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1. INTRODUCTION

Ordered random variables (rv’s) have attracted many researchers due to
their applicability in many practical areas, like order statistics (os’s) and record
values. Both of os’s and record values are used extensively in statistical mod-
els and inference, where they describe rv’s arranged in order magnitude. The
os’s occur as a natural choice when dealing with floods, drought, earthquakes,
etc. Also, record values arise naturally in many real life applications involving
data related to sport, weather, and life testing studies. Actually, there is strong
relation between the os and the record value models. For example, the record
values provide the information about the maximum (minimum) value among all
previously recorded observations, for more detail, see Arnold et al. (1998).The
concept of concomitant os’s, also called induced os’s, is related to the ordering bi-
variate rv’s. The concomitant os’s arise when one sorts the members of a random
sample according to corresponding values of an other random sample. The term
concomitant of os’s was first induced and applied extensively by David (1973).
According to Hanif (2007) in collecting any data for an observation, several char-
acteristics are often recorded, some of them are considered as primary and others
can be observed from the primary data automatically. The latter one is called
concomitant, for more detail see David and Nagaraja (1998, 2003). The most
important use of concomitants of record values arises in experiments, in which
specified characteristic’s measurements of an individual are made sequentially.
Moreover, only values that exceed or fall below the current extreme value are
recorded, so that only observations are bivariate record values, i.e., records and
their concomitants. Some properties of concomitants of record values are dis-
cussed by Ahsanullah (2009) and Ahsanullah and Shakil (2013). Clearly, both
concomitants of os’s and record values are strongly relevant with a bivariate data
that has a common bivariate distribution function (df). One of the most useful
and popular bivariate df is the so-called Farlie-Gumbel-Morgenstern (FGM). The
FGM df is defined by H(x, y) = FX(x)FY (y)[1+αFX(x)FY (y)], where FX and FY
are the marginals df’s, while FX and FY are the survival function of FX and FY ,
respectively, and −1 ≤ α ≤ 1. The FGM distribution is a flexible family useful in
applications provided that the correlation between the variables is not too large.
It can be utilized for arbitrary continuous marginals. The FGM df was origi-
nally introduced by Morgenstern (1956) for cauchy marginals. In 1960 Gumbel
investigated the same structure for exponential marginals. Also, in 1960, Farlie,
in connection with his investigations of the correlation coefficient, suggested a
generalization of the bivariate form studied by Morgenstern and Gumbel. Huang
and Kotz (1984) used successive iterations in the original FGM distribution to
increase the correlation between components. As a particular case, the bivariate
FGM with a single iteration is defined by

FX,Y (x, y) = FX(x)FY (y)
[
1 + λF̄X(x)F̄Y (y) + γFX(x)FY (y)F̄X(x)F̄Y (y)

]
,

(1.1)
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denoted by FGM(λ, γ). The corresponding probability density functions (pdf) is
given by:

fX,Y (x, y) = fX(x)fY (y)

× [1 + λ(1− 2FX(x))(1− 2FY (y)) + γFX(x)FY (y)(2− 3FX(x))(2− 3FY (y))] ,
(1.2)

where FX(x) and FY (y) are df’s, while fX(x) and fY (y) are the pdf’s of the rv’s
X and Y, respectively. When the two marginals FX(x) and FY (y) are contin-
uous, Huang and Kotz (1984) showed that the natural parameter space Ω (the
admissible set of the parameters λ and γ that makes FX,Y (x, y) is a df) is convex,

where Ω = {(λ, γ) : −1 ≤ λ ≤ 1;λ + γ ≥ −1; γ ≤ 3−λ+
√

9−6λ−3λ2

2 }. Moreover,

when the marginals are uniform then, the correlation coefficient is ρ = λ
3 + γ

12 (cf.
Huang and Kotz, 1999). Finally, the maximal correlation coefficient attained for
this family is max ρ = 0.434 versus max ρ = 1

