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Abstract:

• This paper introduces a substantive problem, namely the link between fuel poverty
and excess winter morbidity amongst older people, and shows how the GAMLSS
suite of programs (www.gamlss.com) can be used to provide a very flexible method of
modelling both the number of hospital admissions and the corresponding lengths of
stay in hospital. The approach is closely related to the models that have been used
to model the number of insurance claims, and their cost (see Heller et al. (2007)).
We fit the Beta Binomial distribution and a variety of continuous distributions.
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1. INTRODUCTION

Fuel poverty is defined as “the inability to afford adequate warmth in the

home” and is related to poor energy efficiency of homes as well as householders’

incomes. In the U.K. a household is defined as suffering from fuel poverty if more

than 10% of their income is spent on fuel. In 2008, 4.5 millions people were defined

as “fuel poor”. It is projected that 5.8 million will be “fuel poor” in 2009. Older

households are the group most vulnerable to fuel poverty, and are also particularly

susceptible to cold-related health effects. The significant numbers recognised as

fuel poor have as yet unrecognised implications for costs to public services.

Conventionally, research has referred to effects of cold homes in terms of

excess winter deaths (e.g. Wilkinson et al. (2001)). These deaths are known to

be associated with outdoor winter temperatures, but direct evidence of links to

low indoor temperatures is limited. Mortality statistics disguise the full extent

of potentially long-term chronic conditions exacerbated by cold. Hence we have

concentrated on measuring excess winter morbidity (illness) in relation to fuel

poverty, rather than mortality, because of the consequent implications for winter

pressures on health services.

We have previously demonstrated links between fuel poverty risk and excess

winter hospital episodes among older people in Newham, using this excess as a

measure of associated morbidity (e.g. Rudge and Gilchrist (2007)). In this paper

we refer to that work and describe the means by which this measure could be

developed as a costing element for a health impact assessment tool. The results

could contribute to the debate regarding the case for increased energy efficiency

investment on public health grounds, in addition to the accepted environmental

grounds. Our methodology is closely related to the models that have been used

for insurance claims. The two stage aspect of our modelling, firstly estimating the

probability of being an emergency respiratory admission, followed by estimating

the probability of dying after admission, gives a model for the effect of fuel poverty

on this form of mortality.

2. SUBSTANTIVE BACKGROUND TO FUEL POVERTY AND

POOR HEALTH

The U.K. Department of Health (2001) recognises that fuel poverty affects

health inequalities, particularly among older people. The potential benefits of

energy efficiency investment for older fuel poor households involve improvements

in comfort, health and well being. Identifying cost savings associated with such

benefits is complicated by the many confounding factors involved in showing

direct causal links between housing characteristics and health.
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There are no current precise methods of calculating the cost to the health

services of cold-related disease arising from poor housing. The newly prevail-

ing emphasis on dealing with climate change and carbon emissions may deflect

attention from the needs of the fuel poor, who cannot afford to use energy ex-

travagantly. Energy-saving targets tend to skew energy-efficiency investment in

favour of fuel-rich households. However, public health implications demand that

such investment should also be health-driven.

3. DATA AND STATISTICAL METHODOLOGY

The main source of data here considered is our existing database for

Newham hospital admissions over 1993-96. These data are anonymised with

respect to individuals, having been provided at enumeration district (ED) level.

Our previous work examined the excess morbidity for different ages and

genders in terms of a range of explanatory variables. We now propose extend-

ing this work by analysing daily episodes by length of stay and investigating the

associated costs for such episodes. Our proposed methodology is based upon

the modelling of the propensity for an individual to be an emergency respiratory

hospital admission, together with the duration of stay in hospital for such admis-

sions. This approach is similar to that used for insurance claims (see e.g. Heller,

et al. (2007)) in which the probability of a claim and the size of a claim are both

modelled. Having modelled the probability of being a hospital respiratory admis-

sion and the length of the consequential stays in hospital, we could use data on

the average cost of such hospital admissions, adjusted for the duration of stay, to

give a model for the cost of the Newham admissions. The effect of FPR will be

determined by considering the excess cost in winter over that in summer.

