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Abstract:

• In this paper we are interested in an adequate estimation of the dominant component
of the bias of Hill’s estimator of a positive tail index γ, in order to remove it from
the classical Hill estimator in different asymptotically equivalent ways. If the second
order parameters in the bias are computed at an adequate level k1 of a larger order
than that of the level k at which the Hill estimator is computed, there may be no
change in the asymptotic variances of these reduced bias tail index estimators, which
are kept equal to the asymptotic variance of the Hill estimator, i.e., equal to γ2.
The asymptotic distributional properties of the proposed estimators of γ are derived
and the estimators are compared not only asymptotically, but also for finite samples
through Monte Carlo techniques.
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1. INTRODUCTION AND MOTIVATION FOR THE NEW TAIL

INDEX ESTIMATORS

In Statistics of Extremes, the tail index γ is the basic parameter of extreme

events. Such a parameter plays a relevant role in other extreme events’ parame-

ters, like high quantiles and return periods of high levels, among others. The tail

index is a real-valued parameter and the heavier the tail, the larger the tail index

γ is. Heavy-tailed models have revealed to be quite useful in most diversified

fields, like computer science, telecommunication networks, insurance and finance.

In the field of Extremes, we usually say that a model F is heavy-tailed whenever

the tail function, F := 1 − F , is a regularly varying function with a negative

index of regular variation equal to {−1/γ}, γ > 0, or equivalently, the quantile

function U(t) = F←(1 − 1/t), t ≥ 1, with F←(x) = inf{y : F (y) ≥ x}, is of

regular variation with index γ. This means that, for every x > 0,

(1.1) lim
t→∞

F (tx)

F (t)
= x−1/γ ⇐⇒ lim

t→∞

U(tx)

U(t)
= xγ .

We shall here concentrate on these Pareto-type distributions. Note that (1.1) is

equivalent to saying that

(1.2) 1− F (x) = x−1/γ L
F
(x) ⇐⇒ U(x) = xγ L

U
(x) ,

with L
F

and L
U

slowly varying functions, i.e., functions L• such that

L•(tx)/L•(t)→ 1, as t→∞, for all x > 0.

The second order parameter ρ (≤ 0), rules the rate of convergence in the first

order condition (1.1) (or equivalently, (1.2)), and is the non-positive parameter

appearing in the limiting relation

(1.3) lim
t→∞

lnU(tx)− lnU(t)− γ lnx

A(t)
= lim

t→∞

lnL
U
(tx)− lnL

U
(t)

A(t)
=

xρ − 1

ρ
,

which we assume to hold for all x > 0 and where |A(t)| must then be of regular

variation with index ρ (Geluk and de Haan, 1987). We shall assume everywhere

that ρ < 0.

Remark 1.1. For the strict Pareto model, F (x) = 1 − C x−1/γ , x ≥ Cγ ,

and indeed only for this model, the numerator of the fraction in the left hand-side

of (1.3) is null, i.e., lnU(tx)− lnU(t)− γ lnx ≡ 0.

Remark 1.2. For Hall’s class of Pareto-type models (Hall, 1982; Hall and

Welsh, 1985), with a tail function

(1.4) 1− F (x) = Cx−1/γ
(
1 +Dxρ/γ + o

(
xρ/γ

))
, as x→∞ ,

C > 0, D ∈ R0, ρ < 0, (1.3) holds and we may choose A(t) = γρDCρtρ.
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This is a class of models where (1.2) (or equivalently, (1.1)) holds true, with an

asymptotically constant slowly varying function L
F
(or equivalently, L

U
).

To obtain information on the distributional behaviour of the second order

parameters’ estimators, we shall further assume that the rate of convergence in

(1.3) is ruled by a function B(t) such that |B(t)| is also of regular variation with

the same index ρ, i.e., we assume that

(1.5) lim
t→∞

lnU(tx)−lnU(t)−γ lnx
A(t) − xρ−1

ρ

B(t)
=

x2ρ − 1

2ρ

holds for all x > 0.

Remark 1.3. Condition (1.5) holds true for models with a tail function

(1.6) 1− F (x) = Cx−1/γ
(
1 +D1x

ρ/γ +D2x
2ρ/γ + o

(
x2ρ/γ

))
, as x→∞ .

For the most common heavy-tailed models, like the Fréchet and the Student’s t,

condition (1.5) holds true, i.e., these models belong to the class in (1.6).

For intermediate k, i.e., a sequence of integers k = kn, 1 ≤ k < n, such that

(1.7) k = kn →∞ , kn = o(n) , as n→∞ ,

we shall consider, as basic statistics, both the log-excesses over the random high

level {lnXn−k:n}, i.e.,

(1.8) Vik := lnXn−i+1:n − lnXn−k:n , 1 ≤ i ≤ k < n ,

and the scaled log-spacings,

(1.9) Ui := i
{
lnXn−i+1:n − lnXn−i:n

}
, 1 ≤ i ≤ k < n ,

where Xi:n denotes, as usual, the i-th ascending order statistic (o.s.), 1 ≤ i ≤ n,

associated to a random sample (X1, X2, ..., Xn).