3 = 0.333 achieved for λ = 1 in the
original FGM version. This fact gives a satisfactory motivation to deal with the
model FGM(λ, γ) rather than the classical model FGM. The model FGM(λ, γ)
provides a very general expression of a bivariate distribution from which mem-
bers can be derived by substituting expressions of any desired set of marginal
distributions. On the other hand, since both the bivariate df’s and density are
given in terms of marginals, it is easy to generate a random sample from the
model FGM(λ, γ). Thus members of this family can be used in simulation stud-
ies. Moreover, a number of properties results from the simple analytic form of
the model FGM(λ, γ), for example, rv’s having a FGM(λ, γ) are exchangeable
whenever the marginal distributions are identical. Also, the model FGM(λ, γ)
is closed with respect to monotonic increasing functions of rv’s. Moreover, the
system is closed with respect to mixtures of bivariate FGM(λ, γ) df’s having the
same marginal distributions. the bivariate FGM(λ, γ) df’s are specially suited to
data situations describing weak dependence between the rv’s X and Y. Measures
of dependence vary over a larger range than for the classical FGM df’s.

In this paper, we study the family FGM(λ, γ), with generalized exponential
(GE) marginals. The generalized exponential distribution (GE), a most attractive
generalization of the exponential distribution, introduced by Gupta and Kundu
(1999), has widespread interest and applications, e.g., it can be used quite ef-
fectively in analyzing many lifetime data, particularly in place of two-parameter
gamma and two-parameter Weibull distributions. Many authors studied various
properties of the GE, see for example, Ahsanullah et al. (2013) and AL-Hussaini
and Ahsanullah (2015).

A continuous rv is said to be has the GE with scale parameter θ > 0 and
shape parameter α > 0 (denoted by GE(θ;α)), if the df and the corresponding
pdf are given, for x > 0, respectively, by

FX(x) = (1− exp(−θx))α

and
fX(x) = αθ(1− exp(−θx))α−1 exp(−θx). (1.3)
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Gupta and kundu (1999) showed that the kth moment of GE(θ;α) is

µk =
αk!

θk

ℵ(α−1)∑
i=0

(−1)i

(i+ 1)k+1

(
α− 1
i

)
,

where ℵ(x) = ∞, if x is non-integer and ℵ(x) = x, if x is integer. Furthermore,
the mean, variance and moment generating function of GE(θ;α) are given by

µ1 = E(X) = B(α)
θ , Var(X) = C(α)

θ2
and MX(t) = αβ(α, 1 − t

θ ), respectively,

where B(α) = Ψ(α + 1) − Ψ(1), C(α) = Ψ′(1) − Ψ′(α + 1), β(a, b) = Γ(a)Γ(b)
Γ(a+b)

and Ψ(.) is the digamma function, while Ψ′(.) is its derivation (Ψ′(.) is known as
the trigamma function). Tahmasebi and Jafari (2015) studied some properties of
the classical FGM type bivariate GE df. Moreover, Tahmasebi and Jafari (2015)
studied some distributional properties of concomitants of os’s as well as record
values of this df.

In this paper, the result of Tahmasebi and Jafari (2015) is extended to
FGM(λ, γ) family with two marginals FX and FY , where X ∼ GE(θ1;α1) and
Y ∼ GE(θ2;α2) (denoted by FGM(λ, γ : θ1, α1; θ2, α2)). Moreover, some new
results, which were not obtained by Tahmasebi and Jafari (2015) for FGM fam-
ily, are given such as recurrence relations for the single, as well as the product,
moments of bivariate concomitants of os’s, the concomitant rank-os’s, and the
asymptotic behavior of the concomitants of os’s. It is worth mentioning that, the
same problem tackled by Barakat et al. (2017, 2018) for the Huang-kotz FGM
and Bairamov-Kotz-Becki-FGM with GE marginals, respectively. Moreover, the
FGM(λ, γ : θ1, α1; θ2, α2) is not a special case of any of the latter models. Nowa-
days, we can find several recent relevant works on this subject. Among these
works are Tahmasebi and Behboodian (2012), Tahmasebi and Jafari (2014) and
Tahmasebi et al. (2015, 2016).

