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Abstract:

• The Illumina BeadArrayTM platform is a novel microarray technology based on ran-
domly assembled arrays of beads. Each bead on the array carries copies of a single
gene-specific probe with, on average, about 30 replicates of each bead type on an array.
Given the encouraging results regarding the reproducibility of BeadArrayTM data
and high profile studies already being carried out using the BeadArrayTM technol-
ogy, there is likely to be an increase in the volume of BeadArrayTM data available.
A major advantage of BeadArrayTM technology is the high degree of replication of
beads of a given type. However, current analysis methods give summarised informa-
tion for each bead type as output rather than information for each individual bead on
the array. The beadarray R package is able to recreate individual bead information for
arrays using raw images as input. Here, we use a particular experiment to illustrate
the image processing steps used by Illumina and corresponding methods available in
beadarray. Our investigations into BeadArrayTM data have demonstrated a high de-
gree of reproducibility both within and between arrays. However, we identified some
aspects of the low-level analysis that could be improved.
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1. BACKGROUND

A BeadArrayTM is an array of randomly positioned, three micron diameter,
silica beads. Around 105 copies of a particular DNA sequence of interest are
covalently attached to each bead ([15]). The position and identity of each bead
on the array is determined using an automatic registration algorithm ([5]) and a
molecular address ([7]). The DNA sequences attached to the beads are 75 base
pairs in length, with 25 base pairs used for decoding and 50 base pairs for target
hybridisation. This long-oligonucleotide approach has been shown to agree well
with the popular short-oligonucleotide technology used by Affymetrix ([2]).

A pool of different bead types is created, beads of the same type having
the same probe sequence attached. Separately, a fibre-optic bundle is treated
with acid to create wells for individual beads to fit in ([10]). The fibre-optic
bundle is exposed to the bead pool, causing the beads to be randomly sampled
and assembled in the wells on the surface of the bundle.

Illumina have developed two different platforms which combine multiple
BeadArrays. A SentrixTM Array Matrix (SAM) contains 96 arrays, each of
which has approximately 50,000 beads and around 1500 distinct bead types.
A BeadChipTM allows either 24,000 bead types to be interrogated on eight sam-
ples simultaneously or 48,000 bead types across six samples. These multiple
array technologies make the BeadArrayTM platform especially suitable for high
throughput experiments ([3], [1], [8]). The distribution of bead types on an array is
effectively Poisson due to the random sampling of beads from the very large bead
pool. Each bead type is represented about 30 times on average with extremely
low probability of any bead type being represented less than five times ([9], [7]).

Large volumes of data can be generated using a single BeadArrayTM.
Given these various new array technologies, there is clearly a need for statistical
tools to analyse such data. There is already a wealth of software for statisti-
cal analysis of microarray data available in R packages on Bioconductor ([6],
www.bioconductor.org). One of the most commonly used packages is limma

(Linear Models for Microarray Analysis, [12]), which is an analysis package for
two-colour microarrays. beadarray uses a similar programming style to limma

and has recently been submitted as a development package to Bioconductor.
The source for the package can be obtained at

http://www.bioconductor.org/packages/bioc/1.8/html/beadarray.html .

We used the data described in [16] to demonstrate the functionality of
beadarray and to investigate the low-level analysis, processing and quality of
BeadArrayTM data. [16] studied the expression levels of some 700 genes measured
in cell lines from 60 CEU individuals used in the Hapmap project ([3], [1]). The
experiment comprises five SAMs with each of the 60 individuals replicated 6–8
times. Each array on the SAM had 1471 bead types with multiple (usually two)
bead types for each gene under investigation and included various control probes.
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2. PROCESSING OF BEADARRAYTM DATA BY ILLUMINA

In this section we describe the steps involved in the analysis of BeadArrayTM

data.

2.1. Image processing

The image processing steps used by Illumina to calculate bead intensities
from raw images are described in [9]. These are given below:

(i) All pixel intensities are altered using a sharpening transformation.
The intensity of a particular pixel is made higher / lower if its intensity
is high / low in comparison to the intensities of the pixels surrounding it.

(ii) Foreground intensities are calculated as a weighted average of signals
obtained using the four pixels nearest to each bead centre as a virtual
bead centre. Sharpened pixel intensities are used in the calculation.

(iii) The local background, an average of the five dimmest pixels (unsharpened
intensities) within the 17×17 pixel area around each bead centre, is sub-
tracted.

Currently, raw TIFF images (see Figure 1) are read by an Illumina Bead-
Array Reader, giving bead-level data which can be read into the software package
BeadStudio for analysis. At present, these bead-level data are encrypted and
cannot be viewed directly. Bead-summary data can be output from BeadStudio
with an unlogged, averaged intensity given for each bead type along with the
number of beads used to calculate the average and the standard deviation of
unlogged bead intensities.