We may write Xi:n
d
= U(Yi:n), where {Yi} denotes a sequence of unit Pareto

random variables (r.v.’s), i.e., P (Y ≤ y) = 1− 1/y, y ≥ 1. Also, for j > i,

Yj:n/Yi:n
d
= Yj−i:n−i, lnYi:n

d
= Ei:n, where {Ei} denotes a sequence of indepen-

dent standard exponential r.v.’s, i.e., P (E ≤ x) = 1 − exp(−x), x ≥ 0, and for

intermediate k, Yn−k:n ∼ n/k → ∞, as n→∞. Consequently, whenever we are

under the first order framework in (1.1), we get

Vik
d
= ln

U(Yn−i+1:n)

U(Yn−k:n)
= ln

U(Yn−k:n Yk−i+1:k)

U(Yn−k:n)
∼ γ Ek−i+1:k , 1 ≤ i ≤ k ,
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i.e., Vik, 1 ≤ i ≤ k, are approximately the k o.s.’s from an exponential sample of

size k and mean value γ. Also, since lnY1:i
d
= E1:i

d
= Ei/i,

Ui
d
= i

(
ln

U(Yn−i+1:n)

U(Yn−i:n)

)
= i

(
ln

U(Yn−i:n Y1:i)

U(Yn−i:n)

)
∼ γ Ei , 1 ≤ i ≤ k ,

i.e., the Ui’s, 1 ≤ i ≤ k, are approximately independent and exponential with

mean value γ. Then the Hill estimator of γ (Hill, 1975),

(1.10) H(k) ≡ Hn(k) =
1

k

k∑

i=1

Vik =
1

k

k∑

i=1

Ui ,

is consistent for the estimation of γ whenever (1.1) holds and k is intermediate,

i.e., (1.7) holds.

Under the second order framework in (1.3) the asymptotic distributional

representation

(1.11) H(k)
d
= γ +

γ√
k
Z

(1)
k +

1

1− ρ
A(n/k)

(
1 + op(1)

)

holds true (de Haan and Peng, 1998), where Z
(1)
k =

√
k
(∑k

i=1 Ei/k − 1
)
is an

asymptotically standard normal r.v.

Remark 1.4. If the underlying model is the strict Pareto model in Re-

mark 1.1, lnXi:n=γ Ei:n + γ lnC, and the use of Rényi’s representation of expo-

nential order statistics, as a linear combination of independent unit exponential

r.v.’s (Rényi, 1953), Ei:n =
∑i

j=1 Ej/(n− j + 1), 1 ≤ i ≤ n, leads us to

H(k)
d
=

γ

k

k∑

i=1

{En−i+1:n− En−k:n} d
=

γ

k

k∑

i=1

k∑

j=i

Ej

j

d
=

γ

k

k∑

j=1

Ej
d
=

γ

k
Ga(k) ,

where Ga(k) denotes a Gamma r.v. with a shape parameter equal to k, i.e., a r.v.

with probability density function (p.d.f.) xk−1 exp(−x)/Γ(k), x ≥ 0, with Γ(t)

denoting the complete gamma function, Γ(t) =
∫∞
0 xt−1e−x dx. Then for every k,

the Hill estimator in (1.10) is unbiased for the estimation of γ, i.e., E (H(k)) = γ

for any k, and
√
k (H(k)− γ) /γ is asymptotically standard normal, as k →∞.

We shall assume that we are in the class of models in (1.6). Consequently,

we may choose

(1.12) A(t) = α tρ =: γ β tρ, B(t) = β′ tρ , β, β′ 6= 0, ρ < 0 .

The adequate accommodation of the bias of Hill’s estimator has been ex-

tensively addressed in recent years by several authors. The idea is to go further

into the second order framework in (1.3). Then,

V
ik

d
= ln

U(Yn−k:n Yk−i+1:k)

U(Yn−k:n)

d≈ γ Ek−i+1:k+A(n/k)
Y ρ
k−i+1:k − 1

ρ
, 1 ≤ i ≤ k ,
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and

Ui
d
= i ln

U(Yn−i:n Y1:i)

U(Yn−i:n)

d≈ γ

(
1 +

A(n/k)

γ

(k
i

)ρ)
Ei , 1 ≤ i ≤ k .

Beirlant et al. (1999) and Feuerverger and Hall (1999) work with the scaled log-

spacings Ui, 1 ≤ i ≤ k, in slightly different but equivalent ways, and consider the

joint estimation of the first order parameter γ and the second order parameters

at the same level k; in a similar set-up, Gomes and Martins (2002) advance with

the “external” estimation of the second order parameter ρ, i.e., the estimation of

ρ at a lower level (larger k) than the one used for the tail index estimation, being

then able to reduce the asymptotic variance of the proposed tail index estimator,

but they pay no special attention to the extra “scale” parameter β 6= 0 in the A

function in (1.12). More recently, Gomes et al. (2004b) deal with a joint external

estimation of both the “scale” and the “shape” parameters in the A function,

being able to reduce the bias without increasing the asymptotic variance, which

is kept at the value γ2, the asymptotic variance of Hill’s estimator, for an adequate

choice of the level k. Such an estimator, also considered here for comparison with

two new proposed estimators, is based on a linear combination of the excesses

Vik in (1.8), and is given by

(1.13) WH
β̂, ρ̂

(k) :=
1

k

k∑

i=1

e β̂ (n/k)ρ̂ ((i/k)−ρ̂−1)/(ρ̂ ln(i/k)) Vik ,

for adequate consistent estimators β̂ and ρ̂ of the second order parameters

β and ρ, respectively, and with WH standing for Weighted Hill. In the same

spirit, Gomes and Pestana (2004) study, mainly computationally, the estimator

(1.14) H
β̂, ρ̂

(k) := H(k)− β̂

1− ρ̂

(n
k

)ρ̂
H

((
(1− ρ̂)2 n−2ρ̂

−2 ρ̂ β̂2

)1/(1−2ρ̂)
)

,

with H the Hill estimator in (1.10).

We shall here consider the estimator

(1.15) H̃
β̂, ρ̂

(k) := H(k)

(
1− β̂

1− ρ̂

(n
k

)ρ̂)
,

together with the asymptotically equivalent variant,

(1.16) H
β̂, ρ̂

(k) := H(k) exp

(
− β̂

1− ρ̂

(n
k

)ρ̂)
.

