{2/3}$ for the Fréchet distribution. The threshold u_n was chosen from $u_n = F^{-1}(1 - \frac{k_n}{n})$. Three return levels for three return periods, $t = 100, 200$ and 1000, were computed. Concerning the choice of the second threshold for our double-threshold folding method, we selected $k'_n = c_3 n^{3/5}$ for the Burr distribution and $k'_n = c_4 n^{1/2}$ for the Fréchet distribution such that $u_n = o(u'_n)$. Tables 1–3 and 4–6 display the bias and the root mean squared error (RMSE) of the quantile x_p for the Burr and Fréchet distributions, respectively.
Table 1: Burr(1, 2, 0.5) distribution — Bias (RMSE) of the return level estimates corresponding to a return period $t = 100$.

<table>
<thead>
<tr>
<th>n</th>
<th>k_n</th>
<th>k'_n</th>
<th>Conventional</th>
<th>Folding with one threshold</th>
<th>Folding with two thresholds</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>80</td>
<td>16</td>
<td>35.7 (240.4)</td>
<td>10.7 (183.0)</td>
<td>1.6 (103.8)</td>
</tr>
<tr>
<td>500</td>
<td>288</td>
<td>42</td>
<td>16.4 (195.4)</td>
<td>4.0 (106.2)</td>
<td>1.5 (46.7)</td>
</tr>
<tr>
<td>1000</td>
<td>502</td>
<td>63</td>
<td>8.5 (78.8)</td>
<td>2.3 (54.1)</td>
<td>1.3 (35.3)</td>
</tr>
<tr>
<td>5000</td>
<td>1820</td>
<td>166</td>
<td>2.6 (21.1)</td>
<td>1.1 (16.8)</td>
<td>0.3 (16.9)</td>
</tr>
</tbody>
</table>

Table 2: Same as Table 1 but for the return period $t = 200$.

<table>
<thead>
<tr>
<th>n</th>
<th>k_n</th>
<th>k'_n</th>
<th>Conventional</th>
<th>Folding with one threshold</th>
<th>Folding with two thresholds</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>80</td>
<td>16</td>
<td>117.0 (840.1)</td>
<td>45.6 (626.3)</td>
<td>11.2 (299.2)</td>
</tr>
<tr>
<td>500</td>
<td>288</td>
<td>42</td>
<td>54.2 (752.4)</td>
<td>15.9 (395.7)</td>
<td>6.9 (140.9)</td>
</tr>
<tr>
<td>1000</td>
<td>502</td>
<td>63</td>
<td>27.1 (297.9)</td>
<td>8.1 (192.9)</td>
<td>5.1 (112.7)</td>
</tr>
<tr>
<td>5000</td>
<td>1820</td>
<td>166</td>
<td>6.7 (67.1)</td>
<td>2.1 (49.4)</td>
<td>0.8 (40.3)</td>
</tr>
</tbody>
</table>

Table 3: Same as Table 1 but for the return period $t = 1000$.

<table>
<thead>
<tr>
<th>n</th>
<th>k_n</th>
<th>k'_n</th>
<th>Conventional</th>
<th>Folding with one threshold</th>
<th>Folding with two thresholds</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>80</td>
<td>16</td>
<td>1877.5 (16252.5)</td>
<td>998.0 (11748.4)</td>
<td>346.5 (3785.8)</td>
</tr>
<tr>
<td>500</td>
<td>288</td>
<td>42</td>
<td>955.4 (17449.2)</td>
<td>385.8 (8783.8)</td>
<td>167.4 (2029.8)</td>
</tr>
<tr>
<td>1000</td>
<td>502</td>
<td>63</td>
<td>468.8 (6702.8)</td>
<td>199.6 (3890.0)</td>
<td>119.1 (1820.5)</td>
</tr>
<tr>
<td>5000</td>
<td>1820</td>
<td>166</td>
<td>73.9 (990.5)</td>
<td>22.2 (589.4)</td>
<td>19.1 (504.8)</td>
</tr>
</tbody>
</table>

Table 4: Standard Fréchet distribution — Bias (RMSE) of the return level estimates corresponding to the return period $t = 100$.