2. The FGM(λ, γ : θ1, α1; θ2, α2) family and some of its properties

The joint df and pdf of (X,Y ) are defined by (1.1) and (1.2), respectively,
where X ∼ GE(θ1;α1) and Y ∼ GE(θ2;α2). Thus, it is easy to show that the
(n,m)th joint moments the of FGM(λ, γ : θ1, α1; θ2, α2) family is given by

E(XnY m) = E(Xn)E(Y m) + λ(E(Xn)− E(Un1 ))(E(Y m)− E(V m
1 ))

+γ(E(Un1 )− E(Un2 ))(E(V m
1 )− E(V m

2 )), n,m = 1, 2, ..., (2.1)

where U1 ∼ GE(θ1; 2α1), U2 ∼ GE(θ1; 3α1), V1 ∼ GE(θ2; 2α2) and V2 ∼ GE(θ2;
3α2). Thus, by combining (2.1) and (1.3), we get

E(XY ) =
B(α1)B(α2) + λD(2α1)D(2α2) + γD(3α1)D(3α2)

θ1θ2
,
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where D((k+ 1)α) = B((k+ 1)α)−B(kα), k = 1, 2. Therefore, the coefficient of
correlation between X and Y is

ρX,Y =
λD(2α1)D(2α2) + γD(3α1)D(3α2)√

C(α1)C(α2)
= λg1(α1, α2) + γg2(α1, α2).

Clearly, the function g1(α1, α2) and g2(α1, α2, ) is increasing and positive func-
tion with respect to each of αi, i = 1, 2. Therefore, if λ, γ > 0, then ρX,Y is
increasing and positive function and if λ, γ < 0, then ρX,Y is decreasing and neg-
ative function with respect to each of α1 and α2. Moreover, we can show that

lim α1→∞
α2→∞

g1(α1, α2) = 6(log(2))2

π2 , lim α1→∞
α2→∞

g2(α1, α2, ) =
6(log( 3

2
))2

π2 , limα1→0+

α2→0+
g1(α1,

α2) = 0 and limα1→0+

α2→0+
g2(α1, α2) = 0. Therefore, max ρX,Y = 0.392 at corner

point (λ, γ) = (1, 1) and min ρX,Y = −0.292 at corner point (λ, γ) = (−1, 0).

The conditional df of Y given X = x is given by

FY |X(y|x) = FY (y)[1 + λ(1− FY (y))(1− 2FX(x))

−γFX(x)FY (y)(1− FY (y))(2− 3FX(x))]. (2.2)

Therefore, the regression curve of Y given X = x for FGM(λ, γ : θ1, α1; θ2, α2) is

E(Y |X = x) = E(Y )+λ(1−2FX(x))(E(Y )−E(V1))+γFX(x)(2−3FX(x))(E(V1)

−E(V2)) =
1

θ2
[B(α2) + λD(2α2)(2FX(x)− 1) + γFX(x)D(3α2)(3FX(x)− 2)],

(2.3)
where V1 ∼ GE(θ2; 2α2) and V2 ∼ GE(θ2; 3α2) and the conditional expectation
is non-linear with respect to x.

3. Concomitants of os’s based on FGM(λ, γ : θ1, α1; θ2, α2)

Suppose (Xi, Yi), i = 1, 2, ..., n is a random sample from a bivariate df
FX,Y (x, y). If we order the sample by the X−variate, and obtain the os’s, X1:n ≤
X1:n ≤ .... ≤ Xn:n, for the X sample, then the Y−variate associated with the
rth order statistic Xr:n is called the concomitant of the rth order statistic, and
is denoted by Y[r:n].

