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Abstract:

• This paper aims to propose a structural equation model which relates the variables
that determine the patent value. Even though some patent indicators have been
directly used to infer the private or social value of innovations, the results suggest
that patent value is a more complex variable that may be modeled as an endogenous
unobservable variable in a first- and in a second-order model, and which depends re-
spectively on three and four constructs. Such variables include the knowledge used
by companies to create their inventions, the technological scope of the inventions, the
international scope of protection, and the technological usefulness of the inventions.
The model allows the conceptualization of patent value into a potential and a recog-
nized value of intangible assets, aiming toward an index construction approach. Par-
tial least square (PLS) path modelling is performed as an exploratory model-building
procedure. We use a sample of 2,901 patents granted in the United States in the field
of renewable energy.
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1. INTRODUCTION

Patents are one of the main sources of technological information. A patent

is an exclusive right granted to inventors by a state only when the invention fulfils

three basic requirements: the invention is new, it involves an inventive activity

and it is useful for industry. Until now research involving patent data has been

associated with the analysis of information contained in the patent document,

such as backward and forward citations or number of claims, and the relationship

between patents and research and development (R&D), innovation or economic

growth. In recent years, patent indicators have been used to study the economical

value of patents. In most cases, analytical approaches have been based on stan-

dard econometric analysis techniques such as probit or logit models, and survey

analysis. However, patent value may be seen as a complex construct depending on

a variety of elements. General and specific market conditions, countries’ legal

frameworks, geographic proximity or accumulated scientific and technological

knowledge are different dimensions that have shown to affect patent value.

This paper proposes that a holistic and multidimensional model may offer

a robust understanding of the different variables that determine patent value.

For the moment, and considering patent document information, two path models

are built considering five dimensions represented by five constructs. They are:

patent value, technological usefulness of the invention, knowledge stock used by

the company to create the technology, technological scope of the invention, and

international scope of protection. The models are strongly based on the the-

ory developed by the technological change scientific community and a thorough

review of the literature on patent valuation. Each construct is associated with

a set of observable variables. So, they can be estimated by these indicators.

Manifest variables are mainly built from information contained in patent docu-

ments. A set of patents granted in the United States (U.S.) in the area of renew-

able energies was retrieved from Delphion database. The proposed path models

are replicable because they could be repeated for different technological fields or

countries. Moreover, the models may allow one to distinguish between: (a) those

variables related to patent value at the time of application, i.e. those variables

that could deliver a measure of potential value of patents, and (b) those that

determine the value after the patent’s application.

In the literature, research that addresses patent value using a structural

equation model (SEM) approach is quite scarce. Moreover, rather traditional

methods based on multivariate normal distribution assumption have been imple-

mented. The advantage of SEM is flexibility in working with theory and data,

approaching the whole phenomenon, and a more complete representation of the

complex theory. Additionally, and contrary to a covariance-based approach such

as the linear structural relation model (LISREL), PLS path modelling is theory-
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building-oriented and causal-predictive-oriented. Therefore, the exploratory na-

ture of this procedure allows for the first formulation of a structural model of

patent value. Finally, the PLS path modelling algorithm is a powerful technique

for the analysis of skewed or long-tail data, such as patent data. Therefore, we

also attempt to show the benefits of PLS path modelling as a tool for exploration

and prediction of skewed data.

In this research, the models specification is made from a PLS perspective.

So, we are posing PLS models. Section 2 provides background on patent indica-

tors and constructs, and section 3 reviews the PLS path modelling procedure for

hierarchical component models with repeated manifest variables and formative

constructs. Section 4 addresses the first- and second-order model formulation,

while also postulating on the indicators, latent variables (LVs) and causal rela-

tionships among variables. In particular, formative and reflective relationships

among manifest and latent variables are justified. A description of patent data is

given in Section 5. Section 6 reports the results, and shows the performance and

effectiveness of PLS path modelling when working with patent data characterized

by long tails. Finally, section 7 gives final remarks and some directions for future

research.

2. PATENT INDICATORS AND CONSTRUCTS

Patent indicators have been used by scientific communities to study phe-

nomena such as technological change or the growth of science and technology.

Forward citations, i.e. the number of times that each patent has been cited by

another patent, are the most widely used indicator to measure the value or im-

portance of patents. Nevertheless, other indicators have also been introduced as a

measure of value, such as family size, number of claims, number of international

patent classification (IPC) codes where the patent is classified, and backward

citations. Here, family size refers to the number of countries where a patent is

sought for the same invention [27]. As a general patenting strategy, companies

protect their inventions in their local countries first and then in other jurisdictions.

Patents with a large family size tend to be more valuable or important [21], al-

though Guellec et al. reported that this relationship might sometimes be inaccu-

rate and “may reflect a lack of maturity of the applicant” [18, p. 114]. Even so,

family size may be proposed as a proxy variable for the international scope of

patent rights, and as a measure of patent value. The number of backward cita-

tions or references in a patent represents “all of the important prior art upon

which the issued patent improves” [35, p. 318], and allows one to demonstrate

that the invention is genuinely new. Claims are made in a special section in the

patent document, where the thing that is being protected is specified. The claims

section consists of a numbered list. Therefore, the number of claims is in fact
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the number of inventions protected [42, p. 134]. Patents with a large number of

claims have a higher likelihood of being litigated, so they can be considered more

valuable [22, 28, 38]. International patent classification classes were introduced

as a proxy variable for the scope of protection by Lerner [31]. An invention with

a larger technological scope should be more valuable due to its broader potential

applications. The number of inventors and the number of applicants have also

been used as indicators of the patent value [38].

