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Abstract:

• The high-order statistics (moments and cumulants of order higher than two) have
been widely applied in several fields, specially in problems where it is conjectured
a lack of Gaussianity and/or non-linearity. Since the INteger-valued AutoRegressive,
INAR, processes are non-Gaussian, the high-order statistics can provide additional
information that allows a better characterization of these processes. Thus, an estima-
tion method for the parameters of an INAR process, based on Least Squares for the
third-order moments is proposed. The results of a Monte Carlo study to investigate
the performance of the estimator are presented and the method is applied to a set of
real data.
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1. INTRODUCTION

In the recent past, the high-order statistics (HOS) have been widely applied

in several fields. By HOS it is meant the moments and cumulants of order higher

than two, in the time domain, and the corresponding multidimensional Fourier

transform (polyspectrum), in the frequency domain. In this work, the time do-

main approach is considered. The HOS comprise information about stochastic

processes such as the degree of nonlinearity and deviations from Gaussianity that

is not contained in the second-order statistics.

Let {Xt} be a k-th-order stationary stochastic process. The k-th-order

joint moment of Xt, Xt+s1
, ..., Xt+sk−1

, for s1, ..., sk−1 ∈ R, is a function of k −1

variables defined by

µX(s1, ..., sk−1) = E[Xt Xt+s1
... Xt+sk−1

] ,

with µX = E[Xt]. For a stationary stochastic process, the moments have the

following symmetry properties:

µX(m) = µX(−m) , m > 0 ,

µX(m, n) = µX(n, m) = µX(−n, m − n) = µX(n − m,−m) , m, n > 0 .

Then, it follows that the third-order moments over the entire plane may be ob-

tained from the values of the third-order moments over the infinite wedge bounded

by the straight lines m = 0 and m = n, m, n > 0.

Recently, the integer-valued autoregressive process has been proposed in the

literature to model time series of counts. The p-th-order integer-valued autoregres-

sive, INAR(p), process is defined as a discrete time non-negative integer-valued

stochastic process, {Xt}, that satisfies the following equation (Latour, 1998):

(1.1) Xt = α1 ◦ Xt−1 + α2 ◦ Xt−2 + · · · + αp ◦ Xt−p + et ,

where

1. {et}, designated the innovation process, is a sequence of independent

and identically distributed (i.i.d.) non-negative integer-valued random

variables with E[et] = µe, Var[et] = σ2
e and E[e3

t ] = γe;

2. the symbol ◦ represents the thinning operation (Steutel and Van Harn,

1979; Gauthier and Latour, 1994), defined by

αi ◦ Xt−i =

Xt−i
∑

j=1

Yi,j , for i = 1, ..., p ,

where {Yi,j}, designated the counting series, is a set of i.i.d. non-negative

integer-valued random variables such that E[Yi,j ]= αi, Var[Yi,j ]= σ2
i and

E[Y 3
i,j ] = γi. All the counting series are assumed independent of {et};
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3. 0 ≤ αi < 1, i = 1, ..., p −1, and 0 < αp < 1. Note that the stationarity

condition for the INAR(p) process is that
∑p

k=1 αk < 1.

A special case is the Poisson INAR process with binomial thinning operation,

where {et} has a Poisson distribution with parameter λ and the counting series,

{Yi,j}, are a set of Bernoulli randomvariables with P (Yi,j =1)=1−P (Yi,j = 0)= αi.

Since the INAR models are non-Gaussian, the HOS can provide addi-

tional information in the characterization of these processes. Thus, an estimation

method for the parameters of an INAR model that uses HOS is proposed in this

work. This approach applies the Least Squares estimation method to minimize

the errors between the third-order moment of the observations and of the fitted

model.

This work is organized as follows: in Section 2 the third-order characteriza-

tion of INAR(p) models is provided and the proposed Least Squares Estimation

method based on HOS (LS HOS) is described. In Section 3 the results of a sim-

ulation study to assess the small sample properties of the proposed estimator are

given and the method is applied to a set of observations concerning the number

of plants within the industrial sector in Section 4. Finally, some remarks are

presented in Section 5.