<table>
<thead>
<tr>
<th>n</th>
<th>k_n</th>
<th>k'_n</th>
<th>Conventional</th>
<th>Folding with one threshold</th>
<th>Folding with two thresholds</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>64</td>
<td>15</td>
<td>48.8 (173.2)</td>
<td>15.4 (112.1)</td>
<td>15.0 (93.9)</td>
</tr>
<tr>
<td>500</td>
<td>188</td>
<td>33</td>
<td>17.2 (70.9)</td>
<td>7.5 (50.6)</td>
<td>8.5 (47.1)</td>
</tr>
<tr>
<td>1000</td>
<td>300</td>
<td>47</td>
<td>12.2 (48.5)</td>
<td>6.8 (38.0)</td>
<td>6.8 (36.2)</td>
</tr>
<tr>
<td>5000</td>
<td>877</td>
<td>106</td>
<td>3.5 (17.3)</td>
<td>2.5 (15.7)</td>
<td>1.6 (13.9)</td>
</tr>
</tbody>
</table>
Table 5: Same as Table 4 but for the return period $t = 200$.

<table>
<thead>
<tr>
<th>n</th>
<th>k_n</th>
<th>k_n'</th>
<th>Conventional</th>
<th>Folding with one threshold</th>
<th>Folding with two thresholds</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>64</td>
<td>15</td>
<td>158.0 (581.7)</td>
<td>56.4 (353.3)</td>
<td>46.3 (286.3)</td>
</tr>
<tr>
<td>500</td>
<td>188</td>
<td>33</td>
<td>55.9 (242.7)</td>
<td>25.5 (156.0)</td>
<td>27.7 (140.8)</td>
</tr>
<tr>
<td>1000</td>
<td>300</td>
<td>47</td>
<td>39.5 (163.3)</td>
<td>22.3 (117.2)</td>
<td>23.0 (111.0)</td>
</tr>
<tr>
<td>5000</td>
<td>877</td>
<td>106</td>
<td>11.8 (57.6)</td>
<td>8.6 (49.6)</td>
<td>6.8 (42.0)</td>
</tr>
</tbody>
</table>

Table 6: Same as Table 4 but for the return period $t = 1000$.

<table>
<thead>
<tr>
<th>n</th>
<th>k_n</th>
<th>k_n'</th>
<th>Conventional</th>
<th>Folding with one threshold</th>
<th>Folding with two thresholds</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>64</td>
<td>15</td>
<td>2304.7 (10052.4)</td>
<td>935.6 (5396.5)</td>
<td>638.6 (3214.3)</td>
</tr>
<tr>
<td>500</td>
<td>188</td>
<td>33</td>
<td>785.8 (4459.5)</td>
<td>367.6 (2206.0)</td>
<td>370.6 (1845.0)</td>
</tr>
<tr>
<td>1000</td>
<td>300</td>
<td>47</td>
<td>536.3 (2789.3)</td>
<td>298.5 (1580.8)</td>
<td>309.6 (1480.8)</td>
</tr>
<tr>
<td>5000</td>
<td>877</td>
<td>106</td>
<td>151.0 (899.2)</td>
<td>110.1 (664.6)</td>
<td>99.4 (549.3)</td>
</tr>
</tbody>
</table>

These tables clearly show that the double-threshold folding improves considerably the RMSE, compared to the single-threshold folding and the conventional approach. This gain is emphasized for small and moderate sample sizes and for large return periods.

APPENDIX: DETAILED PROOFS

Proof of Proposition 1.2: The proof is mainly a consequence of Theorem 2.3.8 in de Haan & Ferreira (2006), which states that, if (1.4) holds, then

$$
\lim_{u \to \tau_F} \frac{1}{\alpha(u)} \left(\frac{F(u + \sigma(u)y)}{F(u)} - G_\gamma(y) \right) = \left(G_\gamma'(y) \right)^{1+\gamma} B_{\gamma, \rho} \left(\frac{1}{G_\gamma(y)} \right)
$$

for all y such that $1 + \gamma y > 0$.

