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Abstract:

• The problem of the non-robustness of the classical estimates in the setting of the
quadratic and linear discriminant analysis has been addressed by many authors:
Todorov et al. [19, 20], Chork and Rousseeuw [1], Hawkins and McLachlan [4],
He and Fung [5], Croux and Dehon [2], Hubert and Van Driessen [6]. To obtain
high breakdown these methods are based on high breakdown point estimators of lo-
cation and covariance matrix like MVE, MCD and S. Most of the authors use also
one step re-weighting after the high breakdown point estimation in order to obtain
increased efficiency. We propose to use M-iteration as described by Woodruff and
Rocke [22] instead, since this is the preferred means of achieving efficiency with high
breakdown. Further we experiment with the pairwise class of algorithms proposed
by Maronna and Zamar [10] which were not used up to now in the context of dis-
criminant analysis. The available methods for robust linear discriminant analysis are
compared on two real data sets and on a large scale simulation study. These methods
are implemented as R functions in the package for robust multivariate analysis rrcov .
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1. INTRODUCTION

The problem of discriminant analysis arises when one wants to assign an

individual to one of g populations on the basis of a p-dimensional feature vector x.

Usually it is considered that the p-dimensional vectors xik come from multivariate

normal populations πk

(1.1) xik : πk ∼ N(µk,Σk) (i=1, ..., nk; k=1, ..., g) .

Here nk is the size of the sample from population k for each of the g different

groups. If it is further assumed that all covariance matrices are equal (Σ1 = ... =

Σg = Σ), the overall probability of misclassification is minimized by assigning

a new observation x to population πk which maximizes

(1.2) dk(x) =
1

2
(x−µk)

t Σ−1 (x−µk) + log(αk) (k=1, ..., g) ,

where αk is the prior probability that an individual comes from population πk.

If the means µk, k=1, ..., g, and the common covariance matrix Σ are unknown,

which is usually the case, a training set consisting of samples drawn from each of

the populations is required.

The problem of the non-robustness of the classical estimates in the setting

of the quadratic and linear discriminant analysis has been addressed by many au-

thors: Todorov et al. [19, 20], replaced the classical estimates by MCD estimates;

Chork and Rousseeuw [1] used MVE instead; Hawkins and McLachlan [4] defined

the Minimum Within Covariance Determinant estimator (MWCD) especially for

the case of linear discriminant analysis; He and Fung [5] and Croux and Dehon [2]

used S estimates; Hubert and Van Driessen [6] applied the MCD estimates com-

puted by the FAST MCD algorithm.

Most of the authors use one step re-weighting after the high breakdown

point estimation in order to obtain increased efficiency. We propose to use

M-iteration as described by Woodruff and Rocke [22] instead, since this is the

preferred means of achieving efficiency with high breakdown and the time neces-

sary for the M-iteration is negligible when compared to the time necessary for

the MCD estimation, even using the FAST-MCD algorithm. Further we want

to experiment with the pairwise class of algorithms proposed by Maronna and

Zamar [10] which have not been used up to now in the context of discriminant

analysis.

In most of the cited papers, apart from the theoretical results, the proposed

methods are illustrated on one or two data sets and only a limited simulation is

performed, i.e. only a few contamination configurations are used and the new

method is compared to one or two of the already known ones on the basis of
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these configurations. Todorov et al. [20] carried out a more extended simulation,

using a general model and varying a number of parameters but this study was

restricted only to scale contaminations of the training samples in case of two

groups.

The purpose of this work is to review the recent results in robust linear

discriminant analysis and to compare the available methods on a large scale

simulation study. The discriminant analysis is considered in a prediction context

and the performance of the discrimination rules is evaluated by misclassification

probabilities obtained by simulation.

The paper is organized as follows. In the next section we describe the

robust linear discriminant analysis methods used. In Section 3 we illustrate the

application of these methods with two real data sets. In Section 4 we describe the

simulation study and present the results. The paper ends with a brief summary

and conclusions. The discussed methods for robust linear discriminant analysis

are implemented as R functions in the package for robust multivariate analysis

rrcov .

2. ROBUST ESTIMATORS FOR LINEAR DISCRIMINANT

ANALYSIS

In order to obtain a robust procedure with high breakdown point for linear

discriminant analysis the classical estimators are replaced by different robust

estimators. To overcome the low efficiency of the most high breakdown point

estimators, their reweighted version is used.

The Minimum Covariance Determinant (MCD) Estimator introduced by

Rousseeuw [16] looks for a subset of h observations whose covariance matrix has

the lowest determinant. The MCD location estimate T is defined as the mean of

that subset and the MCD scatter estimate C is a multiple of its covariance matrix.

The multiplication factor is selected so that C is consistent at the multivariate

normal model and unbiased at small samples — see Pison and Willems [11].

This estimator is not very efficient at normal models, especially if h is selected

so that maximal breakdown point is achieved, but in spite of its low efficiency

it is the mostly used robust estimator in practice, mainly because of the existing

efficient algorithm for computation as well as the readily available implementa-

tions in most of the well known statistical software packages like R, S-Plus, SAS

and Matlab.

We start by finding initial estimates of the group means m0
k and the com-

mon covariance matrix C0 based on the reweighted MCD estimates. There are
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several methods for estimating the common covariance matrix based on a high

breakdown point estimator.

