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Abstract:

• We consider in the following the problem of robust spectral density estimation.

Unfortunately, conventional spectral density estimators are not robust in the pres-
ence of additive outliers (cf. [18]). In order to get a robust estimate of the spectral
density function, it turned out that cleaning the time series in a robust way first
and calculating the spectral density function afterwards leads to encouraging results.
To meet these needs of cleaning the data we use a robust version of the Kalman filter
which was proposed by Ruckdeschel ([26]). Similar ideas were proposed by Martin
and Thomson ([18]).

Both methods were implemented in R (cf. [23]) and compared by extensive simulation
experiments. The competitive method is also applied to real data. As a special prac-
tical application we focus on actual heart rate variability measurements of diabetes
patients.
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1. INTRODUCTION

Our research has been motivated by the frequency-domain analysis of short-

term heart rate variability (HRV) measurements. This is a non-invasive method

which has been increasingly used in medicine (cf. [8, 22]). To analyze biosignals

or, generally speaking, time series, the spectral density function is commonly

used in many application areas. Further areas of applications besides medicine

are signal processing (cf. [31]) and geophysics (cf. [4, 9]).

The additive outlier model (AO model) which was introduced by Fox ([6])

is a commonly used model for outliers in time series. The AO model consists of a

stationary core process, xt, to which occasional outliers are added. The observed

process {yt, t=1, ..., n} is said to have additive outliers if it is defined by

yt = xt + vt(1.1)

where the contaminations vt are independent and identically distributed.

For the methods presented in this paper, it is convenient to model the univariate

distribution of vt by a contaminated normal distribution with degenerated central

component, i.e.,

CN (γ, 0, σ2) = (1−γ)N (0, 0) + γN (0, σ2) .(1.2)

Hence, the core process xt is observed with probability 1− γ whereas the core

process plus a disturbance vt is observed with probability γ. We shall also assume

that xt and vt are independent.

The AO model seems to be an appropriate model when analyzing heart rate

variability data. To access the variability of heart rate in the frequency domain

the spectral density function of the tachogram is estimated. The tachogram

is the series of time intervals between consecutive heart beats, the so called

R-R-intervals (e.g. Figure 1). The R-R-interval denotes the period between an

R-peak and the next R-peak in an electrocardiogram.

Non-sinus ectopic beats and other artifacts can cause outlying observa-

tions in the tachogram. If, during the recording and sampling, an R-peak is

missed in the electrocardiogram (ECG) this will result in a very large value in

the tachogram. Or, if an ectopic beat occurs, i.e., if there is an extra heart beat

between two regular beats, the amplitude in the ECG of the heart beat following

the ectopic beat will be very low and therefore this beat will usually be missed.

This results in a lower tachogram value followed by a higher one.

The aim of accessing the heart rate variability is accomplished by estimating

the spectral density function of the tachogram robustly in order to be insensitive

against outlying tachogram values caused by ectopic beats and other artifacts.
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Figure 1: Tachogram of 1321 consecutive heart beats.

We do not compute the spectral density function of the entire tachogram series,

but estimate several within overlapping windows to assure stationarity in each

window (cf. also [28]). Each slice in Figure 2 represents the spectral density

estimate of the corresponding time interval.
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Figure 2: Robust dynamic Fourier analysis of
the original short-term HRV data.
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Although we do not use the entire tachogram series but several overlapping

windows to access the heart rate variability we only focus on an analysis in

the frequency domain. We are not interested in modeling the heart rate in the

time domain nor in forecasting as this is often the aim in the context of online-

monitoring.

In the present paper we consider the problem of estimating the spectral

density function robustly. Unfortunately, conventional spectral density estima-

tors are not robust in the presence of additive outliers. See [12] or [18] for details.

To obtain a robust estimate of the spectral density function we present two dif-

ferent multi-step procedures. The first procedure was proposed by Martin and

Thomson ([18]) and incorporates an important robust filtering operation which

is accomplished by an approximate conditional-mean (ACM) type filter. For the

second multi-step procedure we suggest to replace the ACM type filter and use

the rLS filter proposed by Ruckdeschel ([26]) instead. Both filters are robustified

versions of the Kalman filter. In order to compare both approaches we implement

them in R.