From (1.5), it follows that

$$
\lim_{u \to \tau_F} \frac{\Delta^{H,F}_{\alpha}(u + \sigma(u)y)}{\alpha(u)} = \lim_{u \to \tau_F} F(u) \times \lim_{u \to \tau_F} \frac{1}{\alpha(u)} \left(G_\gamma(y) - \frac{F(u + \sigma(u)y)}{F(u)} \right) = \left(G_\gamma'(y) \right)^{1+\gamma} B_{\gamma, \rho} \left(\frac{1}{G_\gamma(y)} \right).
$$
Proof of Lemma 3.1: First, note that the assumption $\sqrt{k_n}a_n \to \lambda \in \mathbb{R}$ can be rewritten as

(A.1) \[\sqrt{k_n} M\left(\frac{1}{\bar{F}(u_n)}\right) \to \lambda \in \mathbb{R} . \]

Now, let $\sigma_n = V'(V^{-}(u_n))$. We have

\[
\begin{align*}
\sqrt{k_n}\left(\frac{\hat{\sigma'}}{\sigma_n} - 1\right) &= \sqrt{k_n}\left(\frac{\hat{\sigma} + \gamma(u'_n - u_n)}{\sigma'} - 1\right) \\
&= \sqrt{k_n}\left(\frac{\hat{\sigma}}{\sigma_n} - 1\right)\frac{\sigma_n}{\sigma'} + \left[\frac{\gamma}{\gamma} \sqrt{k_n}\left(\frac{\sigma_n}{\gamma u_n} - 1\right) - \frac{\sqrt{k_n}(\gamma - \gamma)}{\gamma}\right] \frac{\hat{u}_n}{\sigma_n} \frac{\sigma_n}{\sigma'_n} \\
&\quad + \sqrt{k_n}\left(\frac{\gamma u'_n}{\sigma'_n} - 1\right) \frac{\hat{\gamma}}{\gamma} + \frac{1}{\gamma} \sqrt{k_n}(\gamma - \gamma) \\
&=: Q_{1,n} + Q_{2,n} + Q_{3,n} + \frac{1}{\gamma} \sqrt{k_n}(\gamma - \gamma) .
\end{align*}
\]

We know that $\sqrt{k_n}\left(\frac{\hat{\sigma}}{\sigma_n} - 1\right)$ is asymptotically normal (Diebolt et al., 2007) and

(A.2) \[\frac{\sigma_n}{\sigma'_n} \sim \frac{\gamma}{\gamma u'_n} \to 0 . \]

Therefore, it is clear that

(A.3) \[Q_{1,n} \xrightarrow{p} 0 . \]

Now, remark that

\[
\begin{align*}
\sqrt{k_n}\left(\frac{\sigma_n}{\gamma u_n} - 1\right) &= \sqrt{k_n}\left(\frac{V'(- \ln \bar{F}(u_n))}{\gamma V(- \ln \bar{F}(u_n))} - 1\right) \\
&= \frac{1}{\gamma} \sqrt{k_n} M\left(\frac{1}{\bar{F}(u_n)}\right) \left[\frac{M\left(\frac{1}{\bar{F}(u_n)}\right)}{V'(- \ln \bar{F}(u_n))} - \gamma \right]^{-1}.
\end{align*}
\]

To conclude with this term, we have to use the following lemma.

Lemma A.1 (Worms, 2000, p. 19). Suppose that $M(t) \to 0$ and $\frac{tM'(t)}{M(t)} \to \rho$ as $t \to \infty$. Then

(i) if $\gamma > 0$, we have

\[
\lim_{t \to \infty} M(e^t) \left[\frac{V'(t)}{V(t)} - \gamma \right] = \frac{\gamma + \rho}{\gamma}
\]

and

\[
\lim_{t \to \infty} M(e^t) \left[\frac{V(t)}{V'(t)} - \frac{1}{\gamma} \right] = -\gamma(\gamma + \rho) ;
\]
(ii) if \(\gamma < 0 \), we have
\[
\lim_{t \to \infty} \left[\frac{V(\infty) - V(t)}{V'(t)} + \frac{1}{\gamma} \right] M(e^t) = \frac{1}{\gamma(\gamma + \rho)}
\]
and
\[
\lim_{t \to \infty} \left[\frac{-V'(t)}{V(\infty) - V(t)} + \gamma \right] M(e^t) = -\frac{\gamma}{\gamma + \rho}.
\]