The easiest one is to obtain the estimates of the group means and group

covariance matrices from the individual groups (mk, Ck), k = 1, ..., g, and then

pool them to yield the common covariance matrix

(2.1) C =

∑g
k=1

nk Ck
∑g

k=1
nk − g

.

This method, using MVE and MCD estimates, was proposed by Todorov et al.

[19] and [20] and was also used, based on the MVE estimator by Chork and

Rousseeuw [1]. Croux and Dehon [2] applied this procedure for robustifying

linear discriminant analysis based on S estimates. A drawback of this method is

that the same trimming proportions are applied to all groups which could lead

to a loss of efficiency if some groups are outlier free. We will denote this method

as A and the corresponding estimator as XXX-A. For example in the case of the

MCD estimator this will be MCD-A.

Another method was proposed by He and Fung [5] for the S estimates

and was later adapted by Hubert and Van Driessen [6] for the MCD estimates.

Instead of pooling the group covariance matrices, the observations are centered

and pooled to obtain a single sample for which the covariance matrix is estimated.

It starts by obtaining the individual group location estimates tk, k=1, ..., g,

as the reweighted MCD location estimates of each group. These group means

are swept from the original observations to obtain the centered observations

Z = {zik} , zik = xik − tk .(2.2)

The common covariance matrix C is estimated as the reweighted MCD covariance

matrix of the centered observations Z. The location estimate δ of Z is used to

adjust the group means mk and thus the final group means are

(2.3) mk = tk + δ .

This process could be iterated until convergence, but since the improvements from

such iterations are negligible (see [5], [6]) we are not going to use it. This method

will be denoted by B and as already mentioned, the corresponding estimator as

XXX-B, for example MCD-B.

The third approach is to modify the algorithm for high breakdown point

estimation itself in order to accommodate the pooled sample. He and Fung [5]

modified Ruperts’s SURREAL algorithm for S estimation in case of two groups.

Hawkins and McLachlan [4] defined the Minimum Within-group Covariance De-

terminant estimator (MWCD) which does not apply the same trimming propor-

tion to each group but minimizes directly the determinant of the common within

groups covariance matrix by pairwise swaps of observations. Unfortunately their
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estimator is based on the Feasible Solution Algorithm (see [4] and the references

therein), which is extremely time consuming as compared to the FAST-MCD al-

gorithm. Hubert and Van Driessen [6] proposed a modification of this algorithm

taking advantage of the FAST-MCD, but it is still necessary to compute the MCD

for each individual group. This method will be denoted by MCD-C.

Using the estimates m0
k and C0 obtained by one of the methods, we can

calculate the initial robust distances (Rousseeuw and van Zomeren [17])

(2.4) RD0
ik =

√

(xik − m0
k)

t C−1
0 (xik − m0

k) .

With these initial robust distances we can define a weight for each observation

xik, i = 1, ..., nk and k = 1, ..., g, by setting the weight to 1 if the corresponding

robust distance is less or equal to a suitable cut-off, usually
√

χ2
p,0.975 , and to 0

otherwise, i.e.

(2.5) wik =







1 RD0
ik ≤

√

χ2
p,0.975

0 otherwise .

With these weights we can calculate the final reweighted estimates of the group

means, mk, and the common within-groups covariance matrix, C, which are

necessary for constructing the robust classification rules,

mk =

(

nk
∑

i=1

wik xik

)

/

νk ,

C =
1

ν−g

g
∑

k=1

nk
∑

i=1

wik (xik − mk) (xik − mk)
t ,(2.6)

where νk are the sums of the weights within group k, for k=1, ..., g, and ν is the

total sum of weights,

νk =

nk
∑

i=1

wik , ν =

g
∑

k=1

νk .

Table 1 summarizes the methods to be considered in this study. It has

already been shown by simulations that the reweighted versions of most of the

estimators, at least in the case of one sample, are by far more efficient. This has

also been shown for the common covariance matrix in the framework of linear

discriminant analysis for the S estimates by He and Fung [5] and for the MCD

estimates by Hubert and Van Driessen [6]. Therefore in the following sections

we will prefer the reweighted estimates whenever possible without explicitly men-

tioning this.

Some of the methods are extremely slow which to some extent prevented us

from performing the complete simulation on them. These are particularly the

MWCD of Hawkins and McLachlan [4] and the S-estimates computed by
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Ruppert’s SURREAL algorithm. The FAST S algorithm, whose implementation

is similar to the one proposed by Salibian-Barrera and Yohai [18] for the case

of regression is promising, but since the available implementation is in pure R,

it cannot compete with MCD (in FORTRAN) and OGK, for example. A C or

FORTRAN implementation of this algorithm will allow its more frequent use.

Note also that, because of the large amount of results, not all of them can be

reported here.

Table 1: Estimators for the group means and the common covariance matrix
which will be considered in this study.