2.2. Outlier removal and creation of bead-summary data

Outliers for each bead type are detected using the unlogged intensities of
all beads of the same type. Any beads with intensity more than three median
absolute deviations (MAD) from the mean are classed as outliers and excluded.
The background measure reported for all beads is a single value, the mean of the
negative controls on an array, rather than the local background values that are
subtracted from each bead intensity.
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Figure 1: A raw image scanned from a BeadArrayTM and viewed through BeadStudio.
As with images scanned from conventional microarrays, each pixel intensity
on the image represents the amount of hybridisation detected at each point
on the array. Each three micron bead on the array is represented by nine
pixels in a 3×3 square and are located roughly six microns apart.

2.3. Quality control of bead-summary data

Visualisation tools provided by BeadStudio include:

(i) plots of the unlogged intensities of control probes across all arrays;

(ii) scatter plots for comparing bead-summary data between two arrays;

(iii) interactive image plots of raw images with information about the intensity
of each pixel (rather than bead intensity) on the image;

(iv) agglomerative clustering (average linkage method) of genes or samples using
various distance and similarity measures.

The statistical analysis incorporated in BeadStudio for assessing differential ex-
pression between samples includes a Mann-Whitney test, Illumina custom (iter-
ative robust least squares fit) or standard t-test. Normalisation choices include
scaling by array averages, qspline [17] or scaling based on controls or rank invari-
ant genes. Intensities may also have an additional background correction applied.
This is based on the average of negative control genes and is called the method
of background normalisation by Illumina.
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3. PROCESSING OF BEADARRAY DATA using beadarray

The beadarray package was written to implement the analysis of Bead-
ArrayTM data in R in the same manner as two-colour microarrays or Affymetrix
data, and to investigate image processing. An important feature of beadarray is
the ability to access full bead-level detail for arrays rather than the bead-summary
data given by BeadStudio. beadarray can also be used to analyse pre-processed
bead-summary data created by BeadStudio.

3.1. Image processing

beadarray is able to create bead-level data by using the raw images scanned
from BeadArrays, the locations of the bead centres and by implementing the steps
described in Section 2.1. However, local background correction and sharpening
are optional within beadarray, as is the background normalisation using negative
controls. beadarray supports some of the background correction methods avail-
able in the limma R package, along with a selection of standard normalisation
methods ([14]) found in limma and the affy packages.

3.2. Spatial plots

beadarray includes methods to identify automatically and to investigate
any spatially dependent problems which may occur on BeadArrays. Users are
able to screen all arrays in an ad-hoc manner to identify any arrays with unusual
distributions of beads and these arrays can then be viewed in more detail.

We have implemented a test statistic to investigate the spatial randomness
of a set of bead coordinates on an array. For this we divide the hexagonal array
into eight sections and use a χ2 goodness-of-fit test to assess the randomness of
the number of beads found in each section (see Figure 2).

We use the χ2 statistic to identify bead types on an array with appar-
ent non-randomness and investigate these further with a spatial plot function.
We also find it useful to apply similar χ2 tests on the positions of the outliers so
that arrays with spatial clustering of outliers can be quickly and easily identified.
The raw images corresponding to the arrays can then be viewed through beadar-

ray and the location of outliers in a region can be highlighted (see Figure 3).
The function for displaying images can also be run interactively; clicking on a
particular bead displays information such as the local background level, unsharp-
ened intensity and identity of the bead.
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Figure 2: Using beadarray to assess randomness of bead positioning.
(A) The array is divided into eight sections of roughly equal area. The
coordinates for a particular bead type are used to find the number of beads
located in each of the sections. These are then compared to the expected
number of beads if the beads were randomly distributed among all sections.
The beads in this example are uniformly spread. (B) For this bead type
there is a tendency for beads to be located in the lower half of the array.

Figure 3: Viewing TIFF Images. Figure produced by beadarray.
beadarray allows regions on the original TIFF images to be viewed in
more detail. The intensity of each pixel is given on the log2 scale with
a brighter shade of green indicating a larger intensity. Bead centres are
indicated by black crosses. This screenshot shows a region on an ar-
ray with many outliers. Beads which are outliers are indicated by blue
or red dots if their intensities are higher or lower than the mean for
their bead type. Any beads which failed the decoding process can also
be highlighted if desired. An interactive mode is also available whereby
clicking on a particular bead gives information about that bead, such
as the identity of the bead type and the foreground and background
intensities. For colour picture see Supplementary Figures available at
http://www.damtp.cam.ac.uk/user/jcm68/beadarray.html
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3.3. Outlier removal

To visualise the variability of beads of the same type on the same array
we plot the distance of each bead from the centre of the array against the log2

or unlogged intensity (see Figure 12). beadarray allows outliers to be identified
using either unlogged or log2 intensities and using arbitrary numbers of MADs
from the mean (the default is the Illumina setting of three MADs from the mean).