Let X ∼ GE(θ1;α1) and Y ∼ GE(θ2;α2). Since the conditional pdf of Y[r:n]

given X[r:n] = x is fY[r:n]|Xr:n(y|x) = fY |X(y|x) (cf. Galambos, 1987, see also

Tahmasebi and Jafari, 2015), then the pdf of Y[r:n] is given by

f[r:n](y) = fY (y) + [λ(fY (y)− fV1(y)) + γ(fV2(y)− fV1(y))] ∆(1)
r,n

+ [γ(fV1(y)− fV2(y))] ∆(2)
r,n, (3.1)
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where

∆(i)
r,n =

β(r, n− r + 1)− (i+ 1)β(r + i, n− r + 1)

β(r, n− r + 1)
, i = 1, 2.

Therefore, the moment generating function of Y[r:n] is given by

M[r:n](t) = α2

[
β

(
α2, 1−

t

θ2

)
+ λ∆(1)

r,n

(
β

(
α2, 1−

t

θ2

)
− β

(
2α2, 1−

t

θ2

))
+γ∆(2)

r,n

(
β

(
2α2, 1−

t

θ2

)
− β

(
3α2, 1−

t

θ2

))]
.

Consequently, the kth moment of Y[r:n] is given by

µ
(k)
[r:n] = E[Y k

[r:n]] = E[Y k] + ∆(1)
r,n(γ((E[V k

2 ]− E[V k
1 ])− λ(E[V k

1 ]− E[Y k]))

−γ∆(2)
r,n(E[V k

2 ]− E[V k
1 ]).

Moreover, the mean of Y[r:n]

µ[r:n] = µ
(1)
[r:n] =

1

θ2

[
B(α2) + ∆(1)

r,n(γD(3α2)− λD(2α2))− γ∆(2)
r,nD(3α2)

]
. (3.2)

Theorem 3.1. for any 1 ≤ r ≤ n− 3, we get

[(n+ 2)A(λ,γ)− 3(r + 1)γD(3α2)]µ[r+2:n]

=[2(n+2)A(λ,γ)−3(2r+3)γD(3α2)]µ[r+1:n]−[(n+2)A(λ,γ)−3(r−2)γD(3α2)]µ[r:n].

Moreover , for all n > 2, we get

[A(λ, γ)(2− n(n+ 1))− 3(r + 1)(n− 1)γD(3α2)]µ[r:n]

= (n+ 2)[A(λ, γ)(n+ 1) + 3(r + 1)) + 3(r + 1)γD(3α2)]µ[r:n−2]

−[2A(λ, γ)(n+ 2) + 3(r + 1)(2n+ 1)γD(3α2)]µ[r:n−1],

where A(λ, γ) = γD(3α2)− λD(2α2).

Proof: It is easy, after some algebra, to show that the mean µ[r:n], de-
fined by (3.2), satisfies the following relation:

µ[r+2:n] − µ[r:n]

µ[r+1:n] − µ[r:n]
=
A(λ, γ)

(
∆

(1)
r+2,n −∆

(1)
r,n

)
+ γD(3α2)

(
∆

(2)
r+2,n −∆

(2)
r,n

)
A(λ, γ)

(
∆

(1)
r+1,n −∆

(1)
r,n

)
+ γD(3α2)

(
∆

(2)
r+1,n −∆

(2)
r,n

) . (3.3)

On the other hand, we can check that ∆
(1)
r+2,n−∆

(1)
r,n = −4

n+1 , ∆
(1)
r+1,n−∆

(1)
r,n = −2

n+1 ,

∆
(2)
r+2,n −∆

(2)
r,n = −12r−18

(n+1)(n+2) and ∆
(2)
r+1,n −∆

(2)
r,n = −6r−6

(n+1)(n+2) . Thus, by combining

the last four relations with (3.3), we get first recurrence relation in Theorem 3.1.

Also, we can easily check that ∆
(1)
r,n − ∆

(1)
r,n−2 = 4r

(n−1)(n+1) , ∆
(1)
r,n−1 − ∆

(1)
r,n−2 =

2r
n(n−1) , ∆

(2)
r,n−∆

(2)
r,n−2 = 6r(r+1)(2n+1)

n(n−1)(n+1)(n+2) and ∆
(2)
r,n−1−∆

(1)
r,n−2 = 6r(r+1)

n(n−1)(n+1) . The

last four relation and the relation (3.2) imply the second recurrence relation of
the theorem. This completes the proof.
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Remark 3.1. By putting γ = 0 in the two recurrence relations defined
in Theorem 3.1 (note that A(λ, 0) = 0), we get the two corresponding recurrence
relations defined in Theorem 3.1 of Barakat et al. (2017), at p = 1.