In the next section we state the definitions of the state-space model and

the classical Kalman filter which is the basis of the robustifying approaches pro-

posed by Martin and Thomson ([18]) and Ruckdeschel ([26]). Both methods are

described in Section 3. In Section 4 we give an outline of our simulation study

and the results are presented in Section 5. Some remarks are given in Section 6.

2. PRELIMINARIES

2.1. State-space models

Let us assume we observe a q-dimensional, vector-valued process yt,

t=1, ..., n, which is only a linear transformation of an unobserved p-dimensional

signal xt with some noise added. Then the state-space model can be defined

as follows:

xt = Φxt−1 + εt ,

yt = Hxt + vt ,
(2.1)

where xt is the unobserved p-dimensional vector called the state vector. The first

equation in (2.1) is called state equation and the second is called the observation

equation. It is assumed that εt has dimension p, Φ is a p×p matrix and H is

a q×p matrix. We further assume that xt is independent of future εt, and that

εt and vt are individually zero mean independent and identically distributed

(iid) sequences which also are mutually independent but could be non-Gaussian.
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A more general definition of state-space models considering correlated errors as

well as more complex models including exogenous variables or selection matrices

can be found in [27] and [5].

2.2. The classical Kalman filter

The primary aim of any analysis using state-space models as defined by

(2.1) is to produce estimators of the underlying unobserved signal xt, given the

data Ys = {y1,y2, ...,ys}, up to time s. If s < t, s = t or s > t, the problem

is called prediction, filtering or smoothing, respectively.

In addition, we want to get estimators Tt(Ys) of xt which are best in the

sense of the minimum mean-squared error, i.e.,

E
(
‖xt − Tt(Ys)‖

2
)

= min
Tt

! .(2.2)

The solution is the conditional mean of xt given Ys, i.e.,

Tt(Ys) = E(xt |Ys) ,(2.3)

and will further on be denoted by xt|s.

However, in general the conditional mean is hard to calculate and there-

fore we restrict ourselves to the class of linear estimators. Then the solution to

these problems is accomplished via the Kalman filter and smoother (cf. [10, 11]).

The estimators we obtain are the minimum mean-squared error estimates within

the class of linear estimators.

In the following we will just focus on the Kalman filter. Its advantage

is that it specifies how to update the filter values from xt−1|t−1 to xt|t once

a new observation yt is obtained, without having to reprocess the entire data set

y1,y2, ...,yt. The Kalman filter recursions can be split into three steps:

(i) Initialization (t= 0):

x0|0 = µ0 , P0 = Σ0 ,(2.4)

where µ0 and Σ0 are the unconditional mean and p×p covariance

matrix of x0 ;

(ii) Prediction (t≥ 1):

xt|t−1 = Φxt−1|t−1 ,

Mt = ΦPt−1Φ
⊤ + Q ;

(2.5)
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(iii) Correction (t≥ 1):

xt|t = xt|t−1 + Kt(yt− Hxt|t−1) ,

Pt = Mt − KtHMt ,

with Kt = MtH
⊤(HMtH

⊤+ R)−1 .

(2.6)

The p×q matrix Kt is called the Kalman gain. The p×p matrix Mt is the con-

ditional prediction error covariance matrix,

Mt = E
(
(xt− xt|t−1) (xt− xt|t−1)

⊤ | Yt−1

)
,(2.7)

and the conditional filtering error covariance matrix Pt is given by

Pt = E
(
(xt− xt|t) (xt− xt|t)

⊤ | Yt

)
.(2.8)

Moreover, the p×p matrix Q and the q×q matrix R denote the covariance ma-

trices of εt and vt, respectively.

3. ROBUST SPECTRAL DENSITY ESTIMATION

In order to obtain a robust estimate of the spectral density function,

we clean the data in a robust way first and compute the spectral density func-

tion afterwards using a prewhitened spectral density estimate. This approach

was proposed by Martin and Thomson ([18]) and leads to encouraging results.

The data-cleaning operation wherein the robustness is introduced is accomplished

by a robustified version of the Kalman filter.