3.4. Quality Control

The average intensities of each bead type can be compared between multiple
arrays using MA plots and scatter plots [4]. We can also compare the average
intensity for any given bead type (not just control probes as in BeadStudio)
between different arrays in the experiment and relate this information to the
position of each array on the SAM using a “SAM Summary plot” (see Figure 4).
The function used to create this SAM Summary plot can use any set of 96 values
as input rather than just the values of control probes. For instance, one could
plot the number of outliers found on each array to summarise the number of
outliers on arrays over the SAM.
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Figure 4: The SAM summary plot available in beadarray.
In this plot we show the bead average values for a particular control across
all arrays on a SAM. In the left-hand plot the (unlogged) bead average
value is plotted against array index. On the right-hand plot, 96 hexagons
are shown in the same arrangement they appear on the SAM. The colour
of each hexagon is related to the value of the bead average on that array;
darker shades of grey indicate lower values. For this case we can see that
the lowest bead average values occur on the left side of the SAM.

At present, beadarray is a package for quality control and low-level analysis
only and does not provide any methods for determining differentially expressed
genes. However, since beadarray was developed in the same programming style as
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limma it should be straightforward to adapt existing methods for linear modeling
([11]). Accessibility to full bead-level data also makes it easier to combine the
data from different arrays in a more flexible way. In particular, it is possible to
produce weighted averages for each bead type over different replicates on either
the log2 or unlogged scales. In BeadStudio, only unlogged values are available
and therefore averages can only be combined on the unlogged scale.

4. RESULTS

In this section we show the results of our investigation into the methods
used by Illumina for low-level analysis and image processing. This section also
demonstrates some of the functionality available within beadarray.

4.1. Numbers and positioning of beads

The random sampling used in the construction of BeadArrays gives a ran-
dom placement of beads and an average of approximately 30 of each bead type on
an array. This randomness minimises the influence of spatially localised effects
and lends robustness to the calculation of bead-summary data. The diagnos-
tic tests described in Section 3 can be used to confirm the random nature of
BeadArrays (see Figure 5). For every array under investigation, the mean num-
ber of beads of each bead type was found to be approximately 30 as expected.
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Figure 5: Random properties of BeadArrays. Figures produced by beadarray.
(A) Histogram of the number of times each bead type is found on an ar-
ray before outlier removal. The dotted line indicates the expected Poisson
frequencies. (B) Distribution of the χ2 statistics calculated for each bead
type on an array. The dotted line indicates the expected χ

2 distribution.
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The Poisson distribution of counts of each bead type shows that the probability

of a bead type being represented less than five times is extremely low. Moreover,

Illumina will not release an array where this has occurred. Even after outlier

removal, no bead type on the five SAMs was found to have less than 11 beads

on any array. Calculating the χ2 statistic for all bead types on an array and

repeating for all arrays confirms the random distribution of the beads.

4.2. Image processing

We used one array at a time from one SAM to look closely at the image

processing steps used by Illumina. For each of these arrays, we took the raw im-

age for the array and bead centre information provided by Illumina to calculate

the foreground and local background intensities for each bead using the beadar-

ray implementation of the steps described in Section 2.1. We did not perform

background correction on the foreground intensities so that we could analyse the

foreground and local background levels separately. Foreground intensities were

also calculated without using the sharpening mask prior to averaging pixels for

each bead (unsharpened intensities).

Figure 6 shows the effect of image processing on five arrays from the same

SAM. Similar results were obtained for all arrays on the same SAM. From box-

plot 6A we see that the unsharpened log2 intensities have a very low dynamic

range and most of the bead intensities are concentrated between 10 and 11.

As we are reading 16-bit images the maximum value for unsharpened log2 inten-

sities is 16. However, if we apply sharpening to all pixels in the image and then

calculate bead intensities, we affect the range of bead intensities produced. From

the boxplots in 6B we see that the maximum values of bead intensities are now

greater than 16 and the minimum values in the boxplots are lower than the min-

imum of boxplots in 6A. This implies that sharpening is increasing some bead

intensities while decreasing others. The inter-quartile range of boxplots in 6B

appear to be the same as for boxplots in 6A. In the boxplots in 6C we can see that

the local background levels calculated for individual beads are virtually constant.

Performing a local background correction on the sharpened intensities gives the

intensities seen in boxplots in 6D. Similar results were produced using a global

background correction (median of all local background measures). We notice that

the dynamic range of boxplots in 6D are much higher than both boxplots in 6A

and 6B.

Figure 7A confirms the results seen in boxplots in 6B. For most beads

we see a positive difference between the sharpened and unsharpened intensities.

However, it is also possible for sharpening to cause a decrease in bead intensities.

This is most likely to happen for beads with low unsharpened intensities.

For some beads with low intensity the effect of sharpening is very dramatic,
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making the beads have very low intensity. Note from Figure 6A that most un-

sharpened beads lie within the range 10–11 on the log2 scale so could be highly

altered by sharpening. Figure 7B also shows that background correction can have

a very different effect depending on the unsharpened intensity. Local background

correction is done using unlogged intensities. Therefore, it is not surprising that

the higher intensity beads are less affected by local background correction. Lower

intensities are affected much more dramatically by local background correction.