By multiplying the both sides of (3.1) by (y − µ[r:n])
2 and integrating, we

obtain the variance of Y[r:n] as

σ2
[r:n] =

1

θ2
2

[(1 + π1)(C(α2)− π1B
2(2α2)) + (π2 − π1)(C(2α2) +B2(2α2))

−B2(2α2)(π1 + π2)2 + π2(C(3α2)−B2(3α2)(1 + π2))− 2B(α2)B(2α2)π3

−2B(α2)B(3α2)π2(1 + π1)− 2B(2α2)B(3α2)π2(π1 + π2)], (3.4)

where π1 = λ∆
(1)
r,n, π2 = γ∆

(2)
r,n and π3 = π1(1 + π1) + π2(1 + π1).

3.1. Joint df of concomitants of os’s based on FGM(λ, γ : θ1, α1; θ2, α2)

The joint pdf of concomitants Y[r:n] and Y[s:n], r < s, is (cf. Tahmasebi and
Jafari, 2015)

f[r,s:n](y1, y2) =

∫ ∞
0

∫ x2

0
fY |X(y1|x1)fY |X(y2|x2)fr,s:n(x1, x2)dx1dx2,

where β(a, b, c) = Γ(a)Γ(b)Γ(c)
Γ(a+b+c) and

fr,s:n(x1, x2) =
1

β(r, s− r, n− s+ 1)
F r−1
X (x1)

×(FX(x2)− FX(x1))s−r−1(1− FX(x2))n−sfX(x1)fX(x2), x1 < x2.

Therefore,

f[r,s:n](y1, y2) =

∫ ∞
0

∫ x2

0
fY (y1) [1 + λ(1− 2FX(x1))(1− 2FY (y1))

+γFX(x1)FY (y1)(2− 3FX(x1))(2− 3FY (y1))] [fY (y2) [1 + λ(1− 2FX(x2))

×(1− 2FY (y2)) + γFX(x2)FY (y2)(2− 3FX(x2))(2− 3FY (y2))]]

×

[
F r−1
X (x1)(FX(x2)− FX(x1))s−r−1(1− FX(x2))n−s

β(r, s− r, n− s+ 1)
fX(x1)fX(x2)

]
dx1dx2.

(3.5)
On the other hand, after some algebra we can write the joint pdf f[r,s:n](y1, y2),
defined by (3.5), in the following compact form:

f[r,s:n](y1, y2) = fY (y1)fY (y2)[1 + λ(1− 2FY (y1))I1 + λ(1− 2FY (y2))I2

+λ2(1−2FY (y1))(1−2FY (y2))I3+γFY (y1)(2−3FY (y1))I4+γFY (y2)(2−3FY (y2))I5
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+γ2FY (y1)FY (y2)(2−3FY (y1))(2−3FY (y2))I6+λγFY (y2)(1−2FY (y1))(2−3FY (y2))I7

+λγFY (y1))(1− 2FY (y2))(2− 3FY (y1))I8],

where I1 = ∆
(1)
r,s,n, I2 = ∆

(2)
r,s,n, I3 = ∆

(1)
r,s,n + ∆

(2)
r,s,n −∆

(3)
r,s,n, I4 = ∆

(4)
r,s,n −∆

(1)
r,s,n,

I5 = ∆
(5)
r,s,n−∆

(2)
r,s,n, I6 = (∆

(6)
r,s,n+∆

(7)
r,s,n)− (∆

(3)
r,s,n−∆

(8)
r,s,n), I7 = ∆

(5)
r,s,n−∆

(2)
r,s,n+

∆
(3)
r,s,n −∆

(7)
r,s,n and I8 = ∆

(4)
r,s,n −∆

(1)
r,s,n + ∆

(3)
r,s,n −∆

(6)
r,s,n. Moreover,

∆(i)
r,s,n =

β(r, s− r, n− s+ 1)− (pi + 1)β(r + pi, s− r, n− s+ 1)