Martin and Thomson ([18]), based on the work of Martin ([15]), propose to

modify the calculation of the filter estimate as well as of the conditional filtering

error covariance matrix in the correction step (2.6). In [15] Martin, motivated

by Masreliez’s result ([20]), only considers autoregressive models. This limitation

to univariate signals and several approximations lead to a simplification of the

correction step that enables a robust estimation of the filter estimate as well as

of the conditional filtering error covariance matrix.

Another approach, proposed by Ruckdeschel ([26]), preserves the general

concept of the Kalman filter, that allows for multivariate signals, and modifies

only the updating of the filter estimate.
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3.1. Robust prewhitening

Let {yt, t = 1, ..., n} again denote the observed process which is assumed

to be second-order stationary and to have mean zero. The cleaning operator C

maps the original data yt into the cleaned data Cyt. In the context of the

AO model (1.1), we want the Cyt to reconstruct the core process xt, and so

we will use the labeling Cyt = x̂t|t, where x̂t|t denotes an estimate of xt at time t.

The second index of x̂t|t should indicate that the kind of data cleaning proce-

dure we have in mind here is a robust filtering procedure which uses the past

and present data values y1, ..., yt to produce a cleaned filter estimate x̂t|t of xt,

t=1, ..., n. For AO models with a fraction of contamination γ not too large,

it turns out that the data cleaner has the property that Cyt = yt most of the

time, that is about (1− γ)×100 percent of the time.

The filter-cleaner procedure involves a robust estimation of an autoregres-

sive approximation to the core process xt of order p, with estimated coefficients

φ̂1, ..., φ̂p. Now, the residual process

rt = Cyt −

p∑

i=1

φ̂iCyt−i , t = p+1, ..., n ,(3.1)

can easily be formed. Since cleaned data are used to obtain these residuals,

and the φ̂i are robust estimates, the transformation (3.1) is called a robust pre-

whitening operation. The benefit in the use of prewhitening in the context

of spectral density estimation is to reduce the bias, i.e., the transfer of power

from one frequency region of the spectral density function to another, known as

leakage (cf. [3]).

The robust spectral density estimate is based on the above robust pre-

whitening as follows. Let

Ĥp(f) = 1 −

p∑

j=1

φ̂j e
−i2πjf(3.2)

be the transfer function of the prewhitening operator (3.1) at frequency f , and let

Ŝ
(lw)
r (f) denote a lag window spectral estimate based on the residual process rt.

Then the spectral density estimate is

Ŝ(f) =
Ŝ

(lw)
r (f)

∣∣Ĥp(f)
∣∣2 ,(3.3)

where Ŝ(f) is evaluated at the Fourier frequencies fk = k/n, k= 0, ..., [n/2].
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3.2. The robust filter-cleaner algorithm

The robust filter-cleaner proposed by Martin and Thomson ([18]) is

an approximate conditional-mean (ACM) type filter motivated by Masreliez’s

result ([20]).

3.2.1. The robust filter-cleaner

The filter-cleaner algorithm as presented in the paper of Martin and

Thomson ([18]) relies on the p-th order autoregressive approximation of the un-

derlying process xt, which can be represented in state-space form (2.1) as follows.

Assuming that xt satisfies

xt = φ1xt−1 + φ2 xt−2 + · · · + φp xt−p + εt

the state space model can be written as

xt = Φxt−1 + εt ,

yt = xt + vt ,
(3.4)

with

xt = (xt, xt−1, ..., xt−p+1)
⊤ ,(3.5)

εt = (εt, 0, ..., 0)⊤(3.6)

and

Φ =





φ1 · · · φp−1 φp

1 · · · 0 0
...

. . .
...