For beads less than log2 intensity 11 the effect is nearly always negative, coun-

teracting the increased intensity generally caused by sharpening. It seems that

sharpening and local background correction have a non-linear effect on the data

even on the log2 scale. This phenomenon is consistent on all arrays we investi-

gated.
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Figure 6: Effects of sharpening and background correction on raw intensities.
Figures produced by beadarray.
(A) Boxplot of the unsharpened foreground intensities of all beads on the
array. (B) Boxplot of foreground intensities of all beads on the array calcu-
lated using the sharpening mask. (C) Local background levels calculated
for all beads on the array. (D) Boxplots of sharpened foreground intensities
which have been background corrected by subtracting the local background.
(These are the foreground intensities calculated by Illumina.)
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Figure 7: The effect of sharpening and local background correction on raw intensities
for a particular array.
(A) The x axis represents the unsharpened intensities of all beads on an
array and the y axis represents the difference in unsharpened and sharp-
ened intensities for each bead. (B) Here, the y axis represents the differ-
ence between the unsharpened intensities of each bead and the intensity
after sharpening and background correction. See Supplementary Figures at
http://www.damtp.cam.ac.uk/user/jcm68/beadarray.html for a larger
version of this figure.

4.3. Variability within bead types

Figures 6 and 7 demonstrate the global effect of sharpening and background

correction on all beads on the array, but it is also of interest to know the effect on

beads of the same type. In Figure 8 we show the standard deviation (SD) for all

replicates of the first 50 bead types on an array both with and without sharpening

and on the unlogged scale. Note that no outliers have been removed at this stage.

The lowest SD is seen when foreground intensities are calculated without using

sharpening or background correction. If we apply sharpening to all pixels in the

image prior to calculating foreground intensities we see a slight increase in SD

on the log2 scale. Background correction on the foreground intensities calculated

using the sharpening mask results in a marked increase in SD.
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Figure 8: Effect of sharpening and local background correction on standard
deviation of beads.
For the first 50 bead types on an array we show the standard
deviation of all beads using log2 intensities which are unsharpened,
sharpened or sharpened and background corrected.

4.4. Variability within and between arrays

We used one-way ANOVA on the unlogged foreground intensities on three

replicate arrays to calculate the mean square error (MS) of each bead type within

and between arrays. We repeated this using both sharpened and unsharpened

intensities (see Figure 9). We again see that sharpening has the effect of increasing

the variability between beads of the same type, both within and between arrays.

The result is the same even when we use CV to measure the variability relative

to the overall increased intensity due to sharpening. As would be expected, the

variability between arrays is higher than the variability within arrays.
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Figure 9: Within and between (replicate) array variability.
(A) log (base 2) of mean square error (MS) of bead types. (left to right)
We show the log2 values of MS within arrays using unsharpened intensities,
MS within arrays using sharpened intensities, MS between arrays using
unsharpened intensities and MS between arrays using sharpened intensities.
(B) Coefficient of variation (CV) of bead types. (left to right) We show the
CV within arrays using unsharpened intensities, CV between arrays using
sharpened intensities, CV between arrays using unsharpened intensities and
CV between arrays using sharpened intensities. Calculations were made on
unlogged data, then the MS and CV statistics were transformed to the log2

scale.

4.5. Effect of sharpening on outliers

Since sharpening has been shown to increase the variability of beads of the

same type, we might also expect sharpening to have an effect on the outliers on

an array. To investigate this in more detail we first used the unsharpened (log2)

bead intensities and calculated the MAD for each bead. This was repeated using

sharpened intensities and the MADs before and after sharpening were plotted
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(see Figure 10). Most beads are seen to have MADs < 3 both with and without

sharpening. However, some beads which have MADs > 3 without sharpening

have MADs < 3 with sharpening (dark grey). In other words these beads were

outliers without sharpening and the process of sharpening has made them no

longer outliers. Similarly, some outliers are created by sharpening (light grey).

The number of outliers created and removed by sharpening seems to be about

the same. In general, we observe that beads have a lower MAD after sharpening.

Further investigation revealed that out of the 1420 outliers detected on this array

using sharpened intensities, 366 were removed by sharpening and 255 outliers

were created by sharpening.
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Figure 10: The effect of sharpening on outliers.
For all beads on an array we show the MAD of the bead calculated with
and without using sharpening. The horizontal and vertical lines indicate
3 MADs (i.e. the cut-off that Illumina use to determine outlier beads).
Dark grey spots indicate beads that are outliers without using sharpening
but not outliers after sharpening whilst light grey spots indicate beads that
are not outliers before sharpening but are outliers after sharpening.

In Figure 11 we show the total number of outliers on 12 arrays and how

many outliers are created or removed by sharpening. It can be seen that the num-

ber of outliers created by sharpening is slightly higher than the number removed

by sharpening. The majority of outliers for a particular array are unaffected by

sharpening.
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Figure 11: The effect of sharpening on outliers.
For 12 arrays we show the number of outliers which are removed
and created by sharpening along with the total number of outliers
on the array and outliers unchanged by sharpening.