Most patent indicators have been used to explain a conceptual variable or

a construct. The relationship between patent citations and patent value has been

deeply studied [1, 4, 18, 20, 21, 37, 38, 43]. Carpenter et al. [4], Albert et al. [1]

and Harhoff et al. [20] have successfully shown that those patents that are related

to important technological developments are most highly cited. Harhoff et al. [21]

was the first to use backward and forward citations together as proxy variables

for patent value, and Trajtenberg [43] established the role of citations as an in-

dicator of the value of innovations. Patent citations and patent value have also

been associated with market value and/or the R&D expenditures of companies

[10, 15, 19, 31]. The relationship among patent value and patenting strategy,

technological diversity (through the IPC), domestic and international R&D col-

laborations and/or co-applications (analyzing the country of residence of the au-

thors) and the mix of designated states for protection (through the family size),

have been studied by Guellec and van Pottelsberghe [18]. Reitzig [37, 38] studied

the factors that determine an individual patent value. Analyzing the results of a

questionnaire, he found that novelty and inventive activity are the most impor-

tant factors in patents that are used as “bargaining chips”. Connolly et al. [10]

showed that patent statistics are significantly related to companies’ market value.

In addition, Griliches [15] found a significant relation among companies’ market

value, the book value of R&D expenditures and the number of patents. He based

his research on a time-series cross-section analysis of United States firm data.

Lerner [31] reported that patent scope has a significant impact on the valuation

of firms, while Hall et al. [19] investigated the trend in US patenting activities

over the last 30 years, finding that the ratios of R&D to asset stock, patents to

R&D, and citations to patents significantly affect companies’ market value.

On the other hand, some of these indicators have been related to other

constructs. The number of inventors and applicants, backward citations and

the number of claims have been related to patent novelty, i.e. the technological

distance between a protected invention and prior art. A patent’s protection level

or its technological scope or breadth can be measured by the number of claims or

number of IPC classes into which the patent is classified [31]. Furthermore, patent

stocks or knowledge stocks have been associated with the economic growth of a

country as well as the economical activity [16], research and development results

[29] and the value of innovation [40] and technological performance [42]. In this

last case, the researchers found that the number of claims is a better indicator

than the number of patents in the national technological capacity.
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Finally, little research has reported on the structural relationship among

latent variables which influence patent value using a multidimensional approach.

The recent investigations of Harhoff [21, 22] and Reitzig [37, 38] used a large

number of indicators of patent value aimed mainly at estimating the probability

of opposition to a patent. In most cases, analytical approaches have been based

on standard econometric analysis techniques (probit or logit models) or survey

analysis. One reason that could explain why a multidimensional and structural

approach has not been applied to technology/patent valuation is that more gen-

eral structural models are based on maximum likelihood estimation and the mul-

tivariate normal distribution of data. Patent indicators are very heterogeneous

and asymmetric, and, in general, they exhibit a large variance and skew. Conse-

quently, assuming that this type of data has a multivariate normal distribution

may lead to biased results. As seen below, PLS path modelling overcomes this

drawback because it is an iterative algorithm that makes no assumptions about

data distribution. Moreover, unlike other methods such as probit or logit models,

it allows researchers to depict the relationship among a set of latent variables.

Thus, we have the possibility of modelling the patent value as an unobservable

variable.

2.1. Patent value

Patents are intellectual assets that do not necessarily have an immediate

return. A patent may protect a product that can be manufactured and sold. But

a patent may also protect technologies which, together with other technologies,

enable the manufacture of a final product. In both cases, to obtain an economic

value from patents may be extremely difficult. In studying patent value, different

approaches have been taken throughout the literature. Some of the approaches

focus on the private value of a patent while others concentrate on a patent’s

social value. Lanjouw et al. [27, p. 407] defined the private value of a patent

in terms of “the difference in the returns that would accrue to the innovation

with and without patent protection”. The magnitude of this difference would

be crucial in applying or renewing the protection. Reitzig [38] also focused on

the private value of patents, and specifies the need to consider the patent value

as a construct. Technical experts were surveyed and, according to them, the

research showed that the factors that determine patent value are: state of the

art (existing technologies), novelty, inventiveness, breadth, difficulty of inventing,

disclosure and dependence on complementary assets1. Additionally, Trajtenberg

[43] showed that patent data was highly correlated with some indicators of the

social benefits of innovations. Guellec et al. [18] presented a value scale proposing

1We attempt to consider these variables as constructs in the proposed structural model.

However, recall that in this research, the manifest variables are mainly obtained from the patent

document. So, latent and manifest variables are subject to this constraint.
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that technology increases its own value as it passes through different stages: from

invention to application, examination, publication and decision to grant, and

finally to the high value stage if the patent is granted. The distinction is made

between the intrinsic value of the patent simply for being granted (and thereby

having proven novelty, inventive activity and applicability) and the potential

value of technology (dependent on its potential for generating future returns).

Some patent indicators have been used to directly infer the patent’s value,

such as forward citations or family size (see Table 1). Even though this may be

useful and may give an approximation of the patent value, many elements may

affect the invention and protection process. We consider some of these factors

based on the presented background, and represent their interactions proposing a

multidimensional analysis of the problem. It is worth noting that this research

does not seek to determine the value of an individual patent or to obtain a

monetary value of the assets. Rather, the patent value is proposed in terms of

the technological usefulness of the inventions. This model, however, allows us to

compare and rank the value of a company’s patent portfolios. We address the

question of what variables determine the patent value and how they relate to

each other. These variables are modeled as unobserved variables. So, they and

their relationships set up a structural equation model.

Table 1: Brief summary of different approaches used to study the patent value.

Author Construct Indicators
Dependent

Method
variable

Trajtenberg (1990)
Social value of Patent count weighted Consumer surplus Multinomial

innovations by citations logit model

Guellec et al. (2000)

Patent value, Number of IPC, Probability that Probit model

patenting strategy, family size, a EPO patent

technological diversity, dummy variables, application is

R&D collaboration etc. granted

Reitzig (2003)

Patent value, novelty,

—

‘present patent Survey,

inventive activity, value’ probit model

invent around,

disclosure

Harhoff et al. (2003)

Private value of Survey of patent- Patent right as Survey,

patents, value of holders, backward a price to sell probit model

renewed patent and forward citations, the patent right

protection and asset family size, IPC,

value of patent right outcome of opposition

proceedings

Hall et al. (2005)
Market value Patent citations, Tobin’s q Tobin’s Q

R&D expenditures, equation

total assets
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3. THE PLS PATH MODELLING APPROACH FOR MODEL