...
0 · · · 1 0




.(3.7)

Additionally, we set

cov(εt) = Q =





σ2
ε 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0




(3.8)

and

var(vt) = R = σ2
0 .(3.9)

The algorithm computes robust estimates x̂t|t of the unobservable xt

according to the following recursion:

x̂t|t = Φ x̂t−1|t−1 +
m.1,t

s2t
st ψ

(
yt− ŷt|t−1

st

)
(3.10)
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with m.1,t being the first column of Mt which is computed recursively as

Mt+1 = ΦPt Φ
⊤ + Q ,(3.11)

Pt = Mt − w

(
yt− ŷt|t−1

st

)
m.1,t m⊤

.1,t

s2t
.(3.12)

The weight function w is defined by

w(r) =
ψ(r)

r
,(3.13)

where ψ stands for some psi-function described below. The scale st is set to

s2t = m11,t(3.14)

and ŷt|t−1 denotes a robust one-step-ahead prediction of yt based on Yt−1 =

{y1, ..., yt−1}, and is given by

ŷt|t−1 = (Φ x̂t−1|t−1)1 .(3.15)

Finally, the cleaned process at time t results in

x̂t|t = (x̂t|t)1 .(3.16)

It should be noted that if ψ is the identity function, which gives w ≡ 1,

and (3.14) is replaced by s2t = m11,t + σ2
0 with σ2

0 = var(vt) in the AO model,

the above recursions are those of the Kalman filter. The use of σ2
0 = 0 in (3.14)

corresponds to the assumptions that vt = 0 a large fraction of time and that

a contaminated normal distribution with degenerated central component (1.2)

provides a reasonable model. Correspondingly, Mt and Pt are the prediction

and filtering error-covariance matrices as described in the previous section

(Section 2). Again, in order to agree with the definition of the classical Kalman

filter recursions, we specify the initial conditions for the above recursions by

setting x̂0|0 = 0 and P0 = Ĉx where Ĉx is an estimate of the p×p covariance

matrix of the state process. We note that there also exists another way to specify

those initial conditions (see [17]).

The psi-function ψ and the weight function w which are essential to obtain

robustness should be bounded and continuous. Additionally, it is highly desir-

able that both have zero values outside a bounded, symmetric interval around

the origin. Furthermore, ψ(s) is odd and should look like the identity function

for small values of s (see [15]). Boundedness assures that no single observation

has an arbitrarily large effect on the filter-cleaner. Continuity assures that small

variations, e.g., due to rounding, will not have a major effect. Compact support

results in the following behavior which is desirable for a filter-cleaner: if an obser-

vation yt deviates from its prediction ŷt|t−1 by a sufficiently large amount, then

x̂t|t will be the pure prediction x̂t|t = Φ x̂t−1|t−1 and the filtering error covariance
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Pt is set equal to the prediction error covariance Mt. Martin and Thomson ([18])

proposed to use for ψ a special form of Hampel’s three-part redescending psi-

function ([7]),

ψHA(s) =






s if |s| ≤ a ,

a sgn(s) if a< |s| ≤ b ,
a

b− c

(
s− c sgn(s)

)
if b < |s| ≤ c ,

0 if c < |s| ,

(3.17)

namely, Hampel’s two-part redescending psi-function, with b = a, which has

all the desirable properties.

3.2.2. An approximate optimality result

There is an approximate optimality result for the filter described above

if we replace (3.14) by

s2t = m11,t + σ2
0 ,(3.18)

and ψ and w in (3.10) and (3.13), respectively, by

w(r) = ψ′(r) =
∂

∂r
ψ(r) .(3.19)

Namely, under the assumption that the state prediction density fxt
( . |Yt−1)

is Gaussian and that ψ(r) =−(∂/∂r) log g(r), where g is an approximation of

the observation prediction density fyt
( . |Yt−1), the filter is the conditional-mean

filter proposed by Masreliez ([20]). The preceding assumption will never hold

exactly under an AO model where vt is non-Gaussian (see [15], Sec. 5). However,

there is some evidence that fxt
( . |Yt−1) is nearly Gaussian and that the filter is

a good approximation to the exact conditional-mean filter. Therefore the filter

is referred to as an approximate conditional-mean (ACM) type filter. More de-

tails can be found in [15]. The results therein suggest that the use of Hampel’s

two-part redescending psi-function is reasonable when the observation noise vt

has a contaminated normal distribution. However, the weight function w given

by (3.19) is discontinuous if using Hampel’s two-part redescending psi-function,

and therefore Martin and Thomson ([18]) prefer to specify w by (3.13).