β(r, s− r, n− s+ 1)
, i = 1, 4;

∆(i)
r,s,n =

β(r, s− r, n− s+ 1)− (pi + 1)β(s+ pi, n− s+ 1)β(r, s− r)
β(r, s− r, n− s+ 1)

, i = 2, 5;

∆(i)
r,s,n =

β(r, s−r, n−s+ 1)−(pi + 1)2β(s+ 2pi, n− s+ 1)β(r + pi, s−r)
β(r, s−r, n−s+ 1)

, i = 3, 8;

∆(i)
r,s,n =

β(r, s− r, n− s+ 1)− 6β(s+ 3, n− s+ 1)β(r + pi, s− r)
β(r, s− r, n− s+ 1)

, i = 6, 7,

where p1 = p2 = p3 = p7 = 1 and p4 = p5 = p6 = p8 = 2. Therefore, the product
moment E[Y[r:n]Y[s:n]] is obtained directly as

µ[r,s:n] =
1

θ2
2

[B2(α2)ξ1(λ, r, s, n)−B(α2)B(2α2)ξ2(γ, λ, r, s, n)

+B2(2α2)ξ3(γ, λ, r, s, n)−B(α2)B(2α2)ξ4(γ, λ, r, s, n) + γ2B2(3α2)I6], (3.6)

where

ξ1(λ, r, s, n) = 1 + λ(I1 + I2 + I3),

ξ2(γ, λ, r, s, n) = λ(I1 + I2 + 2λI3)− γ(I4 + I5)− λγ(I7 + I8),

ξ3(γ, λ, r, s, n) = λ2I3 + γ2I6 − λγ(I7 + I8) and

ξ4(γ, λ, r, s, n) = γ(I4 + I5) + λγ(I7 + I8).

Therefore, by using (3.2) and (3.6) we can after some algebra calculate the co-
variance between Y[r:n] and Y[s:n] as

σ[r,s:n] =
1

θ2
2

[B2(α2)δ(1)
r,s,n

−B(α2)B(2α2)δ(2)
r,s,n +B2(2α2)δ(3)

r,s,n −B(α2)B(3α2)δ(4)
r,s,n +B2(3α2)δ(5)

r,s,n]. (3.7)

where

δ(1)
r,s,n = 1 + λ(I1 + I2 + λI3 −∆(1)

r,n −∆(1)
s,n),

δ(2)
r,s,n = λ(I1 + I2 + 2λI3 −∆(1)

r,n−∆(1)
s,n)−γ(I4 + I5−∆(2)

r,n−∆(2)
s,n)−λγ(I7 + I8),

δ(3)
r,s,n = λ2(I3 + ∆(1)

r,n∆(1)
s,n) + γ2(I6 + ∆(2)

r,n∆(2)
s,n)− λγ(I7 + I8),

δ(4)
r,s,n = γ(I4 + I5 −∆(2)

r,n∆(2)
s,n) + λγ(I7 + I8) and

δ(5)
r,s,n = γ2(I6 + ∆(2)

r,n∆(2)
s,n).
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We can now use (3.7) and (3.4) to obtain the coefficient of correlation between
Y[r:n] and Y[s:n] as ρ[r,s:n] =

σ[r,s:n]
σ[r:n]σ[s:n]

. By putting γ = 0 in (3.4) and (3.7), we can

easily check that the ρ[r,s:n] is exactly the coefficient of correlation between Y[r:n]

and Y[s:n] calculated by Barakat et al. (2017), at p = 1.