Indeed by (A.1), we deduce that
\[
\sqrt{k_n} \left(\frac{\sigma_n}{\gamma u_n} - 1 \right) \rightarrow \frac{\lambda}{\gamma + \rho}.
\]

Combining this convergence with (A.2) and the fact that \(\sqrt{k_n} (\hat{\gamma} - \gamma) \) is asymptotically normal (Diebolt et al., 2007), we deduce that
\[
Q_{2,n} \xrightarrow{P} 0.
\] (A.4)

Similarly
\[
\sqrt{k_n} \left(\frac{\gamma u'_n}{\sigma'_n} - 1 \right) = \gamma \sqrt{k_n} \left(\frac{V(-\ln F(u'_n))}{V'(-\ln F(u'_n))} - \frac{1}{\gamma} \right)
\]
\[
= \gamma \sqrt{k_n} \frac{M\left(\frac{1}{F(u_n)} \right) M\left(\frac{1}{F(u'_n)} \right)}{M\left(\frac{1}{F(u_n)} \right)} \left[\frac{M\left(\frac{1}{F(u'_n)} \right)}{V(-\ln F(u'_n)) - 1} \right]^{-1}.
\]

Now since \(\gamma > 0 \) and \(|M| \in RV_\rho \) with \(\rho < 0 \)
\[
\frac{M\left(\frac{1}{F(u'_n)} \right)}{M\left(\frac{1}{F(u_n)} \right)} \rightarrow 0.
\] (A.5)

Consequently, using again the abovementioned lemma in Worms (2000), we deduce that
\[
Q_{3,n} \xrightarrow{P} 0.
\] (A.6)

Finally, going back to (A.3), (A.4) and (A.6), we get
\[
\sqrt{k_n} \left(\frac{\hat{\sigma}^t}{\sigma'_n} - 1 \right) = \frac{1}{\gamma} \sqrt{k_n} (\hat{\gamma} - \gamma) + o_P(1).
\]

Lemma 3.1 then follows from Diebolt et al. (2007). \(\square \)
Proof of Theorem 3.1: It is a direct application of the proof of Theorem 1 in You et al. (2010) combining with our Lemma 3.1 and using the following decomposition: conditionally on \(\{N_{u_n} = k_n\} \) and \(\{N_{u'_n} = k'_n\} \), we have

\[
\sqrt{k_n} \left(\frac{\hat{\sigma}^{(F)}_{\omega,n}}{\sigma_n} - \int_0^\infty W(\xi_{\gamma}(x)) \, dx \right) =
\]

\[
= \sqrt{k_n} \left(\frac{\hat{\sigma}^{(F)}_{\omega,n}}{\sigma_n} - \frac{1}{\sigma_n} \int_0^\infty W(\tilde{F}_{n,u'_n}(x)) \, dx \right)
+ \left(1 - \frac{k'_n}{n} \right) \sqrt{k_n} \int_0^\infty (\tilde{G}_{\gamma, \tilde{\sigma}'(x)}(x) - \tilde{G}_{\gamma}(x)) \, \omega(\tilde{G}_{\gamma}(x)) \, dx
+ \frac{k'_n}{n} \sqrt{k_n} \int_0^\infty (\tilde{F}_{n,u'_n}(\sigma'_n x) - \tilde{G}_{\gamma}(x)) \, \omega(\tilde{G}_{\gamma}(x)) \, dx
\]

\[
+ \sqrt{k_n} \int_0^1 \left((1 - t) \frac{1}{n} \left(\tilde{G}_{\gamma, \tilde{\sigma}'(x)}(x) - \tilde{G}_{\gamma}(x) \right) + \frac{k'_n}{n} \left(\tilde{F}_{n,u'_n}(\sigma'_n x) - \tilde{G}_{\gamma}(x) \right) \right)^2 \times \omega'(\tilde{G}_{\gamma}(x)) + \frac{k'_n}{n} \left(\tilde{F}_{n,u'_n}(\sigma'_n x) - \tilde{G}_{\gamma}(x) \right) t \right) \, dt \, dx
\]

where \(\tilde{F}_{n,u'_n}(x) = 1 - \frac{k'_n}{n} \tilde{G}_{\gamma, \tilde{\sigma}'(x)} + \frac{k'_n}{n} \tilde{F}_{n,u'_n}(x) \).

