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Abstract:

• For square contingency tables with ordered categories, this paper proposes some dis-
tance subsymmetry models. The one model indicates that the cumulative probability
that an observation will fall in row category i or below and column category i + k
(k ≥ 2) or above, is equal to the probability that it falls in column category i or
below and row category i+k or above. This paper also gives the decomposition of the
symmetry model into the marginal homogeneity model and some distance subsym-
metry models. The father-son occupational mobility data in Britain and the women’s
unaided vision data in Britain are analyzed.
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1. INTRODUCTION

For an r×r square contingency table with ordered categories, let pij denote
the probability that an observation will fall in the ith row and jth column of the
table (i = 1, 2, ..., r; j = 1, 2, ..., r). The symmetry (S) model is defined by

pij = pji for i = 1, 2, ..., r; j = 1, 2, ..., r .

See Bishop, Fienberg, and Holland ([2], p. 282). This model indicates that the
probability that an observation will fall in cell (i, j) of the table is equal to
the probability that it falls in cell (j, i). Namely, this describes a structure of
symmetry of the cell probabilities {pij} with respect to the main diagonal of the
table.

Let X1 and X2 denote the row and column variables, respectively.
The marginal homogeneity (MH) model is defined by

Pr(X1 = i) = Pr(X2 = i) for i = 1, 2, ..., r ,

namely
pi ·= p· i for i = 1, 2, ..., r ,

where pi · =
∑r

t=1
pit and p· i =

∑r
s=1

psi (Stuart, [8]). This indicates that the
row marginal distribution is identical with the column marginal distribution.

Let

Gij = Pr
(

X1≤ i, X2 ≥ j
)

=
i

∑

s=1

r
∑

t=j

pst for i < j ,

and

G∗

ij = Pr
(

X1≥ i, X2 ≤ j
)

=
r

∑

s=i

j
∑

t=1

pst for i > j .

Then the S model may be expressed as

(1.1) Gij = G∗

ji for i < j .

The MH model may be expressed as

(1.2) Gi,i+1 = G∗

i+1,i for i = 1, 2, ..., r−1 .

The S model implies the MH model. So, from (1.1) and (1.2), we are interested
in decomposing (1.1) into (1.2) and the structure of

Gij = G∗

ji for j − i = 2, 3, ..., r−1; i < j .

The purpose of this paper is to give the decompositions of the S model into
some new models. The decompositions may be useful for seeing the reason for
the poor fit when the S model fits the data poorly.
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2. DECOMPOSITIONS OF SYMMETRY MODEL

This section proposes some new models based on {Gij} and based on {pij},
and gives the decompositions of the S model.

2.1. Distance Cumulative Subsymmetry Model

Consider a model defined by

(2.1) Gij = G∗

ji for j − i = 2, 3, ..., r−1; i < j ,

which is equivalent to

pij = pji for j − i = 2, 3, ..., r−1; i < j .

This model indicates that the probability that an observation will fall in cell (i, j),
which is one of cells such that the distance from the main diagonal is greater than
or equal to 2, is equal to the probability that the observation falls in cell (j, i).
We shall refer to (2.1) as the subsymmetry (SS) model.

Next, for fixed k (k = 2, 3, ..., r−1), consider a model defined by

(2.2) Gi,i+k = G∗

i+k,i for i = 1, 2, ..., r−k .

This model indicates that the cumulative probability that an observation will
fall in row category i or below and column category i + k or above, is equal
to the cumulative probability that the observation falls in column category i or
below and row category i + k or above. We shall refer to (2.2) as the model of
the distance cumulative subsymmetry with the difference k between the diagonal
containing the cutpoint [i and i+ k] and the main diagonal (denoted by the
DCS-k model).

2.2. Distance Subsymmetry Model

For fixed k (k = 1, 2, ..., r−1), consider a model defined by

(2.3) pij = pji for j − i = k; i < j .

This model indicates that the probability that an observation will fall in cell (i, j)
with the distance k from the main diagonal, is equal to the probability that the
observation falls in cell (j, i) with the same distance k. We shall refer to (2.3) as
the distance subsymmetry with distance k (DS-k) model. We obtain the following
theorem.
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Theorem 2.1. The following four statements are equivalent:

(1) the S model holds,

(2) the MH and SS models hold,

(3) the MH and {DCS-k} (k = 2, 3, ..., r−1) models hold,

(4) all the {DS-k} (k = 1, 2, ..., r−1) models hold.

2.3. Goodness-of-Fit Test

Assume that a multinomial distribution is applied to the r×r table.
The maximum likelihood estimates (MLEs) of expected frequencies under the S,
SS and DS-k models are obtained in the closed-forms. The MLEs of them under
the MH and DCS-k models could not be obtained in the closed-forms, however,
they could be obtained using the Newton–Raphson methods in the log-likelihood
equations.

The likelihood ratio statistic for testing the goodness-of-fit of the model is

G2 = 2
r

∑

i=1

r
∑

j=1

nij log

(

nij

m̂ij

)

,

with the corresponding degrees of freedom (df), where nij is the observed fre-
quency in cell (i, j), and m̂ij is the MLE of expected frequency mij under the
model. The numbers of df for the MH and SS models are r−1 and (r−1)(r−2)/2.
Also the numbers of df for the DCS-k model (k = 2, 3, ..., r−1) are r−k, and
those for the DS-k model (k = 1, 2, ..., r−1) are r−k.

3. EXAMPLES

We shall analyze the data in Tables 1 and 2.

3.1. Analysis of Table 1

Consider the data in Table 1, taken directly from Goodman [5]. These data
relate the father’s and his son’s occupational status category in Britain. These
data have been analyzed by some statisticians, including Agresti ([1], p. 206) and
Tomizawa [9].
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Table 1: The father’s and son’s occupational mobility data in Britain;
from Goodman [5].