Algorithm Comment

FSA Minimum Within-group Covariance Determinant
estimator [4] computed by the FSA algorithm

MCD-A method A MCD

MCD-B method B MCD

MCD-C method C MCD

M-tb M estimator with translated biweight function [15]

M-bw M estimator with biweight function [15]

OGK Pairwise estimators — [10] (method B)

S S estimates computed by Ruppert’s SURREAL

Sfast S estimates computed by the fast algorithm proposed
for regression by [18] (method B)

3. EXAMPLES

3.1. The Fish catch data

As a first example for illustration of the robust approach to linear discri-

minant analysis we use a data set containing measurements on 159 fish caught

in the lake Laengelmavesi, Finland. The data set is available from [12]. It is

also included in the R package rrcov — see Todorov [21]. For the 159 fishes of

7 species the weight, length, height, and width were measured. Three different

length measurements are recorded: from the nose of the fish to the beginning of

its tail, from the nose to the notch of its tail and from the nose to the end of

its tail. The height and width are calculated as percentages of the third length

variable. This results in 6 observed variables, listed in Table 2. Observation 14

has a missing value in variable Weight, therefore this observation was excluded



70 V. Todorov and A.M. Pires

from the analysis. The 7 species are listed in Table 3. The last column of this

table gives the number of observations in each class. In the six dimensional

problem presented by this data set, classes 2 (with 6 observations) and 4 (with

11 observations) will cause a problem to the half-sample based robust methods.

Therefore we will consider three cases: (i) all 7 classes, (ii) 6 classes, with class 2

removed and (iii) 5 classes, with classes 2 and 4 removed.

Table 2: Fish measurements data: Variables.

1 Weight Weight of the fish (in grams)

2 Length1 Length from the nose to the beginning of the tail (in cm)

3 Length2 Length from the nose to the notch of the tail (in cm)

4 Length3 Length from the nose to the end of the tail (in cm)

5 Height% Maximal height as % of Length3

6 Width% Maximal width as % of Length3

Table 3: Fish measurements data: Names of the species in Finish and English.
The last column shows the number of objects in each class.

Finish English #

1 Lahna Bream 34

2 Siika Whitewish 6

3 Saerki Roach 20

4 Parkki Parkki 11

5 Norssi Smelt 14

6 Hauki Pike 17

7 Ahven Perch 56

In order to evaluate and compare the considered linear discriminant rules

we have to determine their performance in the classification of future obser-

vations, i.e. we need an estimate of the overall probability of misclassification.

A number of methods to estimate this probability exist in the literature — see

for example Lachenbruch [7]. The apparent error rate (known also as resubstitu-

tion error rate or reclassification error rate) is the most straightforward estimator

of the actual (true) error rate in discriminant analysis and is calculated by ap-

plying the classification criterion to the same data set from which it was derived

and then counting the number of misclassified observations. It is well known

that this method is too optimistic (the true error is likely to be higher). If there

are plenty of observations in each class the error rate can be estimated by split-

ting the data into training and validation sets. The first one is used to estimate

the discriminant rules and the second to estimate the misclassification error.
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This method is fast and easy to apply but it is wasteful of data which would be

critical in our case. Another method is the leaving-one-out or the cross-validation

method (Lachenbruch and Michey [8] which proceeds by removing one observa-

tion from the data set, estimating the discriminant rule using the remaining

n− 1 observations and than classifying this observation with the estimated dis-

criminant rule. For the classical linear discriminant analysis there exist updating

formulas which avoid the recomputation of the discriminant rule at each step but

no such formulas are available for the robust methods. Thus the estimation of

the error rate by this method can be very time consuming depending on the size

of the data set. Nevertheless, for the sake of our example, we will afford the time

and will use the leaving-one-out method to evaluate the considered discriminant

rules. Table 4 shows the results. The apparent error rate is also computed and

given for comparison.

Table 4: Fish measurements data: Apparent Error rate (APR)
and Leaving-One-Out (CV) estimate of the error rate for
the classical (MLE) and eight robust discriminant rules.

Method
All Classes Without 2 Without 2 and 4

APR CV APR CV APR CV

MLE 0.0127 0.0190 0.0132 0.0132 0.0142 0.0142

FSA 0.0949 0.1139 0.0197 0.0197 0.0142 0.0142

MCD-A — — — — 0.0851 0.0780

MCD-B — — — — 0.0638 0.0638

MCD-C — — — — 0.0496 0.0451

M-tb — — — — 0.0071 0.0142

M-bw — — — — 0.0142 0.0142

S — — 0.0132 0.0132 0.0142 0.0142

OGK 0.0126 0.0696 0.0066 0.0132 0.0142 0.0142

For the complete data set, apart from the MLE estimates, we could compute

only the FSA and OGK which do not need a half-sample based estimates of

each group. The estimated error rates (0.1139 and 0.0696 respectively) are higher

than the error rate for MLE — 0.0190. If we remove class 2 which has only

six observations, it is possible to compute also the S estimates. Now only FSA

has slightly higher error rate, while the other rules (MLE, S and OGK) give the

same (cross-validation) error rate of 0.0132. After removing also class 4 with only

11 observations all robust estimates are available. The MLE discriminant rule

as well as most of the robust rules give the same error rate of 0.0142 and only the

three versions based on FAST-MCD give somewhat higher values. As expected,

in general the apparent error rate is lower than the leaving-one-out estimate.
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Since there is no difference in the estimated error rates, it seems that both

robust and non-robust methods perform equally well on this data set. As already

noted by Hawkins and McLachlan [4] this does not mean that robust methods

are not necessary, but on the contrary, this means that the robust methods, while

providing safeguard against possible outliers in the data, do not perform worse

when the data are outlier-free.