Theorem 3.2. For any 1 ≤ r ≤ n− 3, we get

µ[r+2,s:n] = 2µ[r+1,s:n] − µ[r,s:n] − τn(s;λ, γ;α2), (3.8)

where

τn(s;λ, γ;α2) =
6A1(n+ 3)(n+ 4) + 12A2(s+ 2)(n+ 4) + 18A3(s+ 2)(s+ 3)

(n+ 1)(n+ 2)(n+ 3)(n+ 4)
.

Moreover, for any 1 ≤ s ≤ n− 3, we get

µ[r,s+2:n] = 2µ[r,s+1:n] − µ[r,s:n] − ωn(r;λ, γ;α2), (3.9)

where

ωn(r;λ, γ;α2) =
6A4(n+ 3)(n+ 4) + 12rA5(n+ 4) + 18A3r(r + 1)

(n+ 1)(n+ 2)(n+ 3)(n+ 4)
.

Finally, for all n > 2, we get

(n+ 1)µ[r,s:n] = 2nµ[r,s:n−1] − (n− 1)µ[r,s:n−2] + ζn(r, s;λ, γ;α2), (3.10)

where
ζn(r, s;λ, γ;α2) =

3A4s(s+ 1)(n+ 3)(n+ 4) + 36rA2r(r + 1)(s+ 2)(n+ 4)

n(n+ 1)(n+ 2)(n+ 3)(n+ 4)

+
36A5(s+ 1)(s+ 2)(n+ 4) + 108A3(s+ 2)(s+ 3)r(r + 1)

n(n+ 1)(n+ 2)(n+ 3)(n+ 4)

+
8A6r(s+ 1)(n+ 3)(n+ 4) + 6A1r(r + 1)(n+ 3)(n+ 4)

n(n+ 1)(n+ 2)(n+ 3)(n+ 4)
,

A1 = 1
θ22

[λγ(B2(2α2) +B(α2)B(2α2)−B(α2)B(3α2))− γB(α2)B(2α2)],

A2 = 1
θ22

[γ2(B2(2α2) +B2(3α2)) + λγ(B(α2)B(3α2)−B(α2)B(2α2))],

A3 = −γ2
θ22

(B2(2α2) +B2(3α2)),

A4 = 1
θ22

[γ(B(α2)B(2α2) − B(α2)B(3α2)) + λγ(B(α2)B(2α2) + B(α2)B(3α2) −
B2(α2))],
A5 = 1

θ22
[γ2(B2(2α2) + B2(3α2)) + λγ(B(α2)B(3α2)− B(α2)B(2α2) + B2(α2))]

and
A6 = 1

θ22
[λ2(B(2α2)−B(α2))2 + 2λγB(α2)(B(2α2)−B(3α2))− γ2B2(3α2)].
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Proof: It is easy to check that

∆
(i)
r+2,s,n −∆(i)

r,s,n = 2(∆
(i)
r+1,s,n −∆(i)

r,s,n), i = 1, 3, 6, (3.11)

∆
(i)
r+2,s,n −∆(i)

r,s,n = (∆
(i)
r+1,s,n −∆(i)

r,s,n)
2r + 3

r + 1
, i = 4, 7, 8, (3.12)

and

∆(2)
r,s,n = ∆

(2)
r+1,s,n = ∆

(2)
r+2,s,n, ∆(5)

r,s,n = ∆
(5)
r+1,s,n = ∆

(5)
r+2,s,n. (3.13)

The recurrence relation (3.8) is now followed by combining (3.11) and (3.12) with
(3.13). Now, we turn to prove (3.9). First, we notice that

∆(1)
r,s,n = ∆

(1)
r,s+1,n = ∆

(1)
r,s+2,n (3.14)

and
∆(4)
r,s,n = ∆

(4)
r,s+1,n = ∆

(4)
r,s+2,n. (3.15)

Moreover, it is easy to check that

∆
(i)
r,s+2,n −∆(i)

r,s,n = 2(∆
(i)
r,s+1,n −∆(i)

r,s,n), i = 2, 3, 6, (3.16)

and

∆
(i)
r,s+2,n −∆(i)

r,s,n = (∆
(i)
r,s+1,n −∆(i)

r,s,n)
2s+ 2pi + 1

s+ pi
, (3.17)

where i = 5, 7, 8 and p5 = 1, p7 = 2, p8 = 3. Therefore, the recurrence relation
(3.9) is followed by combining (3.14), (3.15), (3.16) and (3.17). In order to prove
the recurrence relation (3.10), we first notice that