The dominant component of the bias of Hill’s estimator, A(n/k)/(1− ρ) =

γ β (n/k)ρ/(1− ρ), is thus estimated through H(k) β̂ (n/k)ρ̂/(1− ρ̂) and directly

removed from Hill’s classical tail index estimator, through two asymptotically

equivalent expressions, provided that k is intermediate, i.e., provided that (1.7)

holds true.
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Remark 1.5. Note that the estimator H in (1.14) has been built in

a way similar to the estimator H̃ in (1.15). The difference is that the bias

γ β (n/k)ρ/(1− ρ) is estimated through H
(
k̂0

)
β̂ (n/k)ρ̂/(1− ρ̂), with k̂0 an esti-

mate of the “optimal” level for the Hill estimator, in the sense of minimum mean

squared error in Hall’s class of models.

Remark 1.6. The reason to consider the two asymptotically equivalent

estimators in (1.15) and (1.16) — also asymptotically equivalent to the estimator

in (1.14) — lies in the fact that we have the clear experience that asymptoti-

cally equivalent estimators may exhibit quite different sample paths’ properties.

In practice, one never knows the peculiarities of the underlying models, and it is

thus sensible to work with a set of a few estimators of the primary parameter of

rare events, in order to take “the best decision”.

1.1. A technical motivation

In the lines of Gomes and Martins (2004):

Lemma 1.1. Under the second order framework in (1.3), and for levels k

such that (1.7) holds, the distributional representation

(1.17)
α

k

k∑

i=1

( i

k

)α−1
Ui

d
= γ +

γ α√
(2α− 1) k

Z
(α)
k +

αA(n/k)

α− ρ

(
1 + op(1)

)

holds true for any α ≥ 1, where

(1.18) Z
(α)
k =

√
(2α− 1) k

(
1

k

k∑

i=1

( i

k

)α−1
Ei −

1

α

)

are asymptotically standard normal r.v.’s. The asymptotic covariance structure

between the r.v.’s in (1.18) is given by

(1.19) Cov∞
(
Z

(α)
k , Z

(β)
k

)
=

√
(2α− 1) (2β − 1)

α+ β − 1
.

If we assume that only the tail index parameter γ in unknown, and similarly

to the result in Gomes and Pestana (2004), we shall now state and prove a theorem

that provides an obvious technical motivation for the estimator in (1.15) (or in

(1.16)):
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Theorem 1.1. Under the second order framework in (1.3), further assum-

ing that A(t) may be chosen as in (1.12), and for levels k such that (1.7) holds, we

get, for H̃β, ρ(k) in (1.15) (or for Hβ, ρ(k) in (1.16)), an asymptotic distributional

representation of the type

(1.20) γ +
γ√
k
Z

(1)
k +Rk , with Rk = op

(
A(n/k)

)
,

where Z
(1)
k is the asymptotically standard normal r.v. in (1.18) for α = 1.

Consequently, both
√
k (H̃β, ρ(k) − γ) and

√
k (Hβ, ρ(k) − γ) are asymptotically

normal with variance equal to γ2, and with a null mean value not only when√
k A(n/k) −→ 0, but also when

√
k A(n/k) −→ λ 6= 0, finite, as n→∞.

Proof: The results related to the estimator in (1.15) come straighfor-

wardly from the fact that if all parameters are known, apart from the tail index γ,

we get from (1.11),

H̃β, ρ(k)
d
=

(
γ +

γ√
k

Z
(1)
k +

A(n/k)

1− ρ

(
1 + op(1)

))
×
(
1− A(n/k)

γ(1− ρ)

)

d
= γ +

γ√
k
Z

(1)
k + op(A(n/k) ,

i.e., (1.20) holds. Since, for intermediate k,

exp

(
−A(n/k)

1− ρ

)
= 1− A(n/k)

1− ρ
+ op

(
A(n/k)

)
,

the same distributional representation in (1.20) holds true for the tail index esti-

mator in (1.16). The remaining of the theorem follows then straightforwardly.

1.2. A graphical motivation

For the second order parameters’ estimators, discussed later on, in section 2,

and as a supporting example of the technical motivation given in 1.1, we exhibit

in Figure 1, the differences between the sample paths of the estimators H̃•(k)

in (1.15), for a sample of size n = 10,000 from a Fréchet model, with d.f.

F (x) = exp(−x−1/γ), x ≥ 0, with γ = 1, when we compute β̂ and ρ̂ at the

same level k used for the estimation of the tail index γ (left), when we compute

only β̂ at that same level k, being ρ̂ computed at a larger k-value, let us say

an intermediate level k1 such that
√
k1 A(n/k1) → ∞, as n → ∞ (center) and

when both ρ̂ and β̂ are computed at that high level k1 (right). For the notation

used in Figure 1, see subsection 4.2. The high stability, around the target value
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γ = 1, of the sample path in Figure 1 (right), is for sure related to the result

in Lemma 1.1, and not purely coincidential. It thus seems sensible to compare

asymptotically these estimation procedures, in order to detect the reasons for

the differences in behaviour.

Figure 1: Sample paths of the Hill estimates H in (1.10) and the tail index

estimates H̃ in (1.15), obtained through the estimation of (β, ρ) at the
level k1 := min(n− 1, 2n0.995/ ln lnn) (right) versus the estimation at
the same level both for β and ρ (left) and only for β (center).