Our methodology utilises the R-based GAMLSS package (see Rigby and

Stasinopoulos (2005) and www.gamlss.com). GAMLSS is a suite of programs writ-

ten in R (see www.r-project.org). We consider the probability of being admitted

as following a Beta Binomial distribution, this being a more flexible extension

of the more traditional Binomial distribution. Our “default” approach is to use

logistic regression. We also noted that some of the elderly people die after admis-

sion to hospital. We model this probability of death also using the Beta Binomial.

The corresponding length of episode is modelled from a selection of continuous

distributions.

The GAMLSS package allow us easily to find the the maximum likelihood

estimates of the several parameters of a wide range of distributions and to in-

corporate random effects and smoothing terms. We can make use of the many

facilities of R, such as automatic model selection, and we can easily access the

wide range of diagnostics available in R. Up to 4-distributional parameters can be

modelled in terms of the risk factors. The potential risk factors are shown in the
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accompanying Table 1. We utilise nominal factors ED, gender and age to allow

differing parameters to be fitted for the differing numbers of “at risk” males and

females, of differing ages, in each enumeration district. The definition of the fuel

poverty index FPR is discussed further below. Potential confounding factors are

considered, using 1991 Census data, including pensioners with limiting long term

illness and ethnic composition. Daily weather data were obtained for 1993–1997.

Table 1: Explanatory variables and factors. ∗∗ SAP35 is energy rating, or
measure of energy efficiency, on a scale of 0–100, where 0 is poorest.
# denotes component of FPR.

Variable Description

hh1# % households with one or more pensioner(s)

hh2 % small households (one or two persons households)

undoc# % households under-occupied
(1 person with > 4 rooms; 2 persons with > 5 rooms)

lowsap# % dwellings with poor energy efficiency (below SAP35∗∗)

ctb# % households in receipt of Council Tax Benefit (indicator of low income)

tow Townsend deprivation score

ch % households with no central heating

pens % lone pensioner households with no central heating

pre % dwellings built before 1945

pensm Total male pensioners as % of total population

pensf Total female pensioners as % of total population

penswh % of white pensioners in the ED

FPR Fuel Poverty Risk Index = (hh1∗undoc∗ lowsap∗ ctb)∗ 10−3

pwh White pensioners (% total pensioners)

mmeant Monthly mean air temperature, ◦C

mmaxt Monthly maximum air temperature, ◦C

mmint Monthly minimum air temperature, ◦C

mrain Monthly rainfall totals, mm

msun Monthly sunshine hours

mmwd Monthly mean wind speed

msol Monthly solar radiation, W hr m-2

mtdif Difference from previous month mean temperatures, ◦C

dwigs Total number of dwellings

house Total number of households

pop % population 65 years old or more

age (1) 65–74, (2) 75–84, (3) 85+

nage Age with 2 levels only: (1) 65–84, (2) 85+

sex (1) Male, (2) Female

q Season factor with 3 levels:
(1) “Summer”, (2) November, January, February, (3) December

nq Season factor with 2 levels: (1) Not December, (2) December

z Factor with 48 levels denoting month

E Factor with 450 levels specifying enumeration district (ED)
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The lagged influence of weather is considered, together with maximum, minimum

and mean monthly temperature and average monthly rainfall, wind speed, hours

of sunshine, and solar radiation levels.

The chance of a repeat admission of an individual appears to be low, al-

though this is not easy to determine precisely as the original data predated inclu-

sion of patient identifier codes. Hence, although an assumption of independence

of the observed admissions and of the observed lengths of episode is not too unrea-

sonable, some correlation between occurrences might be expected, and perhaps

some correlation between lengths of episode. GAMLSS makes it possible to incor-

porate a possible random effect in our linear predictor to allow for over-dispersion

caused by the unknown correlation. Moreover, the Beta Binomial distribution is

itself a form of over dispersed Binomial distribution; i.e. a Binomial distribution

with a Beta distributed random effect.

