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Abstract:

• In this article, we analyze time dependent protein expression data obtained from
a proteome study of a neuroblastoma cell line. Neuroblastoma are common solid
tumors which occur in early childhood. The expression data was obtained by differ-
ence gel electrophoresis (DIGE). It is known that the clinical outcome of neuroblas-
toma depends on the activation of different neurotrophin receptors by their ligands.
Here, we are looking for proteome changes resulting from the activation of Tyrosine
Kinase (TrkA) receptors by their ligand NGF (nerve growth factor). Before analyzing
the data by longitudinal data analysis we do data preprocessing and apply a method
for the imputation of missing values.
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1. INTRODUCTION

The term ‘proteome’ stands for all proteins, which are coded by a genome

at specific time points and under certain conditions. It is known that in addition

to the analysis of the genome investigation of the highly complex and dynamic

proteome will provide a far more detailed description of biological processes. To

this end a number of proteomic techniques have been developed which allow

the analysis of complex protein mixtures. Currently the two-dimensional elec-

trophoresis (2-DE) is the separation method with highest resolution power for

protein samples. Up to 10,000 proteins can be separated in one gel and therefore

are accessible for quantitative analysis (cf. Klose and Kobalz ([11])). Statisti-

cal methods for the analysis of protein expression data from 2-DE comprise data

preprocessing, multiple hypothesis testing and nearly the whole spectrum of mul-

tivariate techniques. In Jung et al. ([8]) we reviewed and presented some methods

for data preprocessing, missing values imputation and longitudinal data analysis.

Here, we apply and evaluate these techniques by analyzing protein expression data

from a proteome study of the neuroblastoma cell line SY5Y. Neuroblastoma are

common solid tumors which occur in early childhood. The proteome of neurob-

lastoma depends on the activation of different neurotrophin receptors (TrkA and

TrkB) by their ligands (cf. Nakagaware et al. ([13])). In this article, we compare

proteome samples of the SY5Y cell line when the TrkA receptors are activated by

their ligand NGF (nerve growth factor) and when they are not activated. Hence,

we have a treatment and a control group. The experiment is detailed in Sitek

et al. ([16]). The protein expression in the two groups was measured at 5 time

points (0, 0.5, 1, 6 and 24h) with 4 biological replicates at time 0 and 5 biological

replicates at each of the other time points. The data was obtained using the lat-

est improvement of 2-DE, the so called Difference Gel Electrophoresis (DIGE).

This technique allows one to put up to three different samples on the same gel.

These samples (usually treatment, control and an internal standard) are tagged

by different fluorophores (Cy2, Cy3 and Cy5). The internal standard is used to

standardize all gels to the same level. 2-DE separates the proteins of a mixture by

their isoelectric point (pI) and molecular size to distinct spots. After separation

the proteins are detected using a confocal fluorescence scanner where fluorescence

intensity of a spot can be regarded as a measure of expression for its respective

protein. For quantitative proteome analysis image analysis software (DeCyder

V5.0, Amersham Biosciences ([3])) automatically determines the boundaries and

sizes of the spots.

Our article is organized as follows. In section 2 we analyze the performance

of the preprocessing methods like calibration, normalization and standardization.

In section 3 we evaluate the k nearest neighbour method for the estimation of

missing values with respect to an estimation error. Furthermore, we apply an

analysis of variance model for longitudinal data to the neuroblastoma data in

section 4 and discuss the biological implications. Finally, we will mention future

challenges in statistical proteomics.
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2. DATA PREPROCESSING

Before starting the actual statistical analysis of expression values from

2-D fluorescence difference gel electrophoresis (DIGE) several preprocessing steps

are required. In this chapter we examine procedures for calibration, normaliza-

tion and standardization of such expression values. In particular, we evaluate

the performance of the preprocessing methods that were proposed by Karp et al.

([10]). The figures in this chapter are based on the measurements taken from

the ‘master gel’ of the TrkA experiment, i.e. the gel with the greatest number of

detected spots (3562, here). Nevertheless, we obtained the same results from all

other gels of the experiment.

2.1. Calibration

An impression of the necessity of calibration can be obtained from figure 1

were the raw background subtracted spot volumes (that have been obtained from

the DeCyder software) of the Cy2, Cy3 and Cy5 labelled samples are plotted

against each other. The plots show linear dependencies between the different
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Figure 1: Raw background subtracted spot volumes spot volumes of the
Cy2, Cy3 and Cy5 labelled samples plotted against each other.

labelled samples. However, the point clouds appear not on the line of gradient

unity, so it can be assumed that the scatter is not only due to biological variation

but also to some dye effect. To remove this technical variation given by these dye

effects Karp et al. ([10]) and Kreil et al. ([12]) proposed to use the calibration

model

(2.1) yij = aj + bj ỹij ,

separately for each gel, with i=1, ..., n and j =1, 2, 3, where ỹij is the measured

background subtracted spot volume of the ith spot from the sample that has
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been labelled with the jth dye. The calibrated value of this spot volume is yij.