1.3. Scope of the paper

When we look at the expression of the estimators from (1.13) till (1.16),

we see that one of the topics to deal with is the adequate estimation of (β, ρ)

in order to get the tail index estimators H̃
β̂, ρ̂

(k) and H
β̂, ρ̂

(k). In section 2 of

this paper, we shall thus briefly review the estimation of the two second order

parameters β and ρ. Section 3 is devoted to the derivation of the asymptotic

behaviour of the estimator H̃
β̂, ρ̂

(k) in (1.15) (equivalently, H
β̂, ρ̂

(k) in (1.16)),

estimating β and ρ at a larger k value than the one used for the tail index

estimation. We also do that only with the estimation of ρ, estimating β at

the same level k used for the tail index estimation. In section 4, and through

the use of simulation techniques, we shall exhibit the performance of the new

estimators in (1.15) and (1.16), comparatively to the WH estimator in (1.13),

to the classical Hill estimator and to H̃
β̂ρ̂(k),ρ̂

(k), for the β-estimator, β̂ρ̂(k), in

Gomes and Martins (2002). We have here considered only an external estimation

of the second order parameter ρ. Such a decision is related to the discussion

in Gomes and Martins (2002) on the advantages of an external estimation of

the second order parameter ρ (or even their misspecification, as in Gomes and

Martins (2004)) versus an internal estimation at the same level k. Indeed, the

estimation of γ, β and ρ at the same level k leads to very volatile mean values

and mean squared error patterns. Finally, in section 5, some overall conclusions

are drawn.
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2. SECOND ORDER PARAMETER ESTIMATION

2.1. The estimation of ρ

We shall first address the estimation of ρ. We have nowadays two general

classes of ρ-estimators, which work well in practice, the ones introduced in Gomes

et al. (2002) and Fraga Alves et al. (2003). We shall consider here particular

members of the class of estimators of the second order parameter ρ proposed

by Fraga Alves et al. (2003). Under adequate general conditions, they are semi-

parametric asymptotically normal estimators of ρ, whenever ρ < 0. Moreover,

for a large diversity of models, they give rise, for a wide range of large k-values,

to highly stable sample paths, as functions of k, the number of top o.s.’s used.

Such a class of estimators has been parameterised by a tuning parameter τ ≥ 0,

and may be defined as

(2.1) ρ̂τ (k) ≡ ρ̂(τ)
n (k) := −

∣∣∣∣∣
3
(
T

(τ)
n (k)− 1

)

T
(τ)
n (k)− 3

∣∣∣∣∣ ,

where

T (τ)
n (k) :=





(
M

(1)
n (k)

)τ
−
(
M

(2)
n (k)/2

)τ/2

(
M

(2)
n (k)/2

)τ/2
−
(
M

(3)
n (k)/6

)τ/3 if τ > 0

ln
(
M

(1)
n (k)

)
− 1

2 ln
(
M

(2)
n (k)/2

)

1
2 ln
(
M

(2)
n (k)/2

)
− 1

3 ln
(
M

(3)
n (k)/6

) if τ = 0 ,

with

M (j)
n (k) :=

1

k

k∑

i=1

{
ln

Xn−i+1:n

Xn−k:n

}j

, j ≥ 1
[
M (1)

n ≡ H in (1.10)
]
.

We shall here summarize a particular case of the results proved in Fraga

Alves et al. (2003), now related to the asymptotic behaviour of the ρ-estimator

in (2.1), under the second order framework in (1.3):

Proposition 2.1. Under the second order framework in (1.3), with ρ < 0,

if (1.7) holds, and if
√
k A(n/k) → ∞, as n → ∞, the statistic ρ̂

(τ)
n (k) in (2.1)

converges in probability towards ρ, as n→∞, for any τ ∈ R. More than this:

ρ̂
(τ)
n (k)−ρ = Op

(
1/
(√

k A(n/k)
))
, provided that, under the third order framework

in (1.5),
√
k A(n/k) B(n/k) → λ

B
, finite. If

√
k A(n/k) B(n/k) → ∞, then

ρ̂
(τ)
n (k)− ρ = Op (B(n/k)) = Op (A(n/k)).
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Remark 2.1. The theoretical and simulated results in Fraga Alves et al.

(2003), together with the use of these estimators in the Generalized Jackknife

statistics of Gomes et al. (2000), as done in Gomes and Martins (2002), as well

as their use in the estimator in (1.13) (Gomes et al., 2004b) and in the estimator

in (1.14) (Gomes and Pestana, 2004), led us to advise in practice the consider-

ation of the tuning parameters τ = 0 for the region ρ ∈ [−1, 0) and τ = 1 for

the region ρ ∈ (−∞,−1), together with the level k0 = min (n− 1, [2n/ ln lnn]).

As done before, we however advise practitioners not to choose blindly the value

of τ . It is sensible to draw a few sample paths of ρ̂τ (k) in (2.1), as functions of k,

electing the value of τ which provides higher stability for large k, by means of

any stability criterion. For more details, see Gomes and Figueiredo (2003).

Remark 2.2. When we consider the level k0 suggested in Remark 2.1,

together with any of the ρ-estimators in this section, computed at that level k0,

{ρ̂(k0)− ρ} is of the order of B(n/k0) = (ln lnn)ρ, a very slow rate of convergence

towards zero. We shall here work with a level

(2.2) k1 = min
(
n− 1,

[
2n0.995/ ln lnn

])
.

Then ρ̂− ρ = Op((n
0.005 ln lnn)ρ) (provided that ρ > −49.75), and con-

sequently, for any intermediate level k, (ρ̂− ρ) ln(n/k) = op(1), and√
k A(n/k) (ρ̂−ρ) ln(n/k) = op(1) whenever

√
k A(n/k) → λ, finite. This is

going to be a fundamental result in the proof of Theorem 3.1, enabling the

replacement of ρ by ρ̂, without disturbing the distributional result in Theo-

rem1.1, provided we estimate β adequately. In all the Monte Carlo simulations,

we have considered the level k1 in (2.2) and the following ρ-estimators in (2.1):

ρ̂0 = ρ̂0(k1) if ρ ≥ −1 and ρ̂1 = ρ̂1(k1) if ρ < −1.