4. DEFINITION OF THE FUEL POVERTY RISK INDEX

Our population-based study of the London Borough of Newham involved

creating a Fuel Poverty Risk Index (FPR), derived from known risk factors, to

compare with a cold-related health indicator, based on excess winter emergency

respiratory hospital admissions (see Rudge and Gilchrist (2005)). Our data level

was limited to small areas, rather than individuals, for patient anonymity reasons.

Datasets were collated for enumeration districts (EDs), which contain, on

average, about 220 households: we collected data on household age, size and

tenure from the 1991 Census; Council Tax Benefit (CTB) for 1998; estimated

energy ratings for dwellings, based on classification by tenure (census data), size

and type (from a drive round survey and census) and building age; numbers of

emergency episodes for all respiratory diagnoses for patients aged above 64 years

for August ’93 to July ’97 from Hospital Episode Statistics (HES). (Emergency

admissions are more likely to reflect seasonal effects than elective admissions.)

The FPR was calculated for EDs as a product of the following (unweighted)

factors, all as percentages of total households or total dwellings:

• households with one or more pensioners;

• households in receipt of CTB (indicating low income);

• dwellings with poor energy efficiency (i.e. below the 1991 national aver-

age energy rating);

• under occupancy (small households occupying relatively large homes).
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5. A STATISTICAL MODEL FOR THE EXPECTED TOTAL

DURATION OF EMERGENCY RESPIRATORY HOSPITAL

ADMISSIONS

We here develop a model to explain the observed illness counts in each ED,

in each month, in terms of the potential explanatory variables, and notably FPR.

We model the counts for males and females, and for the three age categories.

We consider data for each of 48 months. Our particular interest is in the difference

between the counts observed in summer and winter, and whether we can explain

this difference in terms of the explanatory variables. To examine this we model

the probability pijkl of an individual of gender i, in age group j, in ED k, being

ill in month l, i= 1, 2, ; j = 1, .., 3; k= 1, .., 450, l= 1, .., 48.

Our count data consists of the number of people who are ill in a given

month, as a proportion of the total number at risk. Perhaps the most natu-

ral model for such data is the Binomial distribution, with the observed counts

restricted by a “Binomial Denominator”. We here use a logistic Beta-Binomial

assumption which can allow for potential “over-dispersion” in our counts.

Thus we assume we have observed numbers Yijkl of emergency respira-

tory admissions of gender i, age j, in ED k, in month l, i= 1, 2; j = 1, 2, 3;

k= 1, .., 450; l= 1, .., 48. The number of people at risk in each “cell” is nijkl.

We assume that Yijkl follows a Beta Binomial distribution, BB(nijkl, pijkl, σijkl).

Our basic assumption is that we have a logit link, i.e. pijlk = 1/(1+ exp(−ηijkl)),

where ηijkl is a linear predictor based upon the explanatory variables in Table 1.

5.1. Distributional assumption

In defining the probability function, we drop the suffices i, j, k, l for clarity

of exposition. The probability function of a random variable, Y which follows

the Beta Binomial distribution denoted here as BB(n, p, σ), is given by

pY (y|p, σ) =
Γ(n+1)

Γ(y+1)Γ(n−y+1)
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for y= 0, 1, 2, ..., n, where 0<p< 1 and σ > 0 (and n is a known positive integer).

Note that E(Y ) = np = µ, say, and Var(Y ) = np (1− p)
[
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1+σ
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]

.

Here σ may be viewed as a random effect parameter.
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For our modelling we have a r.v. Yijkl, where we model pijlk and σijkl

in terms of our explanatory variables and factors. We assume that the dura-

tion dijkl of observed stays of patients for cell i, j, k, l are such that dijkl ∼

D(ψijkl, αijkl, βijkl, γijkl) where D is one of the many 4-parameter distributions

available in GAMLSS. (We here restrict ourselves to distributions with a closed

form for the mean and variance, as this is more convenient for derivation of the

expectation and variance of the cost to the NHS of fuel poverty). Our default

approach is to assume a log link, i.e. E(dijkl) = ψijkl = exp(ζijkl), where ζijkl is

a linear predictor based on the explanatory variates in Table 1.