4.6. The number of outliers on arrays

The number of outliers on each array is on the order of 1000–3000 beads;

roughly one to two outliers per bead type or 1%–6% of total beads. These

numbers are consistent across all arrays in the 96 array SAM and for all SAMs.

In rare cases, as many as six or seven outliers were found for some bead types.

However, only 0.5% of bead types on the 96 arrays had more than five outliers

detected.

4.7. Outlier detection

As described in Section 3, beadarray offers a more flexible method for

determining the outliers for a given bead type. We now use the sharpened,

non-background corrected intensities for a particular bead type on an array to
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demonstrate this flexibility (see Figure 12). The number of outliers detected for a

particular bead type is dependent on the choice of scale used (unlogged or log2).

In Figure 12 it can be seen that this choice has little effect on the total number

of outliers that are detected on an array.

0 200 400 600 800 1000

0
20

0
40

0
60

0
80

0
10

00

A

Distance

In
te

ns
ity

0 200 400 600 800 1000

0
5

10
15

B

Distance

In
te

ns
ity

5 10 15 20

0
50

0
10

00
15

00
20

00
25

00
30

00

C

Array Index

N
um

be
r 

of
 O

ut
lie

rs
Figure 12: Outlier detection using beadarray and the effect of the choice of scale.

(A) Unlogged intensities of all beads of a particular type on the same array
are plotted on the y axis. The dotted horizontal lines represent a shift of
3 MADs from the mean (solid horizontal line). Beads outside the dotted
lines are outliers for this bead type. Plotting the distance of each bead from
the centre along the x axis allows for the possibility of identifying spatial
effects on the array. (B) Intensities for the same bead type shown on the
log2 scale. As before dotted lines represent a shift of 3 MADs from the mean.
(C) The number of outliers detected in the sharpened, non-background
corrected intensities on 24 arrays using either the log2 or unlogged scale.

4.8. Spatial plots of outliers

It is important to know where outliers are located on arrays as this can

indicate possible spatial artifacts. Figure 3 shows a region on the far left tip of

one of the arrays under investigation. It is quite apparent that this part of the

array contains a significant spatial artifact. The consequence of this artifact is

that beads lying within the affected area show an increased hybridisation level and

are subsequently classified as outliers. Note that Figure 3 serves as an extreme

example and spatial artifacts were only detected on a small number of arrays.

Spatial artifacts were found more often around the edges of arrays and can be

automatically identified through the beadarray package using the χ2 statistic

without systematically viewing each array in the experiment.
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4.9. Effect of image processing on bead averages

We have previously shown that sharpening and background correction have
the effect of increasing the SD of replicate beads. We now ask if this increase in
SD among replicates has an effect on the resultant bead averages. In Figure 13
we plot the average log2 values (with outliers on the log2 scale removed) for four
control probes across 12 arrays without sharpening, with sharpening and with
both sharpening and background correction. Although the averages calculated
using sharpened intensities and averages calculated using sharpened and back-
ground corrected intensities are lower, we can clearly see the same trend in all
sets of averages. Controls A, B and C are housekeeping controls so show high
intensity across all arrays. The effect of background correction on these averages
seems minimal. The final control is a negative control and therefore we would
expect it to have low intensity across all arrays. The averages calculated using
background corrected intensities are much lower. As we saw previously, the effect
of background correction is much greater on lower intensity beads.
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Figure 13: Effect of sharpening on bead summaries for particular control probes.
Figures produced by beadarray.
The (unlogged) variation in bead-summary values calculated using
unsharpened, sharpened and sharpened background corrected bead
intensities for 12 arrays (x axes) in the same experiment. A, B and C
show the results for three hybridisation controls respectively and
D shows the results for a negative control across the 12 arrays.

For each bead type on each array we calculated the difference between
the bead averages obtained using unsharpened and sharpened intensities
(see Figure 14). This shows that the difference between the averages calculated
using sharpened or unsharpened intensities is around 0.2. Furthermore, for par-
ticular bead types, the difference between averages is fairly constant across arrays
(the SD is 0.01).
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Figure 14: Effect of sharpening on all bead averages on an array.
For 12 arrays we show the difference between the log2 bead
averages calculated using unsharpened or sharpened inten-
sities for every bead type on the array.