2.2. Estimation of the second order parameter β

We have considered the estimator of β obtained in Gomes and Martins

(2002) and based on the scaled log-spacings Ui = i {lnXn−i+1:n − lnXn−i:n} in

(1.9), 1 ≤ i ≤ k. Let us denote ρ̂ any of the estimators in (2.1) computed at the

level k1 in (2.2). The β-estimator is given by

(2.3) β̂ρ̂(k) :=
(k
n

)ρ̂

(
1
k

k∑
i=1

(
i
k

)−ρ̂
)(

1
k

k∑
i=1

Ui

)
−
(

1
k

k∑
i=1

(
i
k

)−ρ̂
Ui

)

(
1
k

k∑
i=1

(
i
k

)−ρ̂
)(

1
k

k∑
i=1

(
i
k

)−ρ̂
Ui

)
−
(

1
k

k∑
i=1

(
i
k

)−2ρ̂
Ui

) .
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In Gomes and Martins (2002) and later in Gomes et al. (2004b), the fol-

lowing result has been proved:

Proposition 2.2. If the second order condition (1.3) holds, with

A(t) = γ β tρ, ρ < 0, if k = kn is a sequence of intermediate positive integers,

i.e. (1.7) holds, and if
√
k A(n/k) −→

n→∞
∞, then β̂ρ̂(k) in (2.3) is consistent for the

estimation of β, whenever ρ̂− ρ = op(1/ lnn). Moreover, if ρ is known,

(2.4) β̂ρ(k)
d
= β +

γ β (1− ρ)
√
1− 2ρ

ρ
√
k A(n/k)

W
B

k +R
B

k , with R
B

k = op(1)

and W
B

k asymptotically standard normal. More precisely we may write

(2.5) W
B

k =
(1− ρ)

√
1− 2ρ

|ρ|

(
Z

(1)
k

1− ρ
− Z

(1−ρ)
k√
1− 2ρ

)
,

with Z
(α)
k , α ≥ 1, given in (1.18).

The asymptotic distributional representation (2.4) holds true as well

for β̂ρ̂(k), with ρ̂ any of the consistent ρ-estimators in (2.1) computed at the

level k1 in (2.2). If
√
k A(n/k)R

B

k → λ
B

R, finite, we may further guarantee the

asymptotic normality of β̂ρ̂(k). If we consider β̂ρ̂(k)(k), then

(2.6) β̂ρ̂(k)(k)− β
p∼ −β ln(n/k)

(
ρ̂(k)− ρ

)
.

Remark 2.3. Note that when we consider the level k1 in (2.2), the same

restrictions for ρ as in Remark 2.2, and β̂ ≡ β̂ρ̂(k1), with ρ̂ any of the estimator

in (2.1), computed also at the same level k1, we may use (2.6) and derive that{
β̂−β

}
is of the order of ln(n/k1)B(n/k1) = O

(
lnn

(
n0.005 ln lnn

)ρ)
. This result

will also be needed in the proof of Theorem 3.1 and will enable us to keep the

distributional result in Theorem 1.1.

Remark 2.4. Note also that if we estimate β through β̂ρ̂(k), since{
β̂ρ̂(k) − β

}
is of the order of 1/

(√
k A(n/k)

)
, we shall no longer be able to

guarantee the distributional result in Theorem 1.1 (for details see Remark 3.2).

3. ASYMPTOTIC BEHAVIOUR OF THE ESTIMATORS

Let us assume first that we estimate both β and ρ externally at the level

k1 in (2.2). We may state the following:
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Theorem 3.1. Under the conditions of Theorem 1.1, let us consider the

tail index estimators H̃
β̂, ρ̂

(k) and H
β̂, ρ̂

(k) in (1.15) and (1.16), respectively, for

any of the estimators ρ̂ and β̂ in (2.1) and (2.3), respectively, both computed at

the level k1 in (2.2) and such that ρ̂− ρ = op(1/ lnn). Then,
√
k
{
H̃

β̂, ρ̂
(k)− γ

}

as well as
√
k
{
H

β̂, ρ̂
(k)− γ

}
are asymptotically normal with variance equal to

γ2 and null mean value, not only when
√
k A(n/k) → 0, but also whenever√

k A(n/k)→ λ, finite, as n→∞.

Proof: If we estimate consistently β and ρ through the estimators β̂ and

ρ̂ in the conditions of the theorem, we may use Taylor’s expansion series, and

write,

H̃
β̂, ρ̂

(k)
d
= H(k) ×

(
1− β

1− ρ

(n
k

)ρ
−
(
β̂ − β

) 1

1− ρ

(n
k

)ρ (
1 + op(1)

)

− β

1− ρ
(ρ̂− ρ)

(n
k

)ρ( 1

1− ρ
+ ln(n/k)

)(
1 + op(1)

)
)

d
= H̃β, ρ(k)−

A(n/k)

1− ρ

(
β̂ − β

β
+ (ρ̂− ρ) ln(n/k)

)
(
1 + op(1)

)
.

Since β̂ and ρ̂ are consistent for the estimation of β and ρ, respectively, and

(ρ̂ − ρ) ln(n/k) = op(1) (see Remark 2.2), the summands related to
(
β̂ − β

)

and (ρ̂− ρ) are both op(A(n/k)), and the result in the theorem, related to

the H̃-estimator, follows immediately, provided that
√
k A(n/k)→ λ, finite.

The reasoning is exactly the same for the H-estimator.

Remark 3.1. Note however that the levels k such that
√
k A(n/k) → λ,

finite, are sub-optimal for this type of estimators.