The dye effects are adjusted by the scaling factors bj and the additive offsets aj

compensate for any constant additive bias present after background subtraction.

This calibration model was developed by Huber et al. ([7]) for the calibration

of DNA microarrays. A corresponding software package, called ’vsn’, for the

open source statistic software R (available at http://cran.r-project.org) uses

a robust version of maximum likelihood estimation for the estimation of the

model parameters. We will call this preprocessing method the ‘vsn-method’, here.

After calibration the spot volumes scatter around the bisecting line (figure 2) and

the scatter should now represent only the biological variation. This calibration
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Figure 2: Spot volumes, calibrated by the vsn-method, of the Cy2, Cy3
and Cy5 labelled samples plotted against each other.

method raises the question whether the dye effects were the same for all gels,

so we compared the estimated parameters when calibrating each gel of the TrkA

experiment. Table 1 shows the mean and its percentage deviation of the calibra-

tion factors and offsets for all gels of the experiment. As we can see the percentage

deviations from the means are higher than 100%, so there are obviously different

dye effects from gel to gel. Hence, the calibration has to be done separately for

each gel.

Table 1: The mean and its percentage deviation of the calibration factors
and offsets, respectively, when using calibration model (2.1)
for each gel of the TrkA experiment.

j µ1 = mean(aj) deviation(µ1) µ2 = mean(bj) deviation(µ2)

1 0.0006 128.0% 4.45 166.7%

2 0.0003 134.3% 6.67 155.1%

3 0.0001 125.8% 7.34 154.9%
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2.2. Variance stabilization and normalization

In figure 2 it can be seen that the deviations of the spot volumes from the

different labelled samples calibrated by the two methods is bigger for big values

than the deviation for small values. For all five gels that have been prepared with

the samples taken at time five (24h) we calibrated the expression values by the

above method. From these values we calculated the mean and the variance of

each spot. We analyzed only those spots which have been detected on at least

three gels of time five, i.e. 1910 spots. The ranks of the means are plotted against

the variances in figure 3a. Here, it can also be seen that the variance for big values
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Figure 3: Rank of the mean versus the variance of a) the calibrated spot volumes,
b) the calibrated and log-transformed spot volumes and c) the calibrated
and asinh-transformed spot volumes.

is larger than the variance for small values. For this reason, in the standardisation

process (cf. next section) where the internal standard is subtracted from the

treatment and from the control, respectively, we also apply a transformation

to stabilise the variance. One can either apply the logarithm or the asinh on

the calibrated values to get a uniformly distributed variance. Figure 4 shows

the calibrated spot volumes with the logarithm applied on them. However,
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Figure 4: Calibrated and log-transformed spot volumes.
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the logarithm goes very fast to −∞ for small values and can thus causes

a bias for small values. Instead of the logarithm one can also use the asinh.

This is a function that is similar to the logarithm but smoother for small values.

The calibrated and asinh-transformed values are plotted in figure 5. The effect
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Figure 5: Calibrated and asinh-transformed spot volumes.

of these transformations on the variance-mean-dependencies can be seen in

figure 3. Fig. 3b and c show that after applying the logarithm or the asinh

transformation to the calibrated values the variance is stabilised with respect to

the mean.

2.3. Standardization

The benefit of the DIGE method is to have an internal standard on each gel.

The internal standard is a sample consisting of aliquots from all other samples

of the experiment. Subtracting the values of the internal standard from values

from the treated and untreated samples brings all gels on the same level and thus

reduces the gel-to-gel variance. The complete preprocessing for the treatment

values is thus given by either

(2.2) log(a2 + b2 ỹi2) − log(a1 + b1 ỹi1) ,

or by

(2.3) asinh(a2 + b2 ỹi2) − asinh(a1 + b1 ỹi1) ,

and similarly for the control values. In figure 6 the density histogram of the

vsn-processed and standardized values for the treatment values is given.

This distribution is symmetric and nearly normally distributed as can also be

seen in the QQ-plot.
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Figure 6: a) Density histogram of the preprocessed spot volumes from
the treatment sample. b) QQ-plot from these values.