3.2.3. Fixed-lag smoother-cleaners

As mentioned in [15], if one uses the last coordinate of the filter estimate

x̂t|t to produce cleaned data, then one has that x̂t−p+1 = (x̂t|t)p is an estimate

of xt−p+1 based on the observations Yt up to time t. Such an estimate is usually

called a fixed-lag smoother, with lag p−1 in this case.
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3.2.4. Estimation of hyper parameters

To use the filter-cleaner algorithm we need robust estimates φ̂, σ̂ε and Ĉx

of the AR(p) parameter vector φ = (φ1, ..., φp)
⊤, the innovations scale σε and

the p×p covariance matrix of the state process, respectively. Martin and Thom-

son ([18]) proposed to get initial estimates using bounded-influence autoregres-

sion (BIAR) via the iteratively reweighted least squares (IWLS) algorithm.

Details about BIAR may be found in [19], [16] or [29].

3.2.5. Selection of order p

Martin and Thomson ([18]) propose the following procedure to select the

order p of the autoregressive approximation. For increasing orders p BIAR esti-

mates are computed and the estimated innovation scale estimates σ̂ε(p) are exam-

ined for each order. The final order is selected as that value of p for which

σ̂ε(p +1) is not much smaller than σ̂ε(p), e.g., less than a 10-percent decrement

as suggested by Martin and Thomson ([18]).

Another robust order-selection rule based on BIAR estimates and moti-

vated by Akaike’s minimization criterion ([1]) was proposed by Martin ([16]).

3.3. The robust Least Squares (rLS) filter algorithm

In the following we describe a robustified version of the Kalman filter which

was proposed by Ruckdeschel ([26]).

3.3.1. Robustified optimization problem

The idea is to reduce in the correction step (2.6) of the classical Kalman

filter the influence of an observation yt that is affected by an additive outlier.

Instead of Kt∆yt with ∆yt = yt −Hxt|t−1 we use a huberized version of it, i.e.,

Hbt
(Kt ∆yt) = Kt ∆yt min

{
1,

bt
‖Kt ∆yt‖

}
,(3.20)

so that the obtained result will be equal to the one of the classical Kalman filter,

if ‖Kt∆yt‖ is not too large, whereas if ‖Kt∆yt‖ is too large, the direction
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will remain unchanged and it will be projected on the q-dimensional ball with

radius bt.

This leads to a robustified optimization problem given by

E
(
‖∆xt −Hbt

(Kt ∆yt)‖
2
)

= min
Kt

! ,(3.21)

where ∆xt = xt− xt|t−1 denotes the prediction error. The above optimization

problem is equivalent to the optimization problem (2.2) of the classical Kalman

filter and its solution is named KrLS

t .

3.3.2. The rLS filter

Hence, this gives us the following filter recursions:

(i) Initialization (t= 0):

xrLS

0|0 = µ0 ;(3.22)

(ii) Prediction (t≥ 1):

xrLS

t|t−1 = ΦxrLS

t−1|t−1 ;(3.23)

(iii) Correction (t≥ 1):

xrLS

t|t = xrLS

t|t−1 +Hbt

(
KrLS

t (yt− HxrLS

t|t−1)
)
.(3.24)

The above filter recursions will be named robust least squares (rLS) filter.

Because the calculation of KrLS

t is computationally extensive Ruckdeschel

([26]) proposes to use KKK

t instead where KKK

t denotes the Kalman gain obtained

by the classical Kalman filter recursions. Simulation studies therein have shown

that the worsening, in sense of a larger mean-squared error, is only small if using

KKK

t instead of KrLS

t . Hence, this simplifying modification almost yields the

classical Kalman filter recursions with the only exception of replacing the first

line of the correction step (2.6) by

xt|t = xt|t−1 +Hbt

(
KKK

t (yt− Hxt|t−1)
)
.(3.25)

From now on, if speaking of the rLS filter, we will only consider this modified

version.

Moreover, Ruckdeschel ([26]) proved that the rLS filter is SO-optimal under

certain side conditions. SO stands for substitutive outlier and means that, instead
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of disturbing vt, contamination effects yt directly, replacing it by an arbitrarily

distributed variable y′t with some low probability. For further details we refer

the reader to [26].