2. PARAMETER ESTIMATION BASED ON HOS

2.1. Third-order characterization of INAR(p) models

The third-order characterization, in terms of moments and cumulants, of

INAR models has been obtained by Silva and Oliveira (2004, 2005) and Silva

(2005). In particular, the third-order moments of an INAR(p) process, defined

by (1.1), satisfy a set of Yule–Walker type equations similar to those satisfied by

the bilinear process, that can be written as:

µX(0, 0) =

p
∑

i=1

p
∑

j=1

p
∑

k=1

αiαj αk µX(i− j, i−k)

+ 3

p
∑

i=1

p
∑

j=1

αj σi
2µX(i− j) + 3µX(σ2

e +µe
2)

p
∑

i=1

αi

(2.1)

+ 3µe

p
∑

i=1

p
∑

j=1

αiαj µX(i− j) + 3µX µe

p
∑

i=1

σi
2

+ µX

p
∑

i=1

(γi − 3 αi σi
2− α3

i ) + γe ,
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µX(0, k) =

p
∑

i=1

αi µX(0, k− i) + µe µX(0) , k > 0 ,(2.2)

µX(k, k) =

p
∑

i=1

p
∑

j=1

αiαj µX(k− i, k− j) +

p
∑

i=1

σi
2µX(k− i)

(2.3)
+ 2µe µX(k) − µX(µe

2−σe
2) , k > 0 ,

µX(k, m) =

p
∑

i=1

αi µX(k, m− i) + µe µX(k) , m > k > 0 ,(2.4)

where

(2.5) µX(0) =

p
∑

i=1

αi µX(i) + µe µX + Vp ,

is the second-order moment of {Xt}, with

Vp = σe
2 + µX

p
∑

i=1

σi
2 ,

which represents the variance of the one-step-ahead prediction error (Silva, 2005).

These equations indicate that the INAR processes have a non-linear struc-

ture, therefore the first- and second-order moments are not sufficient to describe

the dependence structure of the process. In the next section, is described an esti-

mation method for the parameters of an INAR(p) process that uses the additional

information provided by the HOS.

2.2. Least squares estimation based on HOS

Let {x1, x2, ..., xn} be a realization of a non-negative integer-valued station-

ary stochastic process with third-order moments µ(0, k), k > 0. The approxi-

mating model considered is an INAR(p) process (order known) with parameters

α1, ..., αp, µe, σ2
e and third-order moments µX(0, k), k > 0, satisfying (2.2), which

can be represented in the following matrix form

(2.6) µ3,X = M3,X α + µe µX(0)1p ,

where µ3,X is defined as

µ3,X =
[

µX(0, 1) · · · µX(0, p)
]T

,
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M3,X is the p×p non-symmetric Toeplitz matrix of the third-order moments of

the INAR(p) process

M3,X =















µX(0, 0) µX(1, 1) · · · µX(p−1, p−1)

µX(0, 1) µX(0, 0) · · · µX(p−2, p−2)

...
...

. . .
...

µX(0, p − 1) µX(0, p − 2) · · · µX(0, 0)















,

with µX(·, ·) given in (2.1) to (2.4), α = [ α1 · · · αp ]T is the vector of coefficients,

µX(0) is the second-order moment of the INAR(p) process given in (2.5) and 1p

is a p×1 vector of ones.

Defining

H =
[

M3,X µX(0)1p

]

and θ =
[

α1 · · · αp µe

]T
,

equation (2.6) can be rewritten as

µ3,X = Hθ ,

suggesting that θ may be estimated by least squares, i.e., minimizing the squared

error between the third-order moments of the fitted INAR(p) model, µ3,X , and

the third-order moments of the data,

µ3 =
[

µ(0, 1) · · · µ(0, p)
]T

.