4.10. Variability between arrays

The generation of bead-summary data allows for conventional plots to be
used to compare probe intensities between arrays. We used the bead-summary
data from the first four arrays on the SAM (the first three of which are replicate
arrays) to make MA and scatter plots (Figure 15) and density plots (Figure 16).
Comparing replicate arrays allows us to observe both random and systematic
sources of variation. In Figure 15, the majority of points lie along the diagonal
for the scatter plots and along the central line for the MA plots. There is little
noise in the MA plots between replicate arrays and only some intensity dependent
bias is apparent (i.e. between Arrays 1 and 2). Comparisons involving the fourth
array show more variation as this array is a different sample to the other three.
In Figure 16 we see that the distribution of bead-summary intensities for these ar-
rays are similarly shaped. Apart from the obvious need for location normalisation
between these arrays, non-linear effects in the bead-summary intensities between
them are minimal. Similar observations were made between arrays across the
whole SAM. Comparing the average intensities of beads on the first array to all
other 95 arrays gave a median correlation coefficient of 0.98.
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Figure 15: Comparing average bead-type intensities. Figures produced by beadarray.
Scatter and MA-plots for the first four arrays on a SAM are shown.
The intensities shown have been sharpened but not normalised or back-
ground corrected. The first three arrays are replicates of the same sample,
hence display less variation.
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Figure 16: Comparing density plots.
We show the density plots of the bead averages for
the four arrays shown in Figure 15.
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5. DISCUSSION

Our preliminary investigations suggest a high degree of reproducibility with
BeadArrayTM data. Arrays are seen to exhibit highly similar distributions even
before any normalisation has taken place. The precision of replicates of the same
bead type is high both within and between arrays. Given the low variability of
BeadArrays there might be a danger of over-normalising the data and remov-
ing important biological information. Preliminary investigations suggest that
a quantile or qspline [17] normalisation is sufficient (data not shown [16]) for
bead-summary data. However, we feel that in general such normalisation op-
tions should be investigated and performed on the bead-level rather than bead-
summary data.

Our main finding concerning image processing was that the sharpening
transformation used prior to calculating foreground intensities causes an increase
in variability. The transformation is designed in such a way that high intensity
pixels (with respect to their neighbours) are made even higher and low intensity
pixels are made lower. Therefore, it is not surprising to find intensities greater
than 16 on the log2 scale after sharpening. However, it appears that the intensities
of beads of the same type are being altered independently of each other and this
causes an increase in variance. As a result of sharpening, we observed that the
bead type averages increase by around 0.2 and their SD’s increase by 0.01.

The background values for beads were found to be virtually constant within
arrays and also across arrays. Correcting using the local background measure is
effectively equivalent to using a global value. Background corrected data show
much more variability among beads of the same type. Automatic background
correction on BeadArrayTM data cannot therefore be recommended. beadarray

does not perform correction automatically, thereby allowing foreground and back-
ground levels to be analysed separately. It should be emphasised that the bead-
summary data produced by BeadStudio is automatically background corrected
using the local background measures. Therefore any attempts to correct pre-
processed bead-summary data (as given by the normalisation methods supplied
by BeadStudio) may have an adverse effect.

The beadarray package can be used to highlight and understand problems
that can occur with BeadArrays. We found random numbers and positioning
of beads on all arrays. The random positioning minimises the effects of spatial
artifacts on bead-summary data; such artifacts were rare. Due to the high repli-
cation of beads, any beads which occur inside such regions of unusual intensity
are declared as outliers and can be removed from analysis without affecting the
bead average values too much. The distribution of beads gives, on average, about
30 beads of each type. Depending on the scale of intensities used to detect out-
liers (either unlogged or log2) we might expect one or two of these beads to be
detected as outliers. For the five SAMs in the investigation, no bead type on any
array was found to have less than 11 replicates after outlier removal.
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The number of outliers for each bead type can be detected by using either
unlogged or log2 intensities. If we apply a log2 transformation to the data we

decrease the range of the intensities. The purpose of such a transformation is

to make changes in intensity comparable across the whole intensity range. Con-

verting to the log2 scale also tends to make the variability more constant ([13]).
Outliers which appear extreme on the unlogged scale will be much closer to the

mean on the log2 scale. Therefore, it might be more consistent to use log2 in-

tensities to calculate outliers if the intention is to use log2 intensities in analysis.

In practice, the decision to use unlogged or log2 intensities to determine outliers
had very little effect on the bead averages produced. Bead averages show very

low variability across replicate arrays of the same sample.

We believe that beadarray offers a very flexible platform for the analy-

sis of BeadArrayTM data. By recreating bead-level data from scratch, users

are given access to more information about each individual bead on an array.
Making sharpening and background correction optional gives the opportunity to

use diagnostic checks and make an informed choice about how data should be

pre-processed. As the amount of BeadArrayTM data available is relatively small

we can only make recommendations for how data should be pre-processed based
on our experience whilst developing the package. Analysing bead-summary data

using beadarray offers a greater range of plotting tools than existing methods.

Most importantly, all functions can deal with intensities on the log2 scale as is

common for microarray analysis. Whilst beadarray does not currently provide
any methods for detecting differential expression, these will be implemented in

future versions. beadarray can also provide a more flexible analysis of bead-

summary data pre-processed by Illumina.