FORMULATION

PLS path modelling is a component-based procedure for estimating a se-

quence of latent variables developed by the statistician and econometrician Her-

man Wold [45, 46, 47]. During the last few years, it has proved to be useful

for estimating structural models, in marketing and information system research

in particular, and in the social sciences in general [6, 12, 23, 24, 33, 41]. Some

of its features have encouraged its use, such as: (1) it is an iterative algorithm

that offers an explicit estimation of the latent variables, and their relationships,

(2) it works with few cases and makes no assumptions about data distribu-

tion — in contrast with LISREL that makes strong assumptions about data

distribution and where hundreds of cases are necessary for its application, and

(3) it overcomes the identification problems when formative measurement mod-

els are included. Wold [47] emphasizes that “using prior knowledge and intuition

the investigator is free to specify the LVs, to design the inner relations, and to

compile a selection of indicators for each LV” [p. 582]. The path model “is usually

tentative since the model construction is an evolutionary process. The empiri-

cal content of the model is extracted from the data, and the model is improved

by interactions through the estimation between the model and the data and the

reactions of the researcher” [45, p. 70].

In a PLS path modelling approach, the structural model or inner model —

also called the inner relations and substantive theory — depicts the relationship

among latent variables as multiple regressions:

(3.1) ξj = βj0 +
∑

i

βji ξi + νj

where ξj and ξi are the endogenous and exogenous latent variables, respectively,

and βji are called path coefficients and measure the relationship among con-

structs. The arrangement of the structural model is strongly supported by theory

at the model specification stage. So, PLS path modelling is used to explore if

these relationships hold up or whether other theory-based specifications, that may

be proposed, help in providing a better explanation for a particular phenomenon.

The condition imposed is E(ξj/ξi) =
∑

i βji ξi. There is no linear relationship

between predictor and residual, E(νj/∀ξi) = 0 and cov(νj , ξi) = 0.

The measurement model or outer model — also called the outer relations —

describes the relationship between latent (ξi) and manifest (xih) variables in two

different ways: mode A and mode B. “Mode A is often used for an endogenous

LV and mode B for an exogenous one. Mode A is appropriate for a block with

a reflective measurement model and mode B for a formative one” [41, p. 268].

Reflective relationships seek to represent variance and covariances between the
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manifest variables that are generated or caused by a latent variable. So, observed

variables are treated as an effect of unobserved variables [2, 9]. In a reflective

measurement model, the manifest variables are measured with error. Alterna-

tively, formative relationships are used to minimize residuals in the structural

relationships [14], and here, manifest variables are treated as forming the unob-

served variables. MacCallum and Browne [32] said that observed variables in a

formative model are exogenous measured variables. In a formative outer model

the manifest variables are presumed to be error-free and the unobserved variable

is estimated as a linear combination of the manifest variables plus a disturbance

term, so they are not true latent variables (as in the traditional factorial ap-

proach). As in this case all variables forming the construct should be considered,

the disturbance term represents all those non-modeled causes.

In mode A or in reflective relationships, manifest and latent variables rela-

tionships are described by ordinary least square regressions:

(3.2) xih = πih0 + πih ξi + ǫih .

The parameters πh are called loadings. The condition imposed is E(xh/ξ) =

πh0 + πh ξ, ǫh with zero mean and uncorrelated with ξ. Loadings indicate the

extent to which each indicator reflects the construct, and represent the correlation

between indicators and component scores.

In mode B or in formative relationships, unobserved variables are generated

by their own manifest variables as a linear function of them and a residual:

(3.3) ξi =
∑

h

wih xih + δi .

The parameters wh are called weights, and allow us to determine the extent

to which each indicator contributes to the formation of the constructs. Each

block of manifest variables may be multidimensional. The condition imposed is

E(ξ/xh) =
∑

h whxh. This implies that the residuals δi have zero mean and they

are uncorrelated with the manifest variables xi.

Wold’s basic-design of PLS path modelling [45, 46, 47] does not consider

higher-order latent variables. Therefore, in Wold’s algorithm each construct must

be related to a set of observed variables in order to be estimated. However,

Lohmöller [30] proposed a procedure for the case of hierarchical constructs; that

is to say, for cases where there is a construct that does not have a block of mea-

surement variables, or more simply: it is only related to other constructs. In

hierarchical component modelling, manifest variables of first-order latent vari-

ables are repeated for the second-order latent variable. So, a set of “auxiliary”

variables is introduced for estimation purposes. After that, the model is esti-

mated using PLS path modelling in the usual way. Hence, the specification of

PLS has an additional equation that Lohmöller [30] called the cross-level relation:

(3.4) yjl = πjl0 + πjl ξj + ǫjl .
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The condition imposed is E(ξj ǫjl) = 0. We are interested in this type of model

because, as seen below, the patent value construct may be modeled as a second-

order latent variable, i.e. the value can only be estimated through linear relations

with other latent variables.

Reliability of reflective measurement models is evaluated by examining load-

ings. A rule of thumb generally accepted is 0.7 or more. This implies that “there

is more shared variance between construct and variable than error variance” [24,

p. 198]. A low value in a loading factor suggests that the indicator has little rela-

tion to the associated construct. All indicators of a block of variables must reflect

the same construct. Therefore, there should be high collinearity within each block

of variables. Thus, the internal consistency of a reflective measurement model

is related to the coherence between constructs and their measurement variables.

The unidimensionality of the block of variables may be assessed by using Cron-

bach’s alpha coefficient (should be > 0.7), and composite reliability (should be

> 0.7). According to Chin [6, p. 320] “alpha tends to be a lower bound estimate

of reliability whereas composite reliability is a closer approximation under the

assumption that the parameter estimates are accurate”.

To represent the extent to which measures of a given construct differ from

measures of other constructs (discriminant validity), the average variance ex-

tracted (AVE) may be calculated. Therefore, as suggested by Fornell and Larcker

[13], the percentage of variance captured by the construct in relation to the vari-

ance due to random measurement error is computed (should be > 0.5). Likewise

when models have more than two reflective constructs, cross loadings may be ob-

tained by calculating the correlations between component scores and indicators

associated with other reflective constructs. If an indicator has higher correlation

with another latent variable instead of the associated latent variable, its position

should be reconsidered in the model. Therefore, each indicator has to be more

related to its construct than another one in the same model. To assess the sig-

nificance of loadings, weights and path coefficients, standard errors and t-values

may be computed by bootstrapping (200 samples; t-value>1.65 significant at the

0.05 level; t-value> 2 significant at the 0.01 level).