Thus, θ̂, the Least Squares estimator of θ based on HOS (LS HOS) satisfies

θ̂ = min
θ

{

L∗(θ)
}

where

L∗(θ) = (µ3 − Hθ)T (µ3 − Hθ) .

In practice, the estimator is calculated by substituting the moments in µ3

and H by their sample counterparts, using the usual estimators of the moments

µ̂X(0) =
1

N

N
∑

t=1

Xt
2, µ̂X(0, k) =

1

N

N−k
∑

t=1

Xt
2Xt+k , µ̂X(k, k) =

1

N

N−k
∑

t=1

Xt Xt+k
2 .

Thus,

θ̂ = min
θ

{

L̂∗(θ)
}

= min
θ

{

(µ̂3− Ĥθ)T (µ̂3− Ĥθ)
}

.

Note that an estimator for σ2
e can be obtained by

σ̂2
e = V̂p − X

p
∑

i=1

σ̂2
i ,
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where X is the sample mean of the observations, σ̂2
i is an estimator of the counting

series variance for the i -th thinning operation, αi ◦ Xt−i, i = 1, ..., p, and V̂p =

R̂(0)−
∑p

i=1 α̂i R̂(i), with R̂(i) = 1
N

∑N−i
t=1 (Xt−X) (Xt+i−X), representing the

sample autocovariance function. The estimation of σ̂2
i depends on the distribution

of the counting series, for instance, in the case of the binomial thinning operation

(when the counting series are Bernoulli distributed), σ̂2
i = α̂i(1− α̂i), for i =

1, ..., p.

The asymptotic distribution of the LS HOS estimator depends on the sixth-

order moments and cumulants of the processes, and therefore is too complex

and not useful in practice. So, the finite sample properties of the estimator are

investigated by a simulation study, which results are presented in the next section.

3. MONTE CARLO RESULTS

The aim of the simulation study presented in this section is twofold: to

examine the small sample properties of the estimator previously described and

compare its performance with other estimation methods for the parameters of an

INAR process.

Thus, 1000 realizations of Poisson INAR(p) processes (et ∼ Po(λ)) with

binomial thinning operation are generated, for p = 0, ..., 3. The sample size, N ,

and parameters values considered are:

• N = 50, 200, 500 and 1000 observations,

• λ ∈ {1.0, 3.0},

• for p = 1, α1 ∈ {0.1, 0.4, 0.6, 0.9},

• for p = 2, (α1, α2) ∈
{

(0.1, 0.6), (0.6, 0.1), (0.3, 0.4), (0.4, 0.3), (0.1, 0.1),

(0.4, 0.4)
}

,

• for p = 3, (α1, α2, α3) ∈
{

(0.1, 0.1, 0.4), (0.1, 0.4, 0.1), (0.4, 0.1, 0.1),

(0.3, 0.3, 0.3)
}

.

For each realization, the estimation methods used to obtain θ̂=[α̂1,...,α̂p,µ̂e]
T

are Yule–Walker estimation (YW), Conditional Least Squares estimation (CLS),

Whittle estimation (WHT) and unconstrained and constrained Least Squares

estimation based on HOS (LS HOS and LS HOS C). For a detailed description

of the YW, CLS and WHT estimation methods see Silva (2005). The constraints

considered are 0 < αi < 1, i =1, ..., p,
∑p

i=1αi < 1 and σe
2 > 0. The initial values

of the iterative methods are the YW estimates.

The unconstrained minimizations necessary in the methods CLS, WHT and

LS HOS are performed through the MATLAB function fminunc, which finds a

minimum of a scalar unconstrained multivariable function by using the BFGS
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Quasi-Newton method with a mixed quadratic and cubic line search procedure

(MathWorks (2004)). The constrained minimization of the method is accom-

plished by the MATLAB function fmincon, which finds a minimum of a scalar

constrained nonlinear multivariable function by using a Sequential Quadratic

Programming method (MathWorks (2004)).