Still, the open problem of fixing the clipping height bt remains.

3.3.3. Fixing the clipping height bt

In order to properly choose bt Ruckdeschel ([26]) proposes an assurance

criterion: How much efficiency in the ideal model relative to the optimal proce-

dure, i.e., the Kalman filter, am I ready to pay in order to get robustness under

deviations from the ideal model? This loss of efficiency, which we will obtain

if we use a robust version instead of the classical Kalman filter, is quantified as

the relative worsening of the mean-squared error in the ideal model. Hence, for

a given relative worsening δ > 0 we solve

E
(∥∥∆xt −Hbt

(KrLS

t ∆yt)
∥∥2

)
!
= (1+δ)E

(∥∥∆xt − KKK

t ∆yt

∥∥2
)
.(3.26)

The symbol
!
= means that bt is chosen in a way to achieve equality.

Again, we use the simplifying modifications just mentioned and replace

KrLS

t by KKK

t . Moreover, in most time-invariant situations, the sequence of Mt

(and hence also of Pt and KKK

t ) stabilizes due to asymptotic stationarity.

Thus, once Mt does not change for more than a given tolerance level, we can

stop calibration and use the last calculated bt for all subsequent times s, s > t.

The Kalman gain and filtering error covariance matrix used in this last calibra-

tion step will be denoted by KKK

∞ and P∞, respectively. For details we refer to

[2] and [21]. Further we make another simplifying modification and assume that

for all t

∆xt ∼ N (0,Mt) and vt ∼ N (0,R) .(3.27)

Thus, we may solve

E
(∥∥∆x −Hb(K

KK

∞ ∆y)
∥∥2

)
!
= (1+δ)E

(∥∥∆x − KKK

∞ ∆y
∥∥2

)

= (1+δ) trP∞ ,
(3.28)

in b, uniquely for a given loss of efficiency δ, where tr P∞ denotes the trace

of the conditional filtering error covariance matrix. We note that the relative

time-expensive calibration, i.e., finding b to a given δ, can be done beforehand.

Additional details may be found in [26] and [25].
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4. SIMULATION STUDY

The outline of our simulation study is as follows: First we simulate a core

process xt of length n= 100. xt is chosen to be an autoregressive process of order 2

given by

xt = xt−1− 0.9xt−2 + εt ,(4.1)

with εt ∼ N (0, 1). The variance of the core process xt, i.e., the value of the

autocovariance function at lag zero can be calculated by numerical integration

and is given approximately by var(xt)≈ 7.27. Additionally, the additive outliers

are simulated from a contaminated normal distribution with degenerate central

component (1.2) with σ2 = 102. The contamination γ is varied from 0% to 20%

by steps of 5%. That means that with probability γ, vt is an additive outlier

with vt 6= 0. To obtain the contaminated process yt, the vt’s are added to the

core process xt. For each level of contamination this was done 400 times.

For each of the contaminated series, estimates of the hyper parameter, i.e.,

the innovations scale σ̂ε, the autoregressive parameters φ̂1, ..., φ̂p and the p×p

covariance matrix Ĉx of the state process xt, are computed via bounded-influence

autoregression. The order p of the autoregressive approximation is chosen accord-

ing to the order-selection criterion proposed by Martin and Thomson ([18]), which

yields values of p from 2 to 3 subject to the contamination level. In order to be

able to compare the results we choose an equal order p for all levels of contami-

nation and fix it equal to 3. Using an order p= 2 in cases of lower contamination

levels, where this is appropriate, we obtain almost perfect fits for both filtering

algorithms. But, although the simulated core process is of order 2, the estimated

BIAR parameters we obtain setting p equal to 3 are similar to the ones of the

original core process, i.e., the first two AR parameters are close to the original

ones and the third AR parameter is almost zero, as one would expect.

Then each process is cleaned using the ACM-type filter and the rLS filter

proposed by Martin and Thomson ([18]) and Ruckdeschel ([26]), respectively.

Afterwards, the hyper parameters of the filtered series are estimated again.