The inner model is assessed by examining the path coefficients among la-

tent variables. The value of path coefficients provides evidence regarding the

strength of the association among latent variables. Moreover, the coefficient of

determination (R-square) of each endogenous variable gives the overall fit of the

model or the percentage of variance explained by the model. In this research,

PLS path modelling and bootstrapping were carried out in SmartPLS [39] with

a centroid weighting scheme.
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3.1. A brief overview of formative and reflective outer models

The distinction between reflective and formative measurement models for

structural equation models is an issue that has been addressed by several scientific

communities. Major contributions have been made by researchers from statistics

[9], psychology and sociology [2, 3], information science [36], and business and

marketing research [11, 14]. There are some decision rules criteria to determine

if a relationship should be modeled as formative or reflective (mode B or mode A

in the Wold’s PLS approach). The guidelines can be summarized in five points

as follows [9, 14, 34]. (1) The strong theory and the previous knowledge of a phe-

nomenon under study should help to clarify the generative nature of the construct.

When a formative relationship is considered, manifest variables must cover the

entire scope of construct. (2) Correlations among manifest variables. In a reflec-

tive outer model, manifest variables have to be highly correlated; in contrast this

condition must not be applied in a formative outer model. (3) Within-construct

correlations versus between-construct correlations. This is a common practice

in the model specification stage by means of cross-validation; the applied rule is

that the former should be greater than the latter. However, Bollen and Lennox

[2] show that this may lead to an incorrect indicator selection for reflective and

formative outer models, because this rule may have exceptions. So, the condition

must be applied with caution. (4) Sample size and multicollinearity affect the

stability of indicator coefficients, and they are a frequent problem in multiple

regressions. So, multicollinearity will influence the quality of the estimates in

formative relationships. (5) Interchangeability. This concept refers to whether or

not the manifest variables share the same concept [11, 25]. All manifest variables

in a reflective model explain the same construct. So, removing an indicator from

the block of variables should not have a significant effect on the construct. The

situation is completely different when considering formative outer models. The

indicators do not have to be interchangeable or share the same concept. That is

what [2] called “sampling facets of a construct”; in other words manifest variables

of a formative block of variables should represent all the aspects that form the

concept. Finally, Gudergan et al. [17] recently proposed a procedure based on

tetrad analysis to distinguish between a reflective and formative measurement

model in a component-based approach. However, when an outer model has less

than four observed variables, this procedure requires adding manifest variables

from other outer models. Therefore, the discussion on the reflective and formative

nature of the constructs studied here is based mainly on the five rules presented

previously.
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4. PATENT VALUE MODELS

Two models were tested. First of all, we are interested in knowing the

relationships among patent indicators, patent value, and different constructs

which up to now have been studied and identified as patent value determinants2.

In previous research, these constructs have not been modeled as unobservable

variables, such as in a structural equation model approach. So, the model for-

mulation began by defining the patent value as an endogenous latent variable,

since it is the primary variable to be estimated in the model. Summarizing the

results of previous researchers, three unobserved variables related to the depen-

dent variable were identified as exogenous: the knowledge stock of the patent, the

technological scope of the invention, and the international scope of the protection

(see Figure 1). We took into account all of the measurement variables found in

the state of the art, and which can be computed from information contained in

the patent document. Nevertheless, indicators constructed from the patent text,

such as from the abstract or technical description, are excluded from this study.

Figure 1: First-order model of patent value; patent value is an endogenous
latent variable; knowledge stock, technological scope, and inter-
national scope are formative exogenous constructs.

The knowledge stock represents the base of knowledge that was used by the

applicant to create an invention. This would be the content domain. This existing

knowledge encourages the inventive activity and may come from within or outside

the company. We would like to find those indicators that are value determinants,

and that companies may use to make decisions. Since we are considering the

patent document as the main data source, the applicants and inventors — that

have contributed their knowledge to the creation of the invention — may be

considered as forming this construct. The same applies to the backward citations.

2It is worth noting that we are not interested in explaining the variance and covariance among

manifest variables as in a covariance-based approach, at least not at this stage.
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The previous works, cited in the patent document, are the scientific and technical

knowledge units that must exist before the creation of an invention, and they may

be used as knowledge inputs within the invention process. Moreover, backward

citations represent the prior art, and demonstrate that the invention had not been

protected before. These three indicators have been related to the patent value

for other authors (see for instance [38]). However, they still have not been used

to estimate an unobserved variable as they are in a structural equation model.

From a theoretical standpoint, the knowledge stock is an exogenous latent

variable, and affects the value of a patent. Keeping in mind the backward cita-

tions, it seems reasonable to think that an invention that is protected in an area

where a lot of inventions are applied — hence with a large knowledge stock — will

have less value than a potential radical innovation or a breakthrough invention,

and therefore having a smaller knowledge stock. The number of inventors and

applicants are revealed first in time, and cause a change on the knowledge stock,

and not vice-versa. Additionally, it is not difficult to see that there is no covari-

ance among backward citations, and the number of inventors and applicants. For

instance, a patent may contain a large number of references, but the invention

may be created only by one inventor or by one applicant. So, a reflective approach

would fail to meet the unidimensionality condition. For this construct, however,

multicollinearity would not be a problem. Hence, a formative mode is suitable

for modelling the relationship between the indicators and the knowledge stock.