Father’s Son’s status
Total

status (1) (2) (3) (4) (5)

(1) 50 45 8 18 8 129

(2) 28 174 84 154 55 495

(3) 11 78 110 223 96 518

(4) 14 150 185 714 447 1510

(5) 3 42 72 320 411 848

Total 106 489 459 1429 1017 3500

Table 2: Unaided distance vision of 7477 women aged 30-39 employed in Royal
Ordnance factories in Britain from 1943 to 1946; from Stuart [8].

Right eye Left eye grade
Total

grade Best (1) Second (2) Third (3) Worst (4)

Best (1) 1520 266 124 66 1976

Second (2) 234 1512 432 78 2256

Third (3) 117 362 1772 205 2456

Worst (4) 36 82 179 492 789

Total 1907 2222 2507 841 7477

Table 3 presents the likelihood ratio chi-square values G2 for the models
applied to these data. The S model fits these data poorly, yielding G2 = 37.46
with 10 df (Table 3). By using the decompositions of the S model, we shall
consider the reason why the S model fits these data poorly.

The MH model fits these data poorly, however, the SS model fits these data
well (Table 3). Therefore we can see from Theorem 2.1 that the poor fit of the
S model is caused by the poor fit of the MH model (rather than the SS model).

Moreover, all the DCS-k (k = 2, 3, 4) models fit the data in Table 1 well.
Therefore we can also see from Theorem 2.1 that the poor fit of the S model
is caused by the poor fit of the MH model (rather than the DCS-k (k = 2, 3, 4)
models). The DCS-k (k = 2, 3, 4) models provide that the probability that the
occupational status category of the father in a pair is k or above higher than that
of his son, is estimated to equal the probability that the status category of the
son is k or above higher than that of his father.



Decompositions of Symmetry Model 159

Table 3: Likelihood ratio chi-square values for models
applied to the data in Table 1.

Applied Degrees of Likelihood ratio

models freedom chi-square

S 10 37.46*

MH 4 32.80*

SS 6 8.58

DCS-2 3 6.89

DCS-3 2 4.29

DCS-4 1 2.36

DS-1 4 28.89*

DS-2 3 3.97

DS-3 2 2.25

DS-4 1 2.36

* means significant at the 0.05 level.

In addition, the DS-k (k=2, 3, 4) models fit these data well, but the DS-1
model fits these data poorly. Therefore we can see from Theorem 2.1 that the
poor fit of the S model is caused by the poor fit of the DS-1 model (rather than
the DS-k (k = 2, 3, 4) models). The DS-k (k = 2, 3, 4) models provide that the
probability that the occupational status of the father in a pair is k categories
higher than that of his son, is estimated to equal the probability that the status
of the son is k categories higher than that of his father.

3.2. Analysis of Table 2

Consider the data in Table 2, taken directly from Stuart [8]. These data are
constructed from the unaided distance vision of 7477 women aged 30–39 employed
in Royal Ordnance factories in Britain from 1943 to 1946. These data have
been analyzed by many statisticians, including Caussinus [3], Bishop et al. ([2],
p. 284), McCullagh [6], Goodman [4], Tomizawa [10], and Miyamoto, Ohtsuka
and Tomizawa [7].

From Table 4, we see that the S model fits these data poorly, yielding
G2 = 19.25 with 6 df. By using the decompositions of the S model, we shall
consider the reason why the S model fits these data poorly.

Both the MH and SS models, being the decomposed models of the S model,
fit these data poorly. So, in order to analyze these data in more details, we shall
apply Theorem 2.1. The DCS-2 model fits these data well, however, the DCS-3
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model fits them poorly (Table 4). Therefore we can see from Theorem 2.1 that
the poor fit of the S model is caused by the poor fits of the MH and DCS-3 models
(rather than the DCS-2 model). The DCS-2 model provides that the probability
that a woman’s right eye is 2 or 3 grades better than her left eye is estimated to
equal the probability that the woman’s left eye is 2 or 3 grades better than her
right eye.

Table 4: Likelihood ratio chi-square values for models
applied to the data in Table 2.

Applied Degrees of Likelihood ratio

models freedom chi-square

S 6 19.25*

MH 3 11.99*

SS 3 9.26*

DCS-2 2 5.00

DCS-3 1 8.96*

DS-1 3 9.99*

DS-2 2 0.30

DS-3 1 8.96*

* means significant at the 0.05 level.

The DS-2 model fits these data very well, however, the DS-1 and DS-3
models fit them poorly (Table 4). Therefore we can see from Theorem 2.1 that
the poor fit of the S model is caused by the poor fits of the DS-1 and DS-3 models
(rather than the DS-2 model). The DS-2 model provides that the probability that
a woman’s right eye is 2 grades better than her left eye is estimated to equal the
probability that the woman’s left eye is 2 grades better than her right eye.

Therefore, these indicate that there are the structures of subsymmetry
(not the complete symmetry) in these data.

4. CONCLUDING REMARKS

Theorem 2.1 gives the decompositions of the S model into some distance
subsymmetry models including the MH model. These decompositions would be
useful for seeing which structures of distance subsymmetry are lacking when the
S model does not hold for analyzing the data.

Finally we note that Caussinus [3] gave the decomposition of the S model
into the quasi-symmetry model, which indicates the symmetry of odds-ratios,
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and the MH model. Caussinus’s decomposition would be useful for seeing which
of the structure of symmetry of odds-ratios and the structure of marginal
homogeneity is lacking when the S model does not hold for analyzing the data
(although Caussinus’s decomposition could not see which structures of some
distance subsymmetry are lacking).
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