For each case, the following sample statistical measures are evaluated:

• mean bias: Bias(θ̂i) =
1

N

N
∑

j=1

(θ̂
(j)
i − θi) ,

• variance: Var(θ̂i) =
1

N−1

N
∑

j=1

(θ̂
(j)
i − θi)

2 ,

• mean square error: MSE(θ̂i) =
1

N−1

N
∑

j=1

(θ̂
(j)
i − θi)

2 ,

where θ̂
(j)
i represents the parameters estimates, α̂1, ..., α̂p, µ̂e, in the j-th repeti-

tion, for j =1, ..., N =1000, and θi = 1
N

∑N
j=1 θ̂

(j)
i is its sample mean.

With respect to the small sample properties of the LS HOS and LS HOS C

estimators, the following conclusions can be drawn from the analysis of all the

simulations. In general, the sample bias, variance and mean square error decrease

as the sample size increases, indicating that the distribution of the estimators is

consistent and symmetric. However, for a small sample size there is evidence of

departure from symmetry in the marginal distributions, specially for values of

the parameters near the non-stationary region.

Table 1 presents numerical results for two INAR(1) processes, with parame-

ter values θ = (α1, λ) = (0.1, 3.0) and θ = (0.6, 3.0), respectively, and two differ-

ent sample sizes: N = 50 and 500. As expected, the results for the unconstrained

and constrained estimations only differ when the value of the coefficient is near

of the non-admissible region, specially when it presents a small value (α1 = 0.1).

Figure 1 presents the boxplots of the sample bias for the parameter estimates

of an INAR(2) processes, with parameter values θ = (α1, α2, λ) = (0.6, 0.1, 1.0),

obtained by LS HOS and LS HOS C, for the four different sample sizes. As can

be seen, the boxplots indicate that the marginal distributions of the estimators

are, generally, symmetric.

When the several estimation methods are compared it is found that the

LS HOS provides similar results, in terms of the smallest values of sample bias,

variance and mean square error, to the other methods. It is also verified that,

in general, the proportion of non-admissible estimates of the methods is less

for LS HOS, followed by WHT and CLS. The results show that, in general, the

sample mean bias of α̂i is negative, indicating that αi is underestimated, while λ is

overestimated, since the sample mean bias of the parameter estimate is positive.
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Table 1: Sample statistical measures for the parameters estimates
of Poisson INAR(1) processes.

Measure N θ = (α1, λ)
θ̂1 = α̂1 θ̂2 = λ̂

LS HOS LS HOS C LS HOS LS HOS C

Bias(θ̂i)

50
(0.1, 3.0) −0.0411 −0.0041 0.0949 −0.0897
(0.6, 3.0) −0.0893 −0.0826 0.5208 0.4611

500
(0.1, 3.0) −0.0019 −0.0003 0.0029 −0.0050
(0.6, 3.0) −0.0094 −0.0099 0.0532 0.0584

Var(θ̂i)

50
(0.1, 3.0) 0.0190 0.0099 0.2623 0.1566
(0.6, 3.0) 0.0158 0.0149 0.9229 0.8841

500
(0.1, 3.0) 0.0021 0.0020 0.0286 0.0270
(0.6, 3.0) 0.0014 0.0014 0.0787 0.0772

MSE(θ̂i)

50
(0.1, 3.0) 0.0206 0.0100 0.2711 0.1645
(0.6, 3.0) 0.0238 0.0217 1.1933 1.0958

500
(0.1, 3.0) 0.0021 0.0020 0.0286 0.0270
(0.6, 3.0) 0.0015 0.0015 0.0815 0.0805

(a) (b) (a) (b) (a) (b) (a) (b)

−0.5

0

0.5

B
ia

s
(α

1
)

(a) (b) (a) (b) (a) (b) (a) (b)

−0.5

0

0.5

B
ia

s
(α

2
)

(a) (b) (a) (b) (a) (b) (a) (b)

−2

0

2

B
ia

s
(µ

e
)