If we consider γ and β estimated at the same level, we are going to have

an increase in the variance of our final tail index estimator H̃
β̂ρ̂(k), ρ̂

(k)
(
or equiv-

alently, H
β̂ρ̂(k), ρ̂

(k)
)
. Similarly to Corollary 2.1 of Theorem 2.1 in Gomes and

Martins (2002), there in connection with a ML-tail index estimator, as well as in

Theorem 3.2 in Gomes et al. (2004b), in connection with the tail index estimator

in (1.13), we may also get:

Theorem 3.2. If the second order condition (1.3) holds, if k = kn is a

sequence of intermediate integers, i.e., (1.7) holds, and if
√
k A(n/k)−→

n→∞
λ, finite,

non necessarily null, then

(3.1)
√
k
(
H̃

β̂ρ̂(k), ρ̂
(k)− γ

)
d−→

n→∞
Normal

(
0, σ2

H2
:= γ2

(1− ρ

ρ

)2
)

,
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i.e., the asymptotic variance of H̃
β̂ρ̂(k), ρ̂

(k) increases of a factor ((1− ρ)/ρ)2,

greater than one, for every ρ ≤ 0. The same result holds obviously true for

H
β̂ρ̂(k), ρ̂

(k).

Proof: If we consider

H̃
β̂ρ̂(k), ρ̂

(k) := H(k)

(
1− β̂ρ̂(k)

1− ρ̂

(n
k

)ρ̂
)

,

we now get

H̃
β̂ρ̂(k), ρ̂

(k) = H̃β, ρ(k)−
A(n/k)

1− ρ

(
β̂ρ̂(k)− β

β
+ (ρ̂− ρ) ln(n/k)

)
(
1 + op(1)

)
.

Since
(
β̂ρ̂(k)− β

)
/β is now of the order of 1/

(√
k A(n/k)

)
, the term of the order

of 1/
√
k is going to be, from (1.20), (2.4) and (2.5),

γ√
k

(
Z

(1)
k +

(1− ρ) (1− 2ρ)

ρ2

(
Z

(1)
k

1− ρ
− Z

(1−ρ)
k√
1− 2ρ

))
,

which may be written as

γ√
k

((
1− ρ

ρ

)2
Z

(1)
k − (1− ρ)

√
1− 2ρ

ρ2
Z

(1−ρ)
k

)
,

with Z
(α)
k the asymptotically standard normal r.v. in (1.18). Taking into

account the fact that from (1.19), the asymptotic covariance between Z
(1)
k

and Z
(1−ρ)
k is given by

√
1− 2ρ / (1 − ρ), together with the fact that√

k A(n/k) (ρ̂− ρ) ln(n/k)→ 0 (see Remark 2.2), (3.1) follows.

Remark 3.2. If we compare Theorems 3.1 and 3.2 we see that the esti-

mation of the two parameters γ and β at the same level k induces an increase in

the asymptotic variance of the final γ-estimator of a factor given by ((1− ρ)/ρ)2,

greater than 1 for all ρ ≤ 0. As may be seen in Gomes and Martins (2002) the

asymptotic variance of the estimator in Feuerverger and Hall (1999) (where the

three parameters are computed at the same level k) is given by

σ2
FH

:= γ2

(
1− ρ

ρ

)4

.

In Figure 2 we provide both a picture and some values of σ
H1

/γ ≡ 1, σ
H2

/γ

and σ
FH

/γ, as functions of |ρ|.

It is obvious from Figure 2 that, whenever possible, it seems convenient to

estimate both β and ρ “externally”, at a k-value higher than the one used for the

estimation of the tail index γ.
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Figure 2: “Rulers” of the asymptotic standard deviations, σ
H1

and σ
H2

of the estimators under study, together with σ
F H

, for γ = 1.

Remark 3.3. More generally, to obtain information on the asymp-

totic bias of H̃
β̂, ρ̂

(k), H̃
β̂ρ̂(k), ρ̂

(k) and H̃
β̂ρ̂(k)(k), ρ̂(k)

(k) — or equivalently,

of H
β̂, ρ̂

(k), H
β̂ρ̂(k), ρ̂

(k) and H
β̂ρ̂(k)(k), ρ̂(k)

(k) — we need to go further into a

third order framework, specifying, like has been done in (1.5), the rate of conver-

gence in the second order condition in (1.3). This is however beyond the scope

of this paper.

4. FINITE SAMPLE BEHAVIOUR OF THE ESTIMATORS

4.1. Underlying models

In this section we shall consider the following models in the class (1.6):

• the Fréchet model, with distribution function (d.f.) F (x) = exp(−x−1/γ),

x ≥ 0, γ > 0, for which ρ = −1;
• the Generalized Pareto (GP ) model, with d.f. F (x) = 1 − (1 + γx)−1/γ ,

x ≥ 0, γ > 0, for which ρ = −γ;

• the Burr model, with d.f. F (x) = 1− (1 + x−ρ/γ)1/ρ, x ≥ 0, γ > 0, ρ < 0;

• the Student’s tν-model with ν degrees of freedom, with a probability density

function (p.d.f.)

ftν (t) =
Γ
(
(ν + 1)/2

)
√
πν Γ(ν/2)

[
1 +

t2

ν

]−(ν+1)/2

, t ∈ R (ν > 0) ,

for which γ = 1/ν and ρ = −2/ν.
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4.2. The simulation design

We have here implemented multi-sample simulation experiments of size

50,000 = 5,000(runs)×10(replicates), in order to obtain, for the above mentioned

models, the distributional behaviour of the new estimators H̃
β̂, ρ̂

and H
β̂, ρ̂

in

(1.15) and (1.16), respectively, based on the estimation of β at the level k1 in (2.2),

the same level we have used for the estimation of ρ, again not chosen in an optimal

way. For details on multi-sample simulation, see Gomes and Oliveira (2001).

We use the notation β̂j1 = βρ̂
j
(k1), j = 0, 1, with ρ̂j , j = 0, 1 and βρ̂(k) given in

(2.1) and (2.3), respectively. Similarly to what has been done in Gomes et al.