The technological scope of the invention is related to the potential utility

of an invention in some technological fields. So, the manifest variables for this

construct are the number of four-digit IPC classes where the patent is classified,

and the number of claims of the patent. The IPC classes allow us to know the

technical fields related to the invention, and therefore the number of potential ap-

plication fields. This does not mean that an invention ultimate use is restricted to

a determined area. A company may protect an invention for strategic purposes,

for example to prevent its being used by a competitor. Here, the underlying issue

is that the larger the number of classification codes, the larger the number of

potential application fields, and hence, the greater the technological scope of the

patent. On the other hand, and according to Tong and Frame [42, p. 134], “each

claim represents a distinct inventive contribution, so patents are, in effect, bun-

dles of inventions”. Claims are a description of what the inventors actually claim

to have invented and describe the potential application of the invention. As seen

in the literature review, the number of claims should reflect the inventive activity

of the invention. So, under the assumption that a highly sophisticated invention

will require much inventiveness, the patent will also have a considerable amount

of claims. Thus, this variable will also give information about the technological

scope of the patents. It is arguable that this is not always so. Probably there

are sophisticated inventions that have not required a large number of claims to

be protected. But this may be unusual in the renewable energy field. As seen



278 Alba Martinez-Ruiz and Tomas Aluja-Banet

in Table 1 below, the number of claims is a skewed variable (skewness = 4.29,

kurtosis = 43.65), with median 14. Following the rules presented before to dis-

tinguish between formative and reflective outer models, in this case, the manifest

variables are revealed first, and cause a change in the technological scope of the

inventions. When defining the manifest variables determining the technological

scope. Probably, inventors have an idea of the applicability of the invention long

before the time of protecting it. But, it is the patent value, therefore the protected

invention, that is being analyzed here. So, a formative relationship is modeled

between the indicators and the constructs. Additionally, as with the knowledge

stock, there is no collinearity among manifest variables, and the block of variables

is not one-dimensional.

The international scope refers to the geographic zones where the invention

is protected. Inventions are usually protected in the local country first and then

in others, as part of the companies’ patenting strategy. All the patents considered

in the sample are granted in the U.S. So, we defined two dummy variables that

consider whether the invention had been protected in Japan (priority JP) or in

Germany (priority DE) during the priority period. Japan and Germany are large

producers of renewable energy technologies. Hence, it is interesting to examine

whether these variables affect the patent value. Variables indicating whether

inventions have been protected through the European Patent Office (EPO) or

by the World Intellectual Property Organization (WIPO) have been excluded

from the analysis because they provide little information. This means that for

the international scope, not all the variables that could form the construct are

being considered. So, higher disturbance terms are expected in this case. The

international scope is clearly caused by the manifest variables. Here, again there

is no collinearity among manifest variables, the block of variables is not one-

dimensional. Therefore, formative relationships are considered in this block of

variables.

On the other hand, the importance of a patent for future technological

developments will be reflected in the number of times that the patent is cited,

since the patent is useful for the development of other technologies [18], and in

the patenting strategy pursued by the company over time. The latter is mea-

sured by taking into account the size of the patent family or the number of

countries where the protection is sought. For the block of variables of patent

value, a reflective relationship is considered between manifest and latent variables.

As in this case all the indicators should explain the same construct (aside from

the variables that have traditionally been used to infer the patent value), dummy

variables are defined by considering whether the patent has been protected in

Japan (JP), Germany (DE) or through the European Patent Office (EP). So,

in this research, the first analyzed case is a first-order model composed by four

constructs: knowledge stock, technological scope, international scope, and patent

value (Figure 1).
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It is worth noting that the first three constructs — knowledge stock, techno-

logical scope, and international scope — give an a priori value of patents. Thus,

the intrinsic characteristics of the patent at the time of its application, along

with the patenting strategy of the company in the priority period, may give a

preliminary idea of patent value. In contrast, patent value estimated through

forward citations and family size gives an a posteriori value for patents. This

value (recognized value) is obtained over time and is given by others through the

number of times that the patent is cited and the number of countries where the

protection is sought. Estimating the patent value only through these manifest

variables seems too ambitious. Rather, it is reasonable to think that the patent

value is jointly given by those variables that determine the a priori and the

a posteriori patent value. Using this approach, the influence of the a posteriori

relative to the a priori patent value may also be assessed. Hence, the indicators

that were initially related to the patent value are also associated with a fifth

underlying latent variable related to the potential usefulness of the patent. The

more useful a patent is, the more it is cited by others and the more important it

is to the company’s patenting strategy. We call this latent variable “technolog-

ical usefulness”. From a methodological standpoint, this means that the patent

value is not directly related to a block of observed variables. So, this construct

is regarded as a second-order latent variable that is influenced by all of the other

constructs in a second-order model. The proposed model is shown in Figure 2.

We explore the veracity of the assumptions with PLS path modelling.

Figure 2: Hierarchical component model of patent value; patent value is an
endogenous second-order latent variable; technological usefulness
is a reflective endogenous latent variable; knowledge stock, tech-
nological scope, and international scope are formative exogenous
constructs.
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5. PATENT DATA

Renewable energy patents include wind, solar, geothermal, wave / tide,

biomass, and waste energy. To select suitable patent data, we use the IPC classes

for renewable energies listed by Johnstone et al. [26]. The sample comprises a

total of 2,901 patents (sample 1), published in 1990–1991, 1995–1996, 1999–2000

and 2005–2006, and granted in the U.S. (source: Delphion database). We re-

trieved these data, and the indicators described above were computed. The num-

ber of claims was collected manually for each patent.

Table 2 provides descriptive statistics for patent indicators. The results

indicate that some variables are very heterogeneous and asymmetric, and they

also exhibit large variance. So, normality is not a good assumption. Positive

values of skewness indicate positive/right skew (notice how the medians are always

smaller than the means). Likewise, positive kurtosis indexes show distributions

that are sharper than the normal peak.

Table 2: Descriptive statistics of patent data.