5.2. A model for the probability of dying after admission

A proportion of the emergency respiratory admission die whilst in hospital.

We model the probability of dying using the Beta Binomial with logit link, in a

similar way to the modelling of the probability of being admitted. The full range

of possible covariates and factors was considered.

5.3. Modelling the length of stay in hospital

The length of stay in hospital is different for those who survived and those

who died. We model each distribution using a range of continuous densities

available in GAMLSS, such as the Gamma, Generalised (3 parameter) Gamma,

Inverse Gaussian and a Generalised (3 parameter) Inverse Gaussian.

5.4. Model selection strategy

We illustrate our selection strategy for the 2-parameter Beta Binomial.

(We extended this naturally for distributions with more parameters). We initially

used the step Akaike criterion to select a model for µijkl = nijkl ∗ pijkl, keeping

σijkl constant. We then used a step Akaike approach to fit σijkl, for the current

“best” linear predictor for µijkl (with any remaining parameters constant for the

more general case). Using the current “best” linear predictors for σijkl, the model

for µijkl was refitted, and so on. We finally removed the terms whose removal

was not significant on a χ2 scale. We combined levels of factors where this did

not result in significant deterioration in scaled deviance.
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6. RESULTS

6.1. The probability of being an emergency respiratory admission

From the 1991 Census, there were about 25,000 people in Newham over

64 years old. The total count of emergency respiratory episodes amongst this

age group was 3378 (over 4 years), 16% of which ended in death. Respiratory

episodes far outnumber those for other possible cold-related diagnoses.

We fitted Beta Binomial models to explain morbidity counts in terms of

the wide range of explanatory variables, removing any that were not statistically

significant. We attempted to avoid a so-called ecological fallacy by using a wide

range of explanatory variables. Investigation of the monthly data for 450 EDs

determined that “winter” was better defined as November–February, rather than

the traditional UK use of December–March.

The accompanying Table 2 shows our “best” model, using a logit link, for

the probability of being an emergency respiratory hospital admission, and a log

link for the σ coefficient. The linear predictor for pijkl has an interaction between

“season”and FPR, showing that morbidity counts rise with increasing fuel poverty

risk index in “winter”, with a notably large effect in December. This is over and

above the underlying effect of winter itself, irrespective of FPR. Effects are evident

for age, with higher counts for older people, and sex, with lower counts for women.

Table 2: Best fitting BB model. Logit link for p, using log link for σ.
age2 represents age level 2, etc., mmaxtt[z] denotes mmaxtt
indexed over months z, hh1[E] denotes hh1 indexed over enu-
meration districts E, etc.

Variable Estimate Std. Error t value Pr(>‖t‖)

(Intercept) −6.802 e+00 1.724 e−01 −39.462 0.000 e+00
age2 6.971 e−01 3.966 e−02 17.574 4.958 e−69
age3 1.803 e+00 5.004 e−02 36.022 2.701 e−282
sex2 −7.115 e−01 3.582 e−02 −19.861 1.311 e−87
q2 1.878 e−01 5.790 e−02 3.244 1.179 e−03
q3 4.647 e−01 8.970 e−02 5.180 2.223 e−07
mmaxt[z] −1.245 e−02 5.162 e−03 −2.413 1.584 e−02
hh2[E] 1.019 e−02 1.976 e−03 5.157 2.521 e−07
lowsap[E] −1.996 e−03 9.576 e−04 −2.085 3.711 e−02
ctb[E] 8.214 e−03 1.163 e−03 7.062 1.655 e−12
ch[E] 2.602 e−02 2.883 e−03 9.026 1.807 e−19
pens[E] −4.041 e−02 4.919 e−03 −8.215 2.148 e−16
pre[E] −2.538 e−03 8.277 e−04 −3.067 2.164 e−03
fpr06[E] −5.392 e−05 4.175 e−05 −1.291 1.966 e−01
fpr06[E]:nq2 1.692 e−04 7.009 e−05 2.414 1.578 e−02
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There was a strong month effect. To understand this further, we considered

monthly weather-related factors. Of all these, maximum temperature was most

significant, with a higher maximum leading to lower morbidity counts. Having

allowed for the maximum temperature effect, other weather related variables were

not significant. The log link proved most convenient and as before, we considered

all possible covariates and factors.