N=50 N=200 N=500 N=1000

Figure 1: Boxplots of the sample bias for the estimates obtained by (a): LS HOS
and (b): LS HOS C, in 1000 realizations of the Poisson INAR(2) model:
Xt = 0.6 ◦ Xt−1 + 0.1 ◦ Xt−2 + et, where et ∼ Po(1).
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In order to illustrate some of these conclusions, Figure 2 shows the boxplots of

the sample bias for the estimates obtained from 50 and 200 observations of the

INAR(1) process with parameter values θ = (α1, λ) = (0.9, 1.0). Note that the

value of α1 is near the non-stationary region, however, even for N = 50 observa-

tions the LS HOS estimates presents the best results.
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Figure 2: Boxplots of the sample bias for the estimates obtained in 1000 reali-
zations of 50 and 200 observations of the Poisson INAR(1) model:
Xt = 0.9 ◦ Xt−1 + et, where et ∼ Po(1).

4. APPLICATION TO REAL DATA

In this section, the proposed estimation method is applied to a real dataset

concerning the number of Swedish mechanical paper and pulp mills, from 1921 to

1981 (see Figure 3). This dataset was used by Brännäs (1995) and Brännäs and

Hellström (2001), and these authors fitted an INAR(1) process to this dataset

using some explanatory variables (the industrial gross profit margin and GNP).

Here, an INAR(1) process, with binomial thinning operation, where the inno-

vations are i.i.d. random variables with mean µe and variance σ2
e is considered.

Since the mean of the data is 20.40 and its variance is 155.16, a Poisson innovation

process is not assumed but then the method does not require that or any other

assumption on the distribution of the innovations.
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Figure 3: The number of Swedish mechanical paper and pulp mills, from
1921 to 1981 (Brännäs (1995) and Brännäs and Hellström (2001)),
and the fitted values considering the LS HOS and CLS estimates.

Table 2 presents the parameter estimates obtained by CLS and LS HOS

estimation methods. The fit of both models, based on LS HOS and CLS esti-

mates, are also shown in Figure 3. As can be observed, the two fits are very

similar and similar to the dataset. The mean square errors (MSE) between the

observations and the fitted values are also exhibited in Table 2. It can be seen

that the MSE is slightly smaller for the LS HOS fit than for CLS fit.

Table 2: The parameter estimates of the number of Swedish
mechanical paper and pulp mills, from 1921 to 1981.

Method α̂ µ̂e σ̂2

e
MSE µ̂x σ̂2

x

CLS 0.9591 0.2017 15.2268 8.5494 4.9315 192.2764
LS HOS 0.9269 1.3635 19.2253 7.4465 18.6525 145.4513

The last two columns of the Table 2 present the mean and variance of the

estimated models:

µ̂x =
µ̂e

1− α̂1
and σ̂2

x =
µ̂e α̂1 + σ̂2

e

1− α̂2
1

.

It is noticeable that the model estimated by LS HOS presents mean and variance

closer to the sample values.
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The goodness-of-fit of both fitted models is investigated by the residuals.

The analysis of the sample autocorrelation and sample partial autocorrelation

functions, as well as the usual tests of randomness, do not reject the hypothesis

of uncorrelated random variables for the residual series from both fitted models.

5. FINAL REMARKS

The principal advantage of HOS is the capability to detect and characterize

the deviations from Gaussianity and non-linearity of the processes. Thus in this

work a new estimation method for the parameters of INAR processes based on

HOS is proposed. This method uses the Least Squares estimation to minimize

the errors between the third-order moment of the observations and of the fitted

model. Note that this estimation method does not assume any particular discrete

distribution to the counting series and to the innovation process. A Monte Carlo

study indicates that this estimation method provides good results in small sam-

ples, in terms of sample bias, variance and mean square error. Moreover, when

used in the context of a non-Poisson real dataset the LS HOS estimates provide

a model with mean, variance and autocorrelations closer to the sample values.
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