Manifest
Mean

Standard
Minimum Mediam Maximum Skewness Kurtosis

Variable Deviation

Number of applicants 1.04 0.29 1 1 9 12.85 260.81

Number of inventors 2.21 1.58 1 2 14 1.76 4.23

Backward citations 15.36 18.97 0 11 327 5.54 50.79

Number of IPC 6.28 4.52 1 5 48 2.09 7.71

Number of claims 17.02 15.08 1 14 279 4.29 43.65

Priority JP 0.19 0.39 0 0 1 1.54 0.37

Priority DE 0.08 0.27 0 0 1 3.09 7.55

Forward citations 5.63 10.16 0 2 158 5.3 46.83

Family size 8.53 11.62 1 6 202 5.58 51.27

Dummy JP 0.44 0.49 0 0 1 0.23 −1.95

Dummy DE 0.32 0.46 0 0 1 0.75 −1.44

Dummy EP 0.43 0.49 0 0 1 0.25 −1.94

Additionally, the priority countries of these patents are U.S. (59%), Japan

(19%), Germany (9%), Great Britain (2%), France (1%) and so on. Patents be-

long to 1,581 applicants. Patents have been granted to companies (69%), individ-

uals (25%) and universities, research centers or governmental institutions (6%).

Due to the manner in which the sample was selected, the sample is homogenous

in terms of technological area and the country where the patents were granted.

However, the sample is heterogeneous in terms of the type of applicant or the

industry in which the companies are classified, and this heterogeneity could af-

fect the results. This also means that there are companies belonging to different

industries that are interested in developing renewable energy innovations. At any

rate, it is worth noting that at this stage, the patent value model is being tested

in general at the level of renewable energy technologies. We estimate the model

using the total sample (2,901 patents, sample 1). However, providing that time
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is an important factor that may affect the findings, three additional samples were

taken. Patent indicator matrices were selected in the following application years:

1990–1991 (N = 129, sample 2), 1995–1996 (N = 128, sample 3) and 1999–2000

(N = 536, sample 4). So, in order to analyze whether it is possible to find a pattern

in the parameter estimates, the proposed models were estimated with all data,

and with time-period data (notice that cases are different in each time-period).

6. RESULTS

The internal consistency of reflective outer models, technological usefulness

and patent value was assessed by using Cronbach’s alpha and composite reliabil-

ity. For the first-order, the Cronbach’s alpha coefficients for patent value are 0.68,

0.79, 0.76 and 0.68 for samples 1, 2, 3 and 4, respectively. Moreover, composite

reliability coefficients are 0.77, 0.85, 0.84 and 0.79 for each sample, respectively.

So, the patent value is unidimensional. AVE scores are 0.48, 0.56, 0.54 and 0.48

for patent value and for samples 1, 2, 3 and 4, respectively. So, the constructs

capture on average more than 50% of the variance in relation to the amount

of variance due to measurement error. In the second-order model, technological

usefulness has the same Cronbach’s alpha and composite reliability coefficients

that patent value has in the first-order model. Cronbach’s alpha coefficients for

the patent value are 0.59, 0.68, 0.7 and 0.58 for samples 1, 2, 3 and 4, respec-

tively. Composite reliability coefficients are 0.72, 0.76, 0.79 and 0.71 for each

sample, respectively. Therefore, both technological usefulness and patent value

are unidimensional. The technological usefulness captures on average a 54% of

the variance in relation to the amount of variance due to measurement error (see

the AVE scores for patent value in the first-order model). However, AVE scores

for patent value (second-order latent variable) are quite different, 0.24, 0.29, 0.3

and 0.22 for samples 1, 2, 3 and 4, respectively. So, this block of variables is uni-

dimensional, and the latent variable captures on average a 26% of the variance

in relation to the amount of variance due to measurement error. This low per-

centage may be because reflective and formative indicators have been repeated

for the second-order latent variable.

Table 3 reports the cross loadings for the reflective block of variables in the

second-order model of patent value in the three analyzed time-periods. Forward

citations, family size and dummy variables JP, DE and EP are slightly more cor-

related in the three time-periods, with the technological usefulness of the patents

rather than the patent value itself. In regards to other indicators, quite the op-

posite happens: the correlation between indicators and patent value are always

higher than the correlation between indicators and technological usefulness. This

is adequate even though patent value indicators are used as auxiliary variables

in order to estimate the model. It is worth noting that cross loadings of some
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variables are very similar over time, suggesting a pattern. This phenomenon is

interesting because it indicates that the number of inventors; the number of IPC

classes; dummy variables JP, DE and EP; forward citations and family size are

strongly and constantly correlated with the patent value and its technological

usefulness throughout time. This empirical evidence supports the relationships

between latent and manifest variables as proposed in the models.

Table 3: Cross loadings between indicators for reflective block of variables.

Manifest
1990–1991 1995–1996 1999–2000

Variable Patent Technological Patent Technological Patent Technological
Value Usefulness Value Usefulness Value Usefulness

Number of inventors 0.572 0.279 0.611 0.424 0.492 0.135

Backward citations 0.064 0.129 0.092 0.067 0.141 0.091

Number of IPC 0.587 0.387 0.465 0.357 0.495 0.228

Number of claims −0.074 −0.027 0.403 0.257 0.131 0.048

Dummy priority JP 0.527 0.258 0.391 0.253 0.414 0.162

Dummy priority DE 0.205 0.127 0.103 0.127 0.154 0.136

Forward citations 0.229 0.292 0.295 0.29 0.085 0.085

Family size 0.775 0.894 0.741 0.825 0.714 0.859

Dummy JP 0.816 0.836 0.818 0.833 0.727 0.774

Dummy DE 0.692 0.775 0.754 0.808 0.559 0.681

Dummy EP 0.666 0.818 0.739 0.799 0.658 0.809

Tables 4 and 5 present the standardized loadings and weights by PLS es-

timation and t-values by bootstrapping for the first- and second-order models,

respectively. Loadings and weights reveal the strength of the relationship be-

tween manifest and latent variables. The number of inventors, the number of

IPC classes and the dummy priority variables JP and DE are strongly and signif-

icantly related to their constructs in all cases in the first- and in the second-order

models. Some authors [5, 7, 44] have studied the performance of the PLS path

modelling algorithm using Monte Carlo simulations. Among others, the factors

analyzed have been the sample size and the number of manifest variables per la-

tent variable. In general, researchers agree and recommend having at least three

indicators per construct. However, only Chin et al. [8] considered in their study

the case of two observed variables per latent variables in their study of interaction

effects with reflective outer models. However, as a result of their simulation study,

Vilares et al. [44, p. 13] reported that “PLS always produces good estimates for

perceived value loadings [a latent variable with two indicators, the author]. This

is an interesting result, since PLS is presented as being ’consistent at large’ ...”.