(2004b) for the WH-estimator in (1.13), these estimators of ρ and β, for j = 0, 1,

have been incorporated in the estimators under study, leading to H̃
β̂01, ρ̂0

(k) /

H
β̂01, ρ̂0

(k) and to H̃
β̂11, ρ̂1

(k) /H
β̂11, ρ̂1

(k), respectively. The simulations show

that the tail index estimators H̃
β̂j1, ρ̂j

(k) and H
β̂j1, ρ̂j

(k), j equal to either 0 or 1,

according as |ρ| ≤ 1 or |ρ| > 1 seem to work reasonably well, as illustrated in

the sequel. In the simulation we have also included the Hill estimator in (1.10),

the “Weighted Hill” estimator in (1.13) and H̃
β̂ρ̂(k), ρ̂

. The estimator H in (1.14)

exhibits a behaviour quite similar to that of H in (1.16), as may be seen from the

results in Gomes and Pestana (2004), and was not pictured, for sake of simplicity.

We have simulated four different indicators. Let us denote generically H̃n

any of the estimators in (1.13), (1.15) and (1.16), and let

kH
0s(n) := argmin

k
MSE s

[
Hn(k)

]

be the simulated optimal k (in the sense of minimum simulated mean squared

error) for the Hill estimator Hn(k) ≡ H(k) in (1.10). The two first indicators are

related to the behaviour of the new estimators at Hill’s optimal simulated level,

i.e.,

(4.1) REFF H̃|H0
n :=

√√√√√
MSE s

[
Hn

(
kH

0s(n)
)]

MSE s

[
H̃n

(
kH

0s(n)
)]

and

(4.2) BRI H̃|H0
n :=

∣∣∣∣∣∣∣

Es

[
Hn

(
kH

0s(n)
)
− γ
]

Es

[
H̃n

(
kH

0s(n)
)
− γ
]

∣∣∣∣∣∣∣
.

The two additional indicators are related to the comparison of mean squared

errors and bias of the new estimators with those of the Hill’s estimators, when

all the estimators are considered at their optimal levels. Denoting

Hn0 := Hn

(
kH

0 (n)
)

and H̃n0 := H̃n

(
kH̃

0 (n)
)
,
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with the obvious meaning for k•0(n), the two extra simulated indicators are

(4.3) REFF
H̃|H
n0 :=

√
MSE s

[
Hn0

]

MSE s

[
H̃n0

]

and

(4.4) BRI
H̃|H
n0 :=

∣∣∣∣∣∣
Es [Hn0 − γ]

Es

[
H̃n0 − γ

]

∣∣∣∣∣∣
.

Remark 4.1. Note that an indicator higher than one means a better per-

formance than the Hill estimator. Consequently, the higher these indicators are,

the better the new estimators perform, comparatively to the Hill estimator.

Remark 4.2. Note also that whereas we have appropriate techniques to

deal with the estimation of the optimal level for Hill’s estimator, in the sense of

minimum mean squared error, we do not have yet equivalent techniques for the

reduced bias’ estimators. Consequently, the indicators in (4.3) and (4.4) are not

useful in practice, but they give us an indication of the potentialities of this type

of estimators.

4.3. Mean values and mean squared error patterns

In Figures from 3 till 9, and on the basis of the first replicate, with 5000

runs, we picture for the different underlying models considered, and a sample of

size n = 1000, the mean values (E[•]) and the mean squared errors (MSE [•]) of
the Hill estimator H, together with H̃

β̂j1, ρ̂j
, H

β̂j1, ρ̂j
, WH

β̂j1, ρ̂j
and H̃

β̂j(k), ρ̂j
,

j = 0 or j = 1, according as |ρ| ≤ 1 or |ρ| > 1. For comparison, we also

picture the analogue behaviour of the r.v. H̃β, ρ for the models where there is

a big discrepancy between the behaviour of the estimators and that of the r.v.’s.

Such a discrepancy suggests that some improvement in the estimation of second

order parameters β and ρ is still welcome.

Remark 4.3. For a Burr model and for any of the estimators considered,

BIAS/γ and MSE/γ2 are independent of γ, for every ρ. And we have seen

no reason to picture the mean value and mean squared error patterns of the

estimators for a GP underlying model because for all the estimators considered,

E |GP (γ) = γ × E |BURR(γ = 1, ρ = −γ)

and

MSE |GP (γ) = γ2 ×MSE |BURR(γ, ρ = −γ) .
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Figure 3: Underlying Fréchet parent with γ = 1 (ρ = −1).

Figure 4: Underlying Burr parent with γ = 1 and ρ = −1.

Figure 5: Underlying Student parent with ν = 2 degrees of freedom
(γ = 0.5 and ρ = −1).
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Figure 6: Underlying Burr parent with γ = 1 and ρ = −0.5.

Figure 7: Underlying Student parent with ν = 4 degrees of freedom
(γ = 0.25 and ρ = −0.5).

Figure 8: Underlying Burr parent with γ = 1 and ρ = −2.
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Figure 9: Underlying Student parent with with ν = 1 degrees of freedom
(γ = 1 and ρ = −2).

Remark 4.4. We may further draw the following specific comments:

• For a Fréchet model (with ρ = −1) (Figure 3) the bias of H is the smallest

one, being the one of H̃ the largest one, for small to moderate values of k.

All the three reduced bias’ statistics overestimate the true value of γ for

very small as well as very large values of k, whereas, for moderate values of

k, they all underestimate γ.

• For an underlying Burr parent with ρ = −1 (Figure 4), the three reduced

bias’ statistics are negatively biased for small values of k. Again, as for a

Fréchet underlying parent, the H-statistic exhibits then the smallest bias

and H̃ the largest one. The H̃ statistic is the best one regarding MSE at

the optimal level, but the WH-statistic is the one with the smallest mean

squared error for not too large values of k, followed by H. Quite similar

results may be drawn for a Student model with ρ = −1 (Figure 5 ), but

for this model, the mean squared error of H̃ is smaller than that of WH,

which on its turn is smaller than that of H, for all values of k.