3.2. The Diabetes data

As a second example, we use the Diabetes Data, which was analyzed by [13]

in an attempt to examine the relationship between chemical diabetes and overt

diabetes in 145 nonobese adult subjects. The analysis was focused on three pri-

mary variables and the 145 individuals were classified initially on the basis of

their plasma glucose levels into three groups: normal subjects, chemical dia-

betes and overt diabetes. This data set was also analyzed by [4] in the context

of the robust linear discriminant analysis. The data set is available in several

R packages: diabetes in package mclust, chemdiab in package locfit and diabetes.dat

in Rfwdmv. We used the first one for which the value of the second variable,

insulin, on the 104-th observation, is 45 while for the other data sets this value

is 455 (note that 45 is more likely to be an outlier in this variable than 455).

As in the first example, the discriminant rules based on MLE and the eight ro-

bust methods were applied. The corresponding apparent error rates and the

leaving-one-out estimates of the error rate are shown in Table 5.

Table 5: Diabetes data: Apparent Error rate (APR) and Leaving-One-Out (CV)
estimate of the error rate for the classical (MLE) and eight robust dis-
criminant rules. The last two columns give the error rate estimates for
the raw (not reweighted) methods.

Method
Reweighted Raw

APR CV APR CV

MLE 0.1310 0.1310 — —

FSA 0.0483 0.0552 0.0621 0.0552

MCD-A 0.1241 0.1379 0.1379 0.1379

MCD-B 0.1034 0.1172 0.0966 0.1172

MCD-C 0.0699 0.0802 0.0965 0.0803

M-tb 0.0965 0.1103 — —

M-bw 0.1034 0.1172 — —

S 0.0965 0.1034 0.1034 0.1034

OGK 0.0689 0.1103 0.1034 0.1034
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All the robust methods identify the outliers and show smaller error rates

than the MLE discriminant rule. The FSA estimator performs best followed

by MCD-C (i.e. the FAST-MCD analogue of MWCD as defined by Hubert and

Van Driessen [6]). Table 5 also shows the results of the raw (not-reweighted)

estimates but for this data set they differ only slightly from the reweighted ones.

4. SIMULATION

4.1. Distributions

The estimators considered will be evaluated on data sets generated from

a variety of settings with different dimensions p = 2, 6, 10, different number of

groups g = 2, 3 and different size of the training samples n =
∑g

j=1 nj . In all

cases the class distributions are normal, but the generated data sets differ in

the shapes of the group populations and in the separation between the means of

the groups. The various combinations of the parameters of these classification

problems were to some extent motivated by the studies performed by Friedman [3]

to test his regularized discriminant analysis method. These data structures are

denoted by Di and are the following:

• D1. Equal spherical covariance matrices. In this situation all groups πj ,

j =1, ..., g, have the same spherical covariance matrix Ip. The mean of

the first group is the origin, the mean of the second group is at distance

d = 3.0 and the mean of the third group is at the same distance d = 3.0,

but in an orthogonal direction. More precisely, the data sets are generated

from the following p-dimensional normal distributions, where each group

πj , j =1, ..., g, has a separate mean µj and all of them have the same

covariance matrix Ip,

(4.1) πj ∼ Np(µj ,Σj) , j = 1, ..., 3 ,

with

µ1 = (0, 0, ..., 0) ,

µ2 = (3, 0, ..., 0) ,

µ3 = (0, 3, ..., 0) ,

Σ1 = Σ2 = Σ3 = Ip .
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These distributions will be contaminated in the following two ways

– scale contamination:

(4.2) πj ∼ (1−ε)Np(µj , Ip) + εNp(µj , κIp) , j = 1, ..., g ,

– location contamination

(4.3) πj ∼ (1−ε)Np(µj , Ip) + εNp(µ̂j , 0.252Ip) , j = 1, ..., g ,

µ̂j = µj + (νQp, ..., νQp) ,

Qp =
√

χ2
p;0.001/p ,

where ε = {0, 0.1, 0.25, 0.4}, κ = {9, 100}, and ν = 5, 10 are parameters

of the simulation. The shift of the location outliers is measured in terms

of the unit measure Q =
√

χ2
p;0.001. The outliers are placed at distance νQ

by adding νQp to each component of the location vector µ, where Qp =
√

χ2
p;0.001/p (see Rocke and Woodruff [15]).

The variation of the parameters g, p, n, ε, ν and κ results in 234 data dis-

tributions (18 uncontaminated, 108 location contaminated and 108 scale

contaminated).

• D2. Unequal spherical covariance matrices. In this situation each group πj ,

j =1, ..., g, has a spherical covariance matrix jIp, i.e. the first group has

as covariance matrix the identity matrix Ip and the covariance matrix of

each other group is a multiple of the identity matrix Ip with inflation factor

equal to the number of the group. The mean of the first group is the origin,

the mean of the second is at distance d = 3.0 as in the situation D1 and

the mean of the third is at distance d = 4.0, but in an orthogonal direction.

The data sets in this situation are generated from the distributions given

in equation (4.1), where each group πj , j =1, ..., g, has a separate mean µj

and their covariance matrices Σj are spherical and proportional,

µ1 = (0, 0, 0, ..., 0) ,

µ2 = (3, 0, 0, ..., 0) ,

µ3 = (0, 4, 0, ..., 0) ,

Σ1 = Ip ,

Σ2 = 2 Ip ,

Σ3 = 3 Ip .