In the formative outer models analyzed here, there are few indicators available

per construct. However, the magnitudes of the weights are large enough to infer

that there may be a formative relationship between indicators and constructs.

Additionally, these results suggest that the patent value and the technological

usefulness are evident since the patent is applied. Therefore, the value can be

assessed at an early stage. The number of claims shows a weaker association with

the technological scope than the number of IPC classes. Perhaps this indicator is

more related to the “quality” of the invention, not in the sense of how inventions
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have an impact on different technological fields (scope) but rather on how im-

portant this impact is in a given technological field. Regarding the international

scope, this variable seems to be formed by its indicators. The manifest variables

are statistically significant in all cases in the two analyzed models. So, this could

mean that in the renewable energy field, besides protecting the invention in the

U.S., it is important as a value determinant for early protection of the inventions

which originate in the other two largest producers of these technologies: Japan

and Germany.

Table 4: Standardized loadings and weights for outer models for the
first-order model of the patent value, t-values in parenthesis,
* at the 0.01 significance level, ** at the 0.05 significance level.

Construct Indicator Sample 1 1990–1991 1995–1996 1999–2000

Knowledge
Backward citations

0.541* 0.420* 0.128 0.499*
(1.860) (1.688) (0.791) (1.670)

stock
Number of inventors

0.807** 0.920** 0.988** 0.872**
(3.054) (4.937) (9.086) (2.794)

Technological
Number of IPC

0.966** 0.997** 0.803** 0.985**
(5.935) (13.746) (5.455) (4.502)

scope
Number of claims

0.176 −0.058 0.529 0.103**
(0.756) (0.364) (1.432) (0.354)

International
Priority JP

0.802** 0.909** 0.904** 0.847**
(3.662) (5.492) (7.844) (3.630)

scope
Priority DE

0.725** 0.512** 0.502** 0.660**
(2.814) (2.043) (2.479) (2.422)

Patent

Forward citations
−0.108 0.274** 0.299* 0.096
(0.940) (2.041) (1.693) (0.524)

Family size
0.840** 0.893** 0.813** 0.845**

(9.464) (36.017) (15.126) (5.297)

Dummy JP
0.777** 0.843** 0.841** 0.802**

value (6.593) (19.572) (21.277) (4.549)

Dummy DE
0.690** 0.777** 0.811** 0.671**

(5.530) (11.126) (18.389) (4.087)

Dummy EP
0.780** 0.808** 0.794** 0.786**

(7.921) (11.975) (12.513) (5.272)

On the other hand, patent value and technological usefulness are always

strongly and significantly reflected in their explanatory variables. Forward cita-

tions, patent family and dummy variables constantly reflect patent value in the

first-order model and technological usefulness in the second-order model. The

forward citations are not significant in the models evaluated in 1999–2000. But,

this may be due to the fact that in recent years patents have been cited less, and

the variable is less informative than in previous years. Moreover, loadings for the

relationship between forward citations and technological usefulness are smaller



284 Alba Martinez-Ruiz and Tomas Aluja-Banet

Table 5: Standardized loadings and weights for outer models for the
second-order model of the patent value, t-values in parenthesis,
* at the 0.01 significance level, ** at the 0.05 significance level.

Construct Indicator Sample 1 1990–1991 1995–1996 1999–2000

Knowledge
Backward citations

0.439 0.248 0.122 0.357
(1.619) (1.103) (0.991) (1.114)

stock
Number of inventors

0.871** 0.976** 0.989** 0.938**
(3.828) (8.060) (24.728) (3.214)

Technological
Number of IPC

0.952** 0.995** 0.761** 0.974**
(6.544) (18.078) (4.633) (4.140)

scope
Number of claims

0.220 −0.078 0.584** 0.150
(1.028) (0.546) (3.139) (0.516)

International
Priority JP

0.867** 0.931** 0.947** 0.915**
(4.090) (10.601) (7.863) (4.096)

scope
Priority DE

0.639** 0.465** 0.401* 0.548*
(2.422) (2.709) (1.701) (1.943)

Technological

Forward citations
0.762** 0.836** 0.834** 0.774**

(6.833) (22.739) (24.167) (5.177)

Family size
0.795** 0.818** 0.799** 0.809**

(10.667) (11.800) (18.126) (11.499)

Dummy JP
0.705** 0.775** 0.809** 0.681**

usefulness (7.983) (11.891) (18.318) (6.256)

Dummy DE
−0.052 0.292** 0.290** 0.085
(0.488) (2.280) (2.190) (0.616)

Dummy EP
0.853** 0.894** 0.825** 0.859**

(13.577) (36.226) (21.104) (11.526)

Patent

Backward citations
0.232 0.064 0.092 0.141

(1.511) (0.564) (1.005) (0.735)

Number of inventors
0.476** 0.572** 0.611** 0.492**

(3.477) (5.964) (8.825) (3.016)

Number of IPC
0.549** 0.587** 0.465** 0.495**

(5.909) (7.837) (4.820) (3.420)

Number of claims
0.185 −0.074 0.403** 0.131

(1.296) (0.748) (3.193) (0.810)

Priority JP
0.387** 0.527** 0.391** 0.414**

(2.723) (5.466) (3.604) (2.461)

Priority DE
0.202** 0.205** 0.103 0.154

value (5.318) (2.262) (1.269) (1.191)

Forward citations
−0.085 0.229* 0.295** 0.085
(0.861) (1.944) (2.453) (0.659)

Family size
0.730** 0.775** 0.741** 0.714**

(8.250) (15.351) (11.612) (5.952)

Dummy JP
0.711** 0.816** 0.818** 0.727**

(6.083) (20.264) (18.295) (4.349)

Dummy DE
0.586** 0.692** 0.754** 0.559**

(5.318) (8.318) (11.977) (4.349)

Dummy EP
0.672** 0.666** 0.739** 0.658**

(7.196) (6.650) (13.752) (6.341)
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than, for instance, loadings for the relationship between family size and techno-

logical usefulness. These results may mean that the longitudinal nature of this

variable — citations that are received throughout the time — is an important

factor that should be taken into account when considering this indicator in the

models. The quality of each outer model is measured through the communality

index, i.e. the proportion of variance in the measurement variables accounted

for by the latent variable. For the second-order model, communality indexes for

patent value are 0.29, 0.30 and 0.22 for the 1990–1991, 1995–1996 and 1999–2000

models, respectively. Therefore, indicators have approximately 30% of the vari-

ance in common with its latent variable. As seen above, this low percentage may

be because reflective and formative indicators have been repeated for the second-

order latent variable. The communality indexes for technological usefulness are

0.57, 0.55 and 0.49 for each time-period, also giving evidence of an important

percentage of shared variance.