3. ESTIMATION OF MISSING VALUES

Many statistical methods, especially those for multivariate data, are based

on the assumption that the data set to be analyzed is complete. However, in 2-D

DIGE studies with gel replicates between 10 to 30 % of the values are missing.

This is due to the fact that not all spots are detected or matched on each gel.

In this section we compare two methods for the estimation of missing values, the

‘row-mean method’ and the ‘k-nearest neighbour (knn) method’. The latter one

has already been successfully applied to microarray data (cf. Troyanskaya et al.

([17])). To illustrate these two methods we consider a simple example with arti-

ficial data of six spots on four gels (cf. table 2). In this example spot 2 on gel 3

Table 2: Artificial gel data with a missing value for spot 2 on gel 3.

gel 1 gel 2 gel 3 gel 4

spot 1 24.21 28.87 21.59 22.79
spot 2 26.43 18.07 23.84
spot 3 238.42 270.97 258.74 233.63
spot 4 27.53 30.05 25.35 28.50
spot 5 132.58 152.61 144.09 148.82
spot 6 250.41 277.93 273.65 264.53

has not been detected, so the value is missing. The row mean method simply

uses the average of all available measurements in the row where the value is

missing as estimator for this missing value. For the example in table 2 the

estimated value for spot 2 on gel 3 is then (26.43 + 18.07 + 23.84) / 3 = 22.78.

The underlying idea of the knn method is that there is a relationship between

the expression profiles of some proteins. So, if a value for spot x is missing, the
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method uses the values from those spots which are strongly related to this spot x.

To determine the relationships of spot x to all other spots of the data set one can

use a distance measure like the Euclidean, the Mahalanobis or the Chebyshev

distance (cf. Jung et al. ([8])). If the value for spot x is missing on gel y, these

distances are calculated by using only the values from the gels other than gel y.

In the example, we use the values from gel 1, 2 and 4 to calculate the distances of

spot 2 to all other spots. Spots 1 and 4 have a very short distance to spot 2, here,

so we take the values from spot 1 and 4 on gel 3 to estimate the missing value,

for example by taking the average of these values: (21.59 + 25.35) / 2 = 23.47.

Other possible estimators are the median or some weighted mean. An important

question that appears when using the knn method is, how many neighbours

should be used for the estimation. To determine the estimation error we used

the five gels from the fifth time point in the TrkA experiment, removed all rows

with missing values, so that a complete data set A with 526 rows and 5 columns

remained. From this data set we generated 4 incomplete data sets B1 to B4 with

5, 10, 20 and 30 % of randomly chosen missing values, respectively. Then we

applied the knn method using different numbers k of neighbours. The resulting

filled up data sets C1 to C4 were then compared to the original complete data

set A by calculating the normalized root mean square (RMS) error:

(3.1) normalized RMS error =

√

n
∑

i=1

m
∑

j=1

(Aij − Cij)2/(n ∗ m)

m
∑

i=1

m
∑

j=1

Aij/(n ∗ m)

,

where n is the number of spots and m is the number of replicates. A plot of this

error is given in figure 7. Plot 7a shows the error when using the knn method
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Figure 7: a) Normalized RMS error in dependence of k. The knn method applied
a) to data with different proportions of missing values, b) with different
distance measures and c) with different missing values estimators.

with the Euclidean distance and the mean applied to data sets with different

proportions of missing values. The error increases with increasing proportion of

missing values and the minimum of the curves is between 5 and 20 neighbours.

We compared also the performance of the difference measures (figure 7b) and
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of the estimators (figure 7c). For both plots a data set with 30% of missing

values was analyzed. Furthermore, for figure 7b the mean was used as missing

values estimator and for figure 7c the Euclidean distance was used as distance

measure. These plots show that using the Euclidean distance is slightly better

than using the Mahalanobis or the Chebyshev distance and that the mean is a

better estimator than the median or a weighted mean. We obtained the same

results from plots with other combinations of difference measures and estimators.

Compared to the row-mean method the knn method results in smaller errors.

The minima of the error-curves of figure 7a and the errors of the row-mean method

are given in table 3. As further research activity it would also be of interest to

compare the knn method to other imputation methods given in Nguyen et al.

([14]). They use for example Partial Least Square (PLS) regression to impute

missing values.