All the details of the proof are given on the web page http://www-irma.u-strasbg.fr/~guillou/Proof_folding_thm3-1.pdf. Now, we will prove that our theorem does not hold in case \(\gamma = 0 \). Indeed if \(\gamma < 0 \), then

\[
\sqrt{k_n} \left(\frac{\hat{\sigma}'}{\sigma_n} - 1 \right) = \frac{\sigma_n}{\sigma_n} \left\{ \sqrt{k_n} \left(\frac{\hat{\sigma}}{\sigma_n} - 1 \right) - \frac{1}{\gamma} \sqrt{k_n} \left(\hat{\gamma} - \gamma \right) \frac{\gamma(V(\infty) - u_n)}{\sigma_n} \right. \right.
+ \frac{\gamma}{k_n} \left(\frac{V(\infty) - u_n}{\sigma_n} + 1 \right)
+ \sqrt{k_n} \left(\frac{\hat{\gamma}(V(\infty) - u'_n)}{\sigma'_n} - 1 \right)
\]

\[
= \frac{\sigma_n}{\sigma_n} T_{1,n} + T_{2,n}
\]

Clearly \(T_{1,n} \) tends in distribution to a normal distribution, but

\[
\frac{\sigma_n}{\sigma_n} \sim \frac{V(\infty) - u_n}{V(\infty) - u'_n} = 1 + \frac{u'_n(1 + o(1))}{V(\infty) - u'_n} \to \infty.
\]

Therefore \(\frac{\sigma_n}{\sigma_n} T_{1,n} \) tends to infinity, whereas \(T_{2,n} \) can be rewritten as

\[
T_{2,n} = \sqrt{k_n} (\gamma - \hat{\gamma}) \frac{V(\infty) - u'_n}{\sigma'_n} - \sqrt{k_n} M(\rho) \frac{M(V(\infty) - u_n)}{V(\infty) - u'_n} (1 + o(1))
\]

by Lemma 1.2 (ii) in Worms (2000). This implies that \(T_{2,n} \) tends to a normal distribution, since it is the case for the first part of this term, whereas the second one tends to 0.
Now, in case $\gamma = 0$, we can easily find a counter-example of our Lemma 3.1. First, note that
\[
\sqrt{k_n} \left(\frac{\hat{\sigma}'}{\sigma_n} - 1 \right) = \sqrt{k_n} \left(\frac{\hat{\sigma} + \hat{\gamma}(u'_n - u_n)}{\sigma_n} - 1 \right) = \sqrt{k_n} \left(\frac{\hat{\sigma}}{\sigma_n} - 1 \right) \sigma_n + \sqrt{k_n} (\hat{\gamma} - \gamma) \frac{u'_n - u_n}{\sigma_n} + \sqrt{k_n} \frac{\sigma_n}{\sigma_n} - \sqrt{k_n}
\]
\[=: \tilde{Q}_{1,n} + \tilde{Q}_{2,n} + \tilde{Q}_{3,n} - \sqrt{k_n}.
\]
Now, if we consider an exponential random variable with parameter 1, then $\sigma'_n = \sigma_n = 1$ and $\frac{u'_n - u_n}{\sigma_n} = u'_n (1 + o(1))$ by assumption. This implies that $\tilde{Q}_{1,n}$ is asymptotically normal, $\tilde{Q}_{2,n} \xrightarrow{p} \infty$ and $\tilde{Q}_{3,n} - \sqrt{k_n} = 0$. Therefore Lemma 3.1 is not valid.

\section*{ACKNOWLEDGMENTS}

Part of this work was supported by the “Conseil Scientifique” of the University of Strasbourg, by the ANR AssimilEx project and by the FP7 ACQWA project. The authors are grateful to the referee for the constructive comments.

\section*{REFERENCES}