Tables 6 and 7 show the findings for the inner relationships (standardized

beta coefficients, significance levels and coefficients of determination) for the first-

and second-order models respectively. Path coefficient of knowledge stock, tech-

nological scope and international scope as related to patent value are significant

at 0.01 levels in almost all cases. Therefore, the patent value may be formed by

constructs estimated from reliable patent indicators. The first-order model allows

us to obtain an estimate of the patent value “in time equal to zero”. As showed

in the second-order model, the knowledge stock, the technological scope and the

international scope are also related to technological usefulness. Moreover, tech-

nological usefulness and patent value are significantly related, indicating how the

former is an important variable in the prediction of the latter. The second-order

model allows us to obtain the patent value as the sum of the value in time equal

to zero, and the value given by others, that is the technological usefulness.

Table 6: Standardized path coefficients for the first-order model of patent
value, t-values in parenthesis, * at the 0.01 significance level,
** at the 0.05 significance level.

Latent Variable Sample 1 1990–1991 1995–1996 1999–2000

Knowledge stock to
Patent value

0.115 0.202* 0.306** 0.091
(1.248) (1.987) (2.263) (1.040)

Technological scope to
Patent value

0.238** 0.314** 0.335** 0.200**
(2.892) (4.221) (3.084) (2.278)

International scope to
Patent value

0.243** 0.154* 0.251** 0.220**
(3.199) (1.998) (3.044) (2.420)

R2 of patent value 0.161 0.234 0.35 0.114
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Table 7: Standardized path coefficients for the second-order model of
patent value, t-values in parenthesis, * at the 0.01 significance level,
** at the 0.05 significance level.

Latent Variable Sample 1 1990–1991 1995–1996 1999–2000

Knowledge stock to
Patent value

0.280** 0.226** 0.229** 0.293**
(9.979) (9.510) (12.349) (8.281)

Technological scope to
Patent value

0.278** 0.227** 0.226** 0.271**
(8.811) (10.737) (8.870) (7.620)

International scope to
Patent value

0.212** 0.232** 0.166** 0.236**
(5.505) (11.314) (7.659) (5.160)

Knowledge stock to
Technological usefulness

0.104 0.180* 0.299** 0.072
(1.162) (1.752) (3.771) (0.783)

Technological scope to
Technological usefulness

0.237** 0.315** 0.334** 0.207**
(2.686) (3.290) (3.387) (2.133)

International scope to
Technological usefulness

0.225** 0.142 0.236** 0.200**
(2.486) (1.376) (3.042) (2.252)

Technological usefulness
to Patent value

0.683** 0.668** 0.697** 0.698**
(14.511) (16.951) (20.558) (11.207)

R2 of patent value 0.998 0.998 0.999 0.997

R2 of usefulness 0.148 0.219 0.338 0.103

The determination coefficient for patent value is 0.9 in the second-order

models, i.e. the model fit the data in an acceptable way. This result is not surpris-

ing; it confirms the aforementioned findings and indicates how the data is better

explained by second-order models as compared with first-order models. However,

we must consider this result carefully, because the patent value is estimated con-

sidering all the measurement variables of the models. Another explanation for

this is that in the second-order models, the contribution of the recognized value of

patents (technological usefulness) is considered, and this would help fit the data

better. Unlike patent value, technological usefulness has a moderate coefficient of

determination. Perhaps other indicators should help to better explain the model,

or again the longitudinal nature of the forward citations is an important factor

to be considered. However, we think that the results are acceptable, taking into

account the literature review and the goodness of fit obtained using other models

in the analysis of patent data. It is worth noting that the structural relationships

are significant.
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7. FINAL REMARKS

This research relates manifest variables that come from information con-

tained in the patent document with latent variables into a single replicable model.

The magnitude of this relationship and the importance of each construct are

known, including the influence of knowledge stock, the technological and interna-

tional scope in the value of the technology. In the first-order model, the variables

that most affect the patent value are the technological and the international scope.

In the second-order model, the technological usefulness is also important.

A distinction between two patent values can be made: an a priori and in-

trinsic value, which the patent has at the moment of its application (the potential

value of the patent); and an a posteriori value that the patent acquires over time

through the actions of a company or others (the value that is recognized). The po-

tential value depends on the characteristics of the patent at the time of application

-such as the patenting strategy of a company, the technological applicability of the

patents in different technological fields and the base of knowledge that is neces-

sary for the creation of a new invention. As time passes, the patent potentiality is

recognized and reflected in the number of times that it is cited and in the number

of countries where it is protected. This recognition is a reflection of its technolog-

ical usefulness. Even though companies can assess the importance or impact of

their inventions, these results and the procedure for obtaining them are becom-

ing a tool for improving the strategy of developing new products and inventions,

improving intellectual property policy and for comparing technologies with other

competitors. The stability of results over time augur that this may be possible.

In order to assess companies’ patent portfolios using a model that can be

replicated, a follow-up to this research will study patent value evolution as well as

the market-patent relationship and its implications. Furthermore, there are other

indicators related to patent value that have been previously studied, but they

cannot be computed from the information contained in the patent documents,

such as the number of renewals and the number of opposition cases. Nevertheless,

these variables could be related to another latent variable in the model, or be

a reflection of the technological usefulness of an invention. Finally, PLS path

modelling has proven to be a suitable approach for analyzing patent data.
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