Table 3: Comparison of the normalized RMS error when using
the row mean method and the knn method, respectively.

proportion of 5% 10% 20% 30%
missing values

row mean error 0.13 0.19 0.26 0.32

min (knn error) 0.02 0.04 0.05 0.07

4. LONGITUDINAL DATA ANALYSIS

4.1. Analysis of variance

Before doing the statistical analysis we preprocessed the data by the vsn-

method described in chapter 2. We also filled up the missing values by the knn

method described in chapter 3. The interest of the statistical analysis was to

find those proteins for which the expression profiles over the time were different

in the treated and untreated sample, respectively. In order to find differences in

the temporal course of the treated and untreated samples we used an analysis of

variance model for longitudinal data (cf. Jung et al. ([8]) and Diggle et al. ([5])).

Such a model should take the time dependence of the measurements into account.

Using F-tests one can detect time/treatment-interactions of spots. For our analy-

sis we used only those spots for which at least three values were available at each

time point. The detected significant spots are presented in table 4. The p-values

in this table are not corrected for multiple testing (cf. Dudoit et al. ([6])), because

the number n of spots is not clearly fixed in a 2-DE experiment. Biochemist often

decide to exclude a great number of spots still after the statistical analysis.
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Table 4: Spots with a time/treatment interaction.

rank spot-no. p-value

1 1136 0.0023
2 910 0.0055
3 988 0.0075
4 1669 0.0255
5 1054 0.0428

The expression profiles of the two most significant spots are plotted in figure 8.

Both spots have a similar expression at the beginning of the experiment and the

profiles drift at the end.
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Figure 8: a) Temporal courses of the expression values of the
spot numbers 910 (a) and 1136 (b) in the treated
(solid line) and untreated (dashed line) samples.

4.2. Biological implications

This biological experiment was performed to identify candidate proteins

contributing to neuroblastoma clinical outcome. We identified 5 proteins with

a time/treatment-interaction upon addition of neurotrophin in SY5Y-TrkA cells

(table 4). These proteins were identified using MALDI (matrix assisted laser

desorption and ionization) mass spectrometry. For instance protein 910 with a

changed temporal course after neurotrophin receptor activation consists to a fam-

ily of heat shock proteins known to be involved in a number of cellular processes.

Regarding cancer research the increased expression of heat shock protein 70 (Hsp

70) has been reported in a variety of tumor tissues. Hsp 70 has also been detected

in plasma and therefore could potentially be used as a biomarker for diagnosis.

It has been demonstrated, that patients suffering from prostate cancer have an

increased level of Hsp 70 in the blood plasma (cf. Abe et al. ([1])). Based on this

knowledge Hsp 70 could be a candidate tumor marker for neuroblastoma. To test

this hypothesis further experiments have to be performed.
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5. FUTURE CHALLENGES IN STATISTICAL PROTEOMICS

The statistical analysis of protein expression data is similar to the analysis

of gene expression data from DNA microarrays. A future challenge for statisti-

cians is the adaption of the methods for the analysis of gene expression data to

be applicable to protein expression data. An important question of genomics was

to find genes with differential expression in samples from different tissue types

(cf. Jung et al. ([9])). Statistical tools for this purpose can also be applied to

protein expression data from 2-DE when having estimated the missing values

before. Of interest are also protein expression data from mass spectrometry (cf.

Aebersold and Goodlett ([2]) and Pusch et al. ([15])). Statistical applications

for those data span the whole range of multivariate methods like classification

problems or multivariate outlier detection.

Furthermore, interactions between biomolecules are important in many im-

portant processes, such as cell proliferation and cell signalling. When pathogens

(e.g. bacteria) attack our body, it responds by producing many antibodies. They

bind to a part of pathogen, called antigen. Biochemists have studied how and

where a given antibody binds to an antigen by investigation of a single point

mutant of the antibody. Andersson ([4]) describes a different strategy for such

mutation experiments. Instead of mutating each antibody at one position only,

several modifications are made in the same antibody. Using statistical tools like

Partial Least Squares regression he could find out which modification was relevant

for establishing the binding. Also the investigation of the impact of environmental

changes on the binding strength of an antibody-antigen interaction is important

for antibodies used in diagnostic tests for cancer.

In both situations the binding properties of the interaction of biomolecules

can be characterized by association and dissociation rates. These parameters can

be measured by surface plasmon resonance detectors. New multivariate methods

should be developed to analyze the relationships between these kinetic parame-

ters and all the factors that influence these measures and to predict the kinet-

ics of biomolecular interactions for new combinations of explanatory variables.

There is also need for new statistical tools which allow the inclusion of structural

and sequence information from nuclear magnetic resonance spectra and Fourier

transform ion cyclotron resonance mass spectra for generating new biological and

clinical knowledge. Such extensions of available methods could be of consider-

able importance in drug development for improving the binding of a drug to the

desired target and for decreasing unwanted side reactions.
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