Those re-estimated hyper parameters are used to calculate a prewhitened

spectral density estimate for each process. Last, the deviation of each estimated

spectral density function from the true spectral density function is measured

in the sense of the squared L2-norm, i.e.,

err2bS(f)
:=

∥∥Ŝ(f) − S(f)
∥∥2

=

∫ (
Ŝ(f) − S(f)

)2
df ,(4.2)

where Ŝ(f) and S(f) denote the estimated and true spectral density functions.
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5. RESULTS

Regarding the computation time the rLS filter performs better than the

ACM-type filter as we expected. This is due to the fact that additional weights

have to be computed within the correction step of the ACM-type filter.

Figure 3 tries to visualize the results of our simulation study. For both

methods and contamination levels 0%, 10% and 20% seven curves are plotted on

a logarithmic scale. The thick line represents the true spectral density function,

whereas the thin line is the spectral density estimate of one realization out of 400.

Moreover, we may calculate the minimum and maximum, at each frequency,

the first and third quartile and median value of all spectral density estimates.

Connecting all median values we obtain the grey line, to which we will refer

hereafter as median spectral density function. In the same sense we refer to all

minimum values as minimum spectral density function, and so on. Hence, the

lower and upper dotted lines are the minimum and maximum spectral density

functions, whereas the lower and upper dashed lines represent the first and third

quartile spectral density functions. The results obtained by using the ACM-type

filter are plotted in the left column, whereas the results of the rLS filter are

displayed in the right column.

As expected, for both methods the dispersion of the spectral density

estimates becomes greater the higher the contamination. However, this effect

is more visible, especially at higher frequencies, when using the ACM-type filter.

Next, we try to visualize the squared errors of the estimated spectral den-

sity functions. First, the logarithm of the squared errors is taken. For both

methods Figure 4 shows boxplots of the squared errors in eight equally-sized fre-

quency bands as well as the total squared errors (bottom right) for all different

levels of contamination. Again, the squared errors become greater the higher the

contamination, especially at higher frequencies. And, this effect again is greater,

when using the ACM-type filter. However, these errors are very small and, look-

ing at the total squared errors for different contamination levels, we see that the

ACM-type filter performs better than the rLS filter. The greatest contribution

to the total squared error is the amount of the frequency band where the spec-

tral density function has its peak. There the squared errors using the rLS filter

are higher than the ones using the ACM-type filter. Moreover, we see that all

squared errors are in the same range for all contamination levels.
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Figure 3: Robust spectral density estimates of the simulated data,
left column ‘ACM’, right ‘rLS’.
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Figure 4: Boxplots of the errors.
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6. DISCUSSION

In order to get a robust estimate of the spectral density function, it turns

out that cleaning the series in a robust way first and calculating a prewhitened

spectral density estimate afterwards leads to encouraging results. This data-

cleaning operation wherein the robustness is introduced, is solved by two different

robustified versions of the Kalman filter. Although, as far as we know, there exist

no theoretical results on the statistical properties of both proposed multi-step

procedures, the empirical results based on simulations and real data sets promise

those procedures to be of high quality. The results of the simulation study suggest

that the ACM-type filter algorithm performs slightly better than the rLS filter

algorithm. Hence, the ACM-type filter algorithm was used to compute the robust

spectral density estimates shown in Figure 2.

In [28] we compare the ACM-type filter approach with another approach

proposed by Tatum and Hurvich ([30]). This procedure, called biweight filter-

cleaner, also yields good results, but tends to underestimate the core process

slightly. Moreover it is computational intensive.

The problem of estimating the hyper parameters was accomplished by

bounded-influence autoregression. An alternative way would be to use a highly

robust autocovariance function estimator (cf. [13]) and calculate estimates of

the hyper parameters via the Yule-Walker equations. Hyper parameters may also

be obtained by computing a robust covariance matrix via the MCD algorithm

(cf. [24]) and estimate the parameters again using the Yule-Walker equations.

Recently, Maronna et al. ([14]) propose to use τ -estimates. Our experience by now

is that all these different approaches (except the last one, which we have not tried

yet, although it seems worthwhile) leads to similar results.

The simulation study was only done for one specific autoregressive model

of order 2. Other models seem worth trying. Further research and additional

simulation studies have already been done, but, as well as the applications to the

motivating real data, are not published here.
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