The σ coefficient (a random effect) depends only upon the age of the people

and their gender; see Table 3. (The linear predictor of the σ coefficient is always

negative; it is larger for the over 84 year olds than for the over 64 year olds,

and is larger for men than women. As a log link is used, the actual value of σ

is calculated from the exponential of the linear predictor).

Table 3: The linear predictor for the sigma parameter in the best fitting
BB model for the probability of admission (log link).
nage2 represents the 85+ years old.

Variable Estimate Std. Error t value Pr(>‖t‖)

(Intercept) −4.567 1.362 e−01 −33.517 6.690 e−245
nage2 3.315 1.777 e−01 18.654 1.600 e−77
sex2 −1.175 1.777 e−01 −6.612 3.800 e−11

6.2. Modelling the probability of a patient dying after admission

We fitted the Beta Binomial with logit link and found that only age was

significant in explaining the probability π of death of admitted emergency respi-

ratory patients. Older patients were more likely to die; the probabilities of dying

were 0.12, 0.16 and 0.24, respectively, for ages 65–74, 75–84 and 85+. The ran-

dom effect parameter, which we will call λ, did not depend upon the covariates

(its value being 1.76).

Table 4: Best fitting Beta Binomial model for probability π of an indi-
vidual’s death, using a logit link for π and log link for λ.
The best fit λ is constant. age2 represents age level 2, etc.

Variable Estimate Std. Error t value Pr(>‖t‖)

(Intercept) −1.944 9.710 e−02 −20.02 2.42 e−84
age2 0.263 1.154 e−01 2.278 2.28 e−02
age3 0.780 1.227 e−01 6.355 2.36 e−10
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6.3. Modelling the length of stay (episode)

We found that, for both those who died and those who survived, the Inverse

Gaussian distribution with log link gave the best fit (smallest AIC) amongst

the distributions we considered. Our best model for the survivors had a linear

predictor for the mean depending only upon age (older people staying longer),

with the dispersion decreasing with age. For those who died, the length of stay

depended upon gender, with women staying longer. The dispersion parameter

was a constant.

Table 5: Linear predictor for length of stay of survivors (Inverse Gaussian, log link).
age2 represents age level 2, etc.

Variable Estimate Std. Error t value Pr(>‖t‖)

(Intercept) 1.965 4.30 e−02 45.790 0.000 e+00
age2 0.233 6.10 e−02 3.830 1.32 e−04
age3 0.530 8.52 e−02 6.230 5.49 e−10

Table 6: Linear predictor for length of stay of those who died in hospital
(Inverse Gaussian, log link). S2 represents female.

Variable Estimate Std. Error t value Pr(>‖t‖)

(Intercept) 2.547 1.31 e−01 19.46 0.000 e+00
S2 0.672 2.36 e−01 3.830 1.32 e−04

7. CONCLUSION

We model both the propensity to be ill and the probability of survival

after hospital emergency respiratory admission by the Beta Binomial distribution.

We model the subsequent probability of dying in hospital and the length of stay

in hospital, thereby providing a potential model for the cost of excess winter

morbidity attributable to fuel poverty. Our approach is similar to that used in

modelling the probability and cost of insurance claims. The GAMLSS software

enables us not only to use the Beta Binomial in modelling the probabilities of

admission and survival, but also to use a wide range of continuous distributions

to model the length of time that a patient stays in hospital. It may be noted that
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mortality due to fuel poverty is a topical issue in the UK. Our emphasis has been

on morbidity. With 16% dying, the determining of a direct relationship between

mortality and“fuel poverty”would require substantially more data than our 2835

admissions. However, we could give an estimate of the mortality (after emergency

respiratory admission)attributable to FPR by combining the probability of being

admitted and the subsequent probability of dying (the latter only depending on

age).
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