Only location contamination will be applied to these distributions, as de-

scribed in equation (4.3). This results in altogether 136 data distributions

(18 uncontaminated and 108 location contaminated).
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• D0. In order to calibrate the simulation we will start with the same con-

figurations as described by He and Fung [5] and then repeated by Croux

and Dehon [2] and later by Hubert and Van Driessen [6]. In these classifi-

cation problems data were generated from two groups g = 2 with p = 3 and

different sizes of the training samples. In most of the cases the populations

have the same spherical covariance matrices Σ1 = Σ2 = I3. The mean of

the first group is the origin, µ1 = (0, 0, 0), the mean of the second group is

µ2 = (1, 1, 1). Location and scale contaminations are applied as described

in D1. More precisely, the following five data structures are used.

– A: n1 = n2 = 50, ε = 0, no contamination.

– B: n1 = n2 = 50, ε = 0.2, location contamination with µ̂1 = (5, 5, 5)

and µ̂2 = (−4,−4,−4).

– C: n1 = 100, n2 = 10, ε = 0.2, location contamination with µ̂1= (5, 5, 5)

and µ̂2 = (−4,−4,−4).

– D: n1 = n2 = 20, ε = 0.2, scale contamination with κ = 25.

– E: n1 = 70, n2 = 30, ε = 0.2, unequal covariance matrices Σ1 = I3

and Σ2 = 4 I3, location contamination with µ̂1 = (5, 5, 5) and µ̂2 =

(−10,−10,−10).

4.2. Criteria

The described linear discriminant analysis estimators can be evaluated with

regard to the following two aspects of the discriminant analysis:

• the quality of the estimates of the group means and the common co-

variance matrix and thus the quality of the discriminant functions and

scores and

• in a prediction context the performance of the discrimination rules eva-

luated by their misclassification probabilities obtained by simulation.

Although the quality of the estimates is important since it entirely deter-

mines the robustness of the discriminant rules towards outliers, in this study

we will concentrate only on the second aspect, the evaluation of the classification

performance of the rules, and leave the detailed study of the estimates for further

work.

The discrimination performance of the estimated classification rules is eva-

luated by the Overall Probability of Misclassification (OPM) which can be esti-

mated by simulation (similar as in He and Fung [5] and Hubert and Van Driessen

[6]). For this purpose we generate a test sample consisting of 2000 observations
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from each group (with the known distribution), classify them using each of the

estimated discrimination rules and obtain the corresponding proportions of the

misclassified observations. This procedure is repeated N = 100 times and the

mean and standard error of the probability of misclassification are calculated

for each method. Whenever possible, the robust estimates are based on one-step

reweighting.

4.3. Simulation results

In this section we present the results of the simulation study for the robust

linear discriminant rules as well as the classical MLE one. Also the results of

MLE applied to the clean data are shown and are denoted by MLE-C.

Table 6: Simulation results: Mean probability of misclassification for
the classical and robust estimators under different cases of
contaminated distributions, as described in He and Fung [5].

Estimators

FSA M-bw MCD-A MCD-B MCD-C OGK S MLE-C MLE

A 0.202 0.202 0.203 0.203 0.208 0.202 0.203 0.202 0.202

B 0.207 0.207 0.209 0.203 0.208 0.211 0.202 0.202 0.661

C 0.210 0.263 0.217 0.222 0.218 0.215 0.213 0.211 0.617

D 0.240 0.221 0.226 0.223 0.225 0.227 0.219 0.215 0.260

E 0.462 0.283 0.285 0.283 0.291 0.289 0.279 0.277 0.558

Firstwe consider the results of the simulation study following He andFung [5].

Table 6 shows the estimated overall probability of misclassification for the discri-

minant rules in the five different distribution setups. Note that the S estimator,

computed by the method B which we are using in this study is equivalent to

the estimator denoted by S2A in [5]. In the case of clean data — setup A —

all estimators perform almost equally well. In case B with 20% location contami-

nation the MLE breaks down, but all the robust estimators perform equally well,

following closely MLE-C. In the third case, with unequal sample sizes — setup

C — the robust estimators are worse than MLE-C, although they do better than

MLE. The best are FSA, OGK and S. In case D, with 20% scale contamina-

tion, S and M-bw perform best. In the last case, with unequal sample sizes per

group, n1 = 70 and n2 = 30, and unequal covariance matrices most of the robust

estimators also perform similar to MLE-C, only FSA breaks down. There is no
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estimator which performs best in all cases but S and M-bw are the ones that

perform best in most of the cases being almost equally good (however, M-bw is

much faster taking advantage of the existing fast algorithm for MCD). The next

best estimator is OGK and it is even faster than MCD.

As far as the main simulation is concerned, let us start by investigating

the case of clean data — i.e. ε = 0 — and consider the dependence of the estima-

tors on the data dimension and the sample size. Figure 1 presents the mean overall

probability of misclassification of the classical and robust discriminant rules when

applied to clean data (the results for S and M-tb are not presented, since they

are almost the same as those for M-bw). For n1 = n2 = 50 and n1 = n2 = 100

all robust estimators follow closely the MLE. For n1 = n2 = 20 only the smooth

estimators and OGK are very near to the MLE. No substantial difference between

two and three groups can be noted.