In our study we have demonstrated how beadarray can be used for qual-

ity control and low-level analysis. We have presented some findings about the

impact of the image processing steps used by Illumina on a particular experi-
ment. The conclusions we reach in this paper may not indeed be valid in all cases

and subsequent experiments will need to be analysed in a similar manner before

more general conclusions can be reached. At the time of developing the package,

only SAM data were available to us. We are currently expanding the package
to include the analysis of BeadChipTM data. An investigation into normalisation

methods will be linked with an implementation of methods for assessing differ-

ential expression. It will be of interest to see how sharpening and background
correction affect the genes that are selected as differentially expressed.
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6. APPENDIX

The purpose of this appendix is to give an outline of the R functions for
analysing bead-level data. Descriptions of how to read and analyse bead-summary

data are provided in the Vignette distributed with beadarray. Those who are

familiar with the R statistical language, and in particular the limma package,

should be able to adapt easily to our new methods of analysis. Wherever possible
we used objects that are similar to those used by limma. Example files to read

bead-level data are provided at

http://www.damtp.cam.ac.uk/user/jcm68/beadarray.html
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6.1. Reading bead-level data

There are two sets of files that are required by our package in order to
create bead-level data.

• TIFF images — These are the raw images scanned directly from each in-
dividual array on a 96-well SAM. These are provided by Illumina.

• csv files — These define the location and bead type of each individual bead

on a particular array on a 96-well SAM.

Before these files can be read into R, we first convert the TIFF files into

PGM files. This can be done be using the ImageMagick utility 1. A batch file
is included with this library to convert automatically all the TIFF files in a

directory.

If the correct csv and pgm files are available we can read these data into

R using readBeadImages. This function requires a beadTargets object that can

be read directly from a beadTargets.txt file. This beadTargets object specifies

the filename of each image and csv file to be read.

In our example dataset we have two single channel BeadArrayTM hybridisa-
tions. Since the arrays are hybridised with one target only (one-colour), we need

only to specify one image file for each array. The beadTargets.txt file, pgm and csv

files are provided at http://www.damtp.cam.ac.uk/user/jcm68/beadarray.html.

Once downloaded, these files can be read into R. The R working directory can be
set to the folder containing these files using the setwd function or the file menu

(GUI implementation only). Alternatively the path argument in readBeadImages

can be set to the current directory. The commands to read the data into R are

then as follows:

> library(limma)

> library(beadarray)

> beadTargets = readBeadTargets()

> beadTargets

Image1 xyInfo SAMPLE

1269941_R001_C001.pgm 1269941_R001_C001.csv 6

1269941_R001_C002.pgm 1269941_R001_C002.csv 6

> BLData = readBeadImages(beadTargets)

Calculating foreground intensities for 1269941_R001_C001.pgm

Calculating background intensities.

Calculating foreground intensities for 1269941_R001_C002.pgm

Calculating background intensities.

1available from www.imagemagick.org — version 6.2.2 or later is required.
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The default setting for readBeadImages is to recreate the foreground and
background intensities for each bead in the same way in which they are calculated

by Illumina. However, the use of sharpening and local background correction are

optional (see section 3). To create unsharpened bead intensities one would use:

> BLData.ns = readBeadImages(beadTargets, sharpen = FALSE)

6.2. The BLData Object

The data object (BLData) is in fact a list object but behaves like a complex
sort of matrix. It can be subsetted or treated like a matrix in lots of ways.

We can use the names command to see what items can be found in the list.

BLData is an BeadLevelList object and like the RGList object in limma can

contain R, Rb, G and Gb objects (i.e. foreground and background intensities of
two colour data).

> is(BLData)

[1] "BeadLevelList" "list" "LargeDataObject" "vector"

> names(BLData)

[1] "R" "Rb" "x"

[4] "y" "probeID" "targets"

[7] "sharpened" "backgroundSize" "normalised"

[10] "backgroundCorrected"

Individual items in the list can then be accessed by using the $ operator

in R. In our example we have the matrices R and Rb which are the foreground
and background intensities for each bead (row) and each array (column). The

example shown here is for a single channel experiment, hence we only have a

foreground intensity value in the red channel and the green channel is not used.

If we had two channel data then BLData$R and BLData$G would be the red and
green channels respectively. The number of rows in the matrix is the same as the

number of beads present on the array and the number of columns is the same as

the number of arrays. In this example we only read in two arrays, so we only have

two columns. In other words, each column of the matrix represents intensities of
all beads on the same array. However, due to the random placement of beads on

the array, each row of the matrix does not relate to intensities of a bead of the

same type (as one might expect having dealt with conventional microarray data).

Since BeadArrayTM technology uses randomly assembled beads it is impor-

tant to know the location and identity of every bead on the array. Therefore the

BeadLevelList we are using in this library also contains the x and y co-ordinates
for each bead and an identifier (ProbeID) for the bead type of each bead.



Quality Control of BeadArrays 27

6.3. Background correction and normalisation

Using the boxplot function in R allows boxplots of foreground and back-
ground intensities to be compared (see Figure 6).

> boxplot(log2(BLData$R)~col(BLData$R))

Background correction can be be performed on the data by:

> BLData.c = backgroundCorrectBeads(BLData)

By default, the backgroundCorrectBeads function subtracts the values in
BLData$Rb from BLData$R and stores the result in the R matrix of the result-

ing BeadLevelList object. Other methods are available such as minimum which

ensures that no negative values are produced. The only normalisation methods

currently supported for bead-level data are median and quantile normalisation.