• For values of ρ > −1 (Figures 6 and 7), the three reduced bias’ statis-

tics are positively biased for all k. The H̃-statistic is better than the

WH-statistic, which on its turn behaves slightly better than the H-statistic,

both regarding bias and mean squared error.

• For ρ < −1 (Figures 8 and 9), we need to use ρ̂1 (instead of ρ̂0). In all the

simulated cases the H̃ and the WH-statistics are the best ones and exhibit

quite similar properties, but they are not a long way from the H-statistic.
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Remark 4.5. For a Student model with ν degrees of freedom (Figures

5, 7 and 9), and whenever we assume β and ρ known, the most stable sample

path around the target value γ is achieved by the statistic H̃β, ρ, presented in the

figures. And such a fact leads this statistic to have the smallest mean squared

error, followed by the H and next the WH statistics, for all values of ν. If we need

to estimate β and ρ, the H̃-statistic is the one with the smallest mean squared

error at the optimal level, also for every ν. Next comes the WH-statistic, quite

close to the H-statistic when ν < 2, i.e., when ρ < −1.

4.4. Relative efficiency and bias reduction indicators

In Table 1 we present the REFF indicators, in (4.1) and (4.3), and the

BRI indicators in (4.2) and (4.4). For each model, the first, second and third

rows are related to the WH-estimator in (1.13), the H̃-estimator in (1.15) and

the H-estimator in (1.16), respectively. Each entry has two numbers: the first

one is either the indicator in (4.1) or in (4.2) and the second one is either the

indicator in (4.3) or in (4.4), according as we refer to the REFF -indicators (left

hand-side table) or to the BRI -indicators (right hand-side table).

5. OVERALL CONCLUSIONS

• Generally, we may say that there is not a big difference between the esti-

mators, WH, H, H̃ and H in (1.13), (1.14) (1.15) and (1.16), respectively.

Anyway, whenever confronted with real data, the drawing of a few sample

paths may help us in the choice of the most adequate estimate of the tail

index γ.

• The H̃
β̂ρ̂(k), ρ̂

statistic may perhaps help us in the choice of the optimal

sample fraction of Hill’s estimator, and for some of the models exhibits

sample paths more stable around the target value γ for a wider region of k-

values. This is however a topic which deserves further investigation, being

outside the scope of the present paper.

• The main advantage of these estimators lies on the fact that we may es-

timate β and ρ adequately through β̂ and ρ̂ so that the MSE of the new

estimator is smaller than the MSE of Hill’s estimator for all k, even when

|ρ| > 1, a region where it has been difficult to find alternatives for the Hill

estimator. And this happens together with a higher stability of the sample

paths around the target value γ.
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Table 1: REFF and BRI indicators.

REFF indicators BRI indicators

n n

200 500 1000 200 500 1000

Fréchet parent: ρ = −1, γ = 1

1.07/1.53 1.11/1.69 1.12/1.86 4.56/25.40 7.16/13.12 11.50/10.22

1.06/1.39 1.10/1.53 1.12/1.67 4.18/45.93 6.33/31.87 9.99/69.15

1.08/1.52 1.12/1.67 1.12/1.85 5.85/5.56 8.92/47.70 14.28/22.89

Burr parent: ρ = −0.5, γ = 1

1.20/1.39 1.26/1.35 1.23/1.33 1.83/1.32 1.76/1.23 1.67/1.24

1.19/1.39 1.26/1.35 1.22/1.33 1.73/1.25 1.73/1.22 1.64/1.24

1.18/1.35 1.25/1.32 1.22/1.31 1.69/1.30 1.69/1.20 1.62/1.22

Burr parent: ρ = −1, γ = 1

1.19/2.09 1.23/2.42 1.23/2.69 2.25/11.26 1.91/10.31 1.70/30.21

1.18/2.27 1.22/2.63 1.21/2.94 2.14/306.29 1.74/22.55 1.55/28.80

1.20/2.02 1.24/2.34 1.24/2.61 2.67/9.35 2.07/24.51 1.79/13.63

Burr parent: ρ = −2, γ = 1

1.05/1.18 1.08/1.18 1.11/1.21 2.75/1.08 2.29/1.12 2.09/1.10

1.05/1.17 1.08/1.18 1.10/1.21 2.60/1.09 2.25/1.10 2.07/1.09

1.05/1.16 1.08/1.17 1.10/1.20 2.54/1.10 2.22/1.10 2.05/1.06

Student parent: ρ = −0.5, γ = 0.25

1.35/1.42 1.25/1.35 1.22/1.32 2.27/1.54 1.90/1.47 1.73/1.30

1.32/1.41 1.24/1.34 1.21/1.32 2.17/1.49 1.87/1.39 1.68/1.26

1.30/1.36 1.23/1.31 1.20/1.30 1.99/1.41 1.80/1.42 1.64/1.26

Student parent: ρ = −1, γ = 0.5

1.07/1.56 1.02/1.70 1.15/1.86 3.17/3.40 1.68/3.94 1.25/4.85

1.03/1.51 1.02/1.75 1.14/1.97 2.77/7.88 2.03/7.15 1.25/8.71

1.08/1.51 1.02/1.65 1.16/1.82 4.58/2.84 2.26/3.31 1.24/4.65

Student parent: ρ = −2, γ = 1

0.87/1.18 1.07/1.16 1.04/1.16 2.00/7.00 13.80/1.67 3.81/1.48

0.91/1.12 1.06/1.16 1.04/1.15 1.71/15.65 11.52/1.71 3.64/1.47

0.88/1.18 1.07/1.15 1.04/1.15 2.43/8.52 8.83/1.51 3.50/1.45
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[19] Rényi, A. (1953). On the theory of order statistics. Acta Math. Acad. Sci. Hung.,
4, 191–231.