Clean data (ε = 0)

p x n

O
P

M

0.10

0.15

0.20

2x20 2x50 2x100 6x20 6x50 6x100 10x20 10x50 10x100

2 groups

0.10

0.15

0.20

3 groups

MLE
MCD−A

MCD−B
MCD−C

OGK
M−bw

Figure 1: Mean Overall probability of misclassification for distribution setup D1
without contamination for different dimensions and sample sizes in case
of 2 and 3 groups.

The next three tables display the estimated overall probability of misclas-

sification (OPM) as a function of the contamination proportion ε in different

simulation situations and different types of contamination. First we will consider
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the performance of the estimators in the case of scale contamination. Table 7

shows some of the results for two and three groups, where ε = 0, 10, 25 and 40%

scale contamination is added to all groups with scale inflation factor κ = 9 and

100 respectively. Only the reweighted estimators are shown — the raw versions

were slightly worse. Only the constrained M-estimates with Tukey’s biweight

function (M-bw) is shown, since it was slightly better than the M-estimates with

the translated biweight function (Rocke [14]) in almost all of the cases. The re-

sults for the S estimates, as described by He and Fung [5] where these estimates

are denoted S2A, were not computed for all cases because of their computa-

tional restrictions (the results actually computed are quite similar to those for

M-bw). The S estimates computed by an algorithm similar to the one proposed

by Salibian-Barrera and Yohai [18] for regression which they call Fast S are

quite promising, but the available R implementation is rather slow (comparable

with Rupperts SURREAL). A native implementation in C is under development.

In the right hand part of the table, representing the results for 3 groups only

MLE, M-bw and OGK are shown.

For g = 2, p = 2 and n1 = n2 = 20 in the case κ = 9 there is only slight

gain in performance and only OGK and M-bw are better than the classical

MLE estimates. The picture changes completely when κ = 100 where all robust

methods show similar discrimination performance (closely following MLE-C).

When the sample size is increased to n1 = n2 = 50, 100 the performance of MLE

improves, but so does the performance of the robust estimators. When the

number of variables p is increased (p = 6, 10), keeping the same sample size

n1 = n2 = 20 only OGK remains usable, which is not surprising since all other

robust estimators are based on a half sample. When the sample size is increased

to n1 = n2 = 50, 100, all robust estimators perform very well again. In the case

of three groups the results (shown in the right three columns of Table 7) are

quite similar to the two-group situation, but the estimated overall probability

of misclassification is slightly higher for all estimators, including MLE.

Next we will consider the performance of the estimators in case of location

contamination. Table 8 shows some of the results for two and three groups,

where ε = 0, 10, 25 and 40% location contamination is added to all groups with

location shift parameter ν = 5 and 10 respectively. The “uninteresting” cases

where the dimension is high compared to the sample size, and to which we know

that the robust estimators cannot be applied, are not shown. OGK preforms best

in almost all cases except for 40% contamination with shift factor ν = 5, where

it always breaks down.

Table 9 shows some of the results for two and three groups for distribution

setup D2 (unequal spherical covariance matrices) when location contamination

is added to the data. The situation is quite similar to the case of equal spherical

covariance matrices, but the estimated probability of misclassification increases

for all estimators including MLE-C.
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Table 7: Mean probability of misclassification for Setup D1 with
scale contamination in the case of two and three groups
(for three groups not all of the estimators are shown).