> BLData.med = medianNormalise(BLData)

> BLData.q = quantileNormalise(BLData)

6.4. Numbers of beads

Figure 5A can reproduced using the command

> histBeadCounts(BLData, array=1)

Additonally we can also see which bead types are represented less than 24

times (the 5th percentile for the appropriate Poisson distribution) on the array

using findLowestCounts. For the first array that we use:

> findLowestCounts(BLData, 1)[1:10]

[1] 10 23 30 42 87 119 182 185 585 607

For clarity only the first 10 results returned by the function are shown.

6.5. Outliers for each bead type

The plotBeadIntensities function was used to produce Figure 12. This

function shows the intensity of every bead of a particular type against the distance
of the bead from the centre of the array. Any outliers which exist for the bead
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type are marked on the plot by a red cross. As an example we can plot the
intensities of all beads with ProbeID 2 on array 1 and determine outliers using

unlogged or log2 intensities. This function also has the option of changing the

number of MADs from the mean used to determine outliers by changing the

n parameter.

> par(mfrow = c(1, 2))

> plotBeadIntensities(BLData, probe=2, array=1)

> plotBeadIntensities(BLData, probe=2, array=1, log = TRUE)

The function findOutliers is used within plotBeadIntensities to
determine the outliers for a particular bead type on an array. The function

findMostOutliers can be used to find which bead types have more than a set

number of outliers (the default is 5 outliers).

> findMostOutliers(BLData, array=1)

[1] 807 1702 2458 5244 5917 6015 6117

We can find all the beads on an array which are outliers for their bead type

by using the findAllOutliers function. The output of the function is an index

between 1 and 49777 which refers to a particular bead on the array (beadID).

> o = findAllOutliers(BLData, array=1)

> o[1:10]

[1] 44634 1263 8245 342 23176 6270 8898 31023 4273 15610

The length of the list can be easily found (length) and compared be-

tween different arrays as a diagnostic measure for the quality of the array.

Additionally, the location of all the outliers on an array can be plotted using
the plotBeadLocations function.

6.6. Spatial plots

The plotBeadLocations function can be used to plot the location of a set

of beads on an array. Beads can be specified by a list of ProbeIDs or beadIDs.

Figure 2A can be generated by using:

> plotBeadLocations(BLData, probeIDs=2, array=1)

The function plots all beads on the first array with ProbeID 2. By using

the o object created above we can also plot the location of all outliers on the first
array.
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> plotBeadLocations(BLData, beadIDs=o, array=1)

The plotBeadLocations provides a quick diagnostic check for the distri-

bution of a set of beads. As described in Section 3.2, we have also implemented

a χ2 statistic to quantify the non-randomness of bead distributions. This χ2 test

can be applied to all bead types on an array and the ProbeID of those with the
highest value can be returned by:

> findHighestChis(BLData, array=1)[1:10]

[1] 213 278 606 658 791 800 936 960 961 1071

Shown above are the ProbeIDs for the first 10 bead types with a χ2 statistic

greater than 14 (chosen because this is the 5th percentile of the appropriate

χ2 distribution). Any of these bead types can be investigated further by using
the plotBeadLocations function.

Any regions on an array found to have a high proportion of outliers can be
investigated further by the displayTIFFImage function.

> displayTIFFImage(BLData, array=1, a = 1000:1400, b=1200:1400)

The example above loads the original image for array 1 (the name of which
is stored in the targets object) and displays the intensities of pixels with x in the

range from 1000:1400 and y in the range 1200:1400.

The intensity of every pixel in the plot is represented by a shade of green,

with brighter colours indicating a higher value. The blue and red spots indicate

the position of outliers in the particular region with blue indicating beads with

intensity higher than the mean for that bead type and red being beads with in-
tensity lower than the average for their bead type. Yellow spots on the picture

represent beads which have been calculated to have a negative foreground in-

tensity. The black crosses show where the bead centres are located. Any beads

which failed the decoding process can also be highlighted by setting the showUn-

registered parameter.

The plot can also be made interactive by setting the locateBeads parameter
to TRUE. We can then click on any bead centre and display the foreground and

background intensities for this bead as well as a measure of the raw intensity.

We feel that displayTIFFImage gives more useful information about the

raw images than the equivalent function included in BeadStudio. In BeadStudio,

the user can explore the TIFF images and see the intensity of each individual

pixel. However, the identity of each bead on the image is not given and there is
no information about outliers.
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6.7. Creating bead-summary data

Bead-summary data can be created using the bead-level data. In producing
these summaries we must first remove outliers for each bead type as described

in Section 3.3. This averaging is done by the createBeadSummaryData func-

tion and the method of detecting outliers can be specified by changing the log

(for unlogged or logged parameters) and n (number of MADs) parameters.

> BSData = createBeadSummaryData(BLData)

The structure of the resulting object is described in greater detail in the

Vignette supplied with beadarray.