ε κ MLE M-bw MCD-A MCD-B MCD-C OGK MLE M-bw OGK

p = 2, n1 = n2 = 20, g = 2 g = 3

0 — 0.073 0.084 0.082 0.083 0.083 0.077 0.102 0.113 0.105

0.10 9 0.079 0.083 0.083 0.084 0.084 0.074 0.109 0.112 0.106

0.25 9 0.087 0.089 0.091 0.088 0.089 0.083 0.109 0.103 0.103

0.40 9 0.094 0.095 0.091 0.092 0.090 0.088 0.119 0.119 0.114

0.10 100 0.124 0.084 0.082 0.083 0.083 0.079 0.166 0.114 0.109

0.25 100 0.197 0.084 0.083 0.083 0.082 0.080 0.252 0.110 0.107

0.40 100 0.218 0.082 0.083 0.082 0.082 0.080 0.324 0.103 0.102

p = 6, n1 = n2 = 20, g = 2 g = 3

0 — 0.086 0.160 0.129 0.146 0.151 0.097 0.119 0.146 0.131

0.10 9 0.108 0.158 0.126 0.134 0.140 0.106 0.138 0.144 0.129

0.25 9 0.115 0.146 0.126 0.131 0.127 0.102 0.151 0.149 0.136

0.40 9 0.123 0.131 0.131 0.126 0.124 0.114 0.159 0.146 0.138

0.10 100 0.186 0.165 0.129 0.145 0.149 0.107 0.230 0.138 0.125

0.25 100 0.225 0.130 0.112 0.118 0.123 0.106 0.322 0.137 0.128

0.40 100 0.291 0.123 0.136 0.123 0.108 0.105 0.366 0.155 0.129

p = 10, n1 = n2 = 20, g = 2 g = 3

0 — 0.107 0.245 0.146 0.228 0.232 0.128 0.136 0.245 0.153

0.10 9 0.123 0.212 0.144 0.196 0.204 0.131 0.159 0.224 0.151

0.25 9 0.153 0.186 0.149 0.179 0.182 0.142 0.173 0.207 0.158

0.40 9 0.158 0.166 0.173 0.165 0.164 0.150 0.196 0.196 0.175

0.10 100 0.153 0.210 0.143 0.198 0.203 0.135 0.236 0.224 0.158

0.25 100 0.237 0.168 0.123 0.163 0.170 0.134 0.325 0.213 0.166

0.40 100 0.283 0.167 0.203 0.167 0.162 0.156 0.419 0.202 0.171

p = 10, n1 = n2 = 50, g = 2 g = 3

0 — 0.074 0.089 0.098 0.092 0.092 0.081 0.102 0.112 0.107

0.10 9 0.093 0.094 0.101 0.096 0.095 0.087 0.124 0.118 0.114

0.25 9 0.100 0.097 0.099 0.097 0.098 0.091 0.128 0.116 0.113

0.40 9 0.102 0.098 0.096 0.098 0.099 0.093 0.133 0.122 0.120

0.10 100 0.173 0.094 0.102 0.098 0.098 0.089 0.201 0.117 0.114

0.25 100 0.179 0.096 0.100 0.096 0.096 0.092 0.242 0.116 0.113

0.40 100 0.251 0.097 0.095 0.096 0.097 0.095 0.315 0.120 0.120

p = 10, n1 = n2 = 100, g = 2 g = 3

0 — 0.073 0.075 0.078 0.076 0.076 0.075 0.097 0.100 0.100

0.10 9 0.086 0.081 0.083 0.082 0.082 0.081 0.110 0.103 0.103

0.25 9 0.085 0.079 0.081 0.080 0.079 0.079 0.110 0.103 0.103

0.40 9 0.085 0.079 0.079 0.079 0.079 0.078 0.115 0.107 0.107

0.10 100 0.125 0.079 0.081 0.079 0.079 0.079 0.154 0.102 0.102

0.25 100 0.134 0.077 0.078 0.077 0.077 0.077 0.177 0.099 0.100

0.40 100 0.157 0.078 0.079 0.078 0.078 0.078 0.212 0.107 0.107
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Table 8: Mean probability of misclassification for Setup D1
with location contamination.

ε κ MLE M-bw MCD-A MCD-B MCD-C OGK MLE M-bw OGK

p = 2, n1 = n2 = 20, g = 2 g = 3

0 — 0.073 0.084 0.082 0.083 0.083 0.077 0.102 0.115 0.106

0.10 5 0.139 0.080 0.079 0.080 0.080 0.075 0.192 0.113 0.106

0.25 5 0.144 0.082 0.079 0.080 0.080 0.080 0.196 0.103 0.102

0.40 5 0.158 0.091 0.091 0.091 0.091 0.144 0.198 0.117 0.200

0.10 10 0.150 0.085 0.083 0.084 0.085 0.080 0.201 0.114 0.109

0.25 10 0.144 0.073 0.070 0.069 0.069 0.070 0.199 0.110 0.108

0.40 10 0.146 0.075 0.074 0.074 0.074 0.080 0.196 0.101 0.110

p = 2, n1 = n2 = 50, g = 2 g = 3

0 — 0.071 0.074 0.074 0.074 0.074 0.072 0.102 0.105 0.104

0.10 5 0.135 0.074 0.073 0.073 0.073 0.072 0.175 0.096 0.095

0.25 5 0.150 0.075 0.074 0.074 0.074 0.076 0.192 0.096 0.097

0.40 5 0.144 0.063 0.063 0.063 0.063 0.137 0.196 0.097 0.195

0.10 10 0.144 0.071 0.071 0.070 0.070 0.070 0.204 0.096 0.095

0.25 10 0.150 0.079 0.079 0.079 0.079 0.081 0.193 0.095 0.096

0.40 10 0.144 0.071 0.071 0.071 0.071 0.084 0.198 0.103 0.111

p = 2, n1 = n2 = 100, g = 2 g = 3

0 — 0.073 0.075 0.074 0.074 0.074 0.074 0.094 0.096 0.095

0.10 5 0.137 0.067 0.067 0.066 0.066 0.067 0.182 0.096 0.096

0.25 5 0.149 0.065 0.065 0.065 0.065 0.068 0.196 0.096 0.098

0.40 5 0.151 0.076 0.076 0.076 0.076 0.150 0.197 0.098 0.198

0.10 10 0.139 0.072 0.072 0.072 0.072 0.071 0.185 0.096 0.095

0.25 10 0.144 0.065 0.065 0.065 0.065 0.066 0.192 0.095 0.094

0.40 10 0.139 0.067 0.067 0.067 0.067 0.075 0.201 0.098 0.122

p = 6, n1 = n2 = 50, g = 2 g = 3

0 — 0.073 0.076 0.083 0.080 0.079 0.075 0.096 0.100 0.099

0.10 5 0.096 0.087 0.091 0.090 0.089 0.085 0.128 0.110 0.109

0.25 5 0.098 0.098 0.106 0.106 0.104 0.083 0.127 0.130 0.108

0.40 5 0.104 0.129 0.131 0.132 0.132 0.118 0.124 0.151 0.138

0.10 10 0.092 0.076 0.082 0.080 0.080 0.077 0.124 0.106 0.105

0.25 10 0.094 0.079 0.082 0.079 0.080 0.078 0.126 0.106 0.106

0.40 10 0.100 0.127 0.129 0.132 0.132 0.104 0.121 0.141 0.131

p = 6, n1 = n2 = 100, g = 2 g = 3

0 — 0.072 0.073 0.075 0.075 0.074 0.073 0.094 0.095 0.096

0.10 5 0.094 0.077 0.079 0.078 0.078 0.078 0.117 0.099 0.099

0.25 5 0.089 0.089 0.097 0.097 0.096 0.075 0.120 0.122 0.104

0.40 5 0.092 0.103 0.110 0.112 0.111 0.101 0.122 0.132 0.131

0.10 10 0.096 0.081 0.082 0.081 0.081 0.081 0.117 0.094 0.095

0.25 10 0.093 0.071 0.071 0.071 0.071 0.073 0.119 0.098 0.100

0.40 10 0.093 0.104 0.113 0.114 0.114 0.098 0.125 0.134 0.130

p = 10, n1 = n2 = 100, g = 2 g = 3

0 — 0.071 0.074 0.076 0.074 0.074 0.074 0.096 0.098 0.098

0.10 5 0.084 0.078 0.080 0.078 0.078 0.078 0.120 0.108 0.108

0.25 5 0.088 0.095 0.112 0.121 0.121 0.080 0.117 0.123 0.108

0.40 5 0.088 0.108 0.114 0.117 0.117 0.099 0.117 0.129 0.124

0.10 10 0.083 0.078 0.080 0.078 0.078 0.078 0.110 0.101 0.101

0.25 10 0.086 0.093 0.112 0.114 0.113 0.080 0.110 0.117 0.102

0.40 10 0.082 0.103 0.111 0.111 0.110 0.092 0.111 0.125 0.120
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Table 9: Mean probability of misclassification for Setup D2
with location contamination.

ε κ MLE M-bw MCD-A MCD-B MCD-C OGK MLE M-bw OGK

p = 2, n1 = n2 = 20, g = 2 g = 3

0.00 — 0.112 0.128 0.125 0.127 0.126 0.116 0.138 0.155 0.146

0.10 5 0.189 0.131 0.127 0.126 0.126 0.123 0.202 0.144 0.137

0.25 5 0.193 0.127 0.124 0.125 0.126 0.125 0.221 0.151 0.145

0.40 5 0.190 0.132 0.131 0.131 0.131 0.183 0.224 0.197 0.226

0.10 10 0.190 0.126 0.123 0.122 0.124 0.117 0.227 0.155 0.149

0.25 10 0.196 0.122 0.121 0.120 0.121 0.122 0.229 0.152 0.149

0.40 10 0.184 0.118 0.115 0.116 0.116 0.137 0.225 0.149 0.187

p = 2, n1 = n2 = 50, g = 2 g = 3

0.00 — 0.109 0.113 0.114 0.113 0.113 0.111 0.137 0.138 0.137

0.10 5 0.175 0.109 0.109 0.108 0.108 0.108 0.197 0.132 0.129

0.25 5 0.187 0.108 0.107 0.107 0.107 0.110 0.218 0.137 0.137

0.40 5 0.184 0.115 0.115 0.114 0.115 0.185 0.221 0.154 0.222

0.10 10 0.188 0.113 0.112 0.112 0.113 0.112 0.214 0.133 0.130

0.25 10 0.191 0.120 0.120 0.120 0.120 0.121 0.216 0.134 0.133

0.40 10 0.183 0.112 0.112 0.112 0.112 0.140 0.224 0.142 0.201

p = 2, n1 = n2 = 100, g = 2 g = 3

0.00 — 0.100 0.102 0.102 0.102 0.102 0.102 0.134 0.136 0.135

0.10 5 0.171 0.108 0.107 0.107 0.107 0.108 0.201 0.130 0.129

0.25 5 0.184 0.105 0.104 0.104 0.104 0.109 0.220 0.136 0.136

0.40 5 0.169 0.100 0.100 0.100 0.100 0.169 0.227 0.143 0.227

0.10 10 0.179 0.110 0.109 0.109 0.109 0.109 0.214 0.140 0.139

0.25 10 0.182 0.106 0.105 0.105 0.105 0.106 0.216 0.132 0.130

0.40 10 0.178 0.103 0.102 0.102 0.102 0.133 0.213 0.135 0.201

5. SUMMARY AND CONCLUSIONS

In this paper we have reviewed the recent methods for robust LDA and have

proposed several new ones — based on the Constrained M estimates as defined

by Rocke [14] and on the pairwise estimator OGK of Maronna and Zamar [10].

It is shown with examples that the proposed robust LDA procedures behave very

well on data sets with and without outlying observations. The simulation study of

He and Fung [5] was repeated for all estimators and it showed S, M-bw and OGK

as the best performers (the estimators are shown in increasing order of their

speed). A large scale simulation study covering a variety of settings with different

distributions and contaminations was performed, and showed that in most of the

cases the robust LDA procedures behave similarly to the MLE procedure when

applied on clean data — i.e. remain uninfluenced by the presence of outliers in

the data unlike the classical rules.
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Although the OGK estimator seems to be the best performer in terms

of probability of misclassification as well as of speed, a more thorough study

is necessary because of its non-affine equivariance. Also, the evaluation of the

quality of the estimators of the group means and the common covariance matrix

in the context of the linear discriminant analysis deserves further work.

All computations were performed by software developed in the statistical

environment R, which is available in the package rrcov — Todorov [21].
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