∆
(i)
r,s,n−2:p −∆(i)

r,s,n:pi = (∆
(i)
r,s,n−1:pi

−∆(i)
r,s,n:pi)

2n+ pi − 1

n− 1
, (3.18)

where i = 1, 2, ..., 8 and p1 = p2 = 1, p3 = p4 = p5 = 2, p6 = p7 = 3, p8 = 4,
The recurrence relation (3.10) is now followed by using (3.18). The proof is
completed.

Remark 3.2. By putting γ = 0 in (3.8), (3.9) and (3.10), we get (3.24),
(3.25) and (3.26) in Theorem 3.3 of Barakat et al. (2017), at p = 1.

4. Concomitants of record values based on FGM(λ, γ : θ1, α1; θ2, α2)

Let (Xi, Yi), i = 1, 2, ... be a random sample from FGM(λ, γ; θ1, α1; θ2, α2).
When the experimenter interests in studying just the sequence of records of the
first component Xi’s, the second component associated with the record value
of the first one is termed as the concomitant of that record value. The con-
comitants of record values arise in a wide variety of practical experiments, e.g.,
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see Bdair and Raqab (2014) and Arnold et al. (1998). Let {Rn, n ≥ 1} be
the sequence of record values in the sequence of X’s, while R[n] be the cor-
responding concomitant. Houchens (1984) has obtained the pdf of concomi-
tant of nth record value for n ≥ 1, as h[n](y) =

∫∞
0 fY (y|x)gn(x)dx, where

gn(x) = 1
Γ(n)(− log(1− FX(x)))n−1fX(x) is the pdf of Rn. Therefore, after some

algebra, we get

h[n](y) = (1 + λΥn:1)fY (y) + (γΥn:2 − λΥn:1)fV1(y)− γΥn:2fV2(y), (4.1)

where V1 ∼ GE(θ2; 2α2)), V2 ∼ GE(θ2; 3α2)) and

Υn:p =

1− (1 + p)

ℵ(p)∑
i=0

(−1)i
(p
i

)
(i+ 1)n


(clearly, Υn:1 = (2−(n−1) − 1)). The representation (4.1) enables us to derive the
mean and the variance of R[n] as

µ[Rn] =
1

θ2
[B(α2)− λΥn:1D(2α2)− γΥn:2D(3α2)]

and

σ2
[Rn] =

1

θ2
2

[C(α2) + λΥn:1(C(α2)− C(2α2)) + γΥn:2(C(2α2)− C(3α2))

−(1+λΥn:1)λΥn:1D
2(2α2)−(1+γΥn:2)γΥn:2D

2(3α2)−λγΥn:1Υn:2D(2α2)D(3α2)].
(4.2)

Again, by putting γ = 0, we get the mean and the variance of R[n] for the
Huang-kotz FGM family based on the GE marginals at p = 1 (cf. Barakat et al.,
2017).

The joint pdf of the concomitants R[n] and R[m], n < m, is given by

h[n,m](y1, y2) =

∫ ∞
0

∫ ∞
x1

fY |X(y1|x1)fY |X(y2|x2)gm,n(x1, x2)dx2dx1,

where

gm,n(x) =
1

Γ(n)Γ(m− n)
(− log(1− FX(x1)))n−1

×
(
− log

1− FX(x2)

1− FX(x1)

)m−n−1 fX(x1)fX(x1)

1− FX(x1)

is the joint pdf of Rn and Rm. Therefore, after some algebra, we get

h[n,m](y1, y2) = fY (y1)fY (y2)[1 + λ(1− 2FY (y1))J1 + λ(1− 2FY (y2))J2

+λ2(1− 2FY (y1))(1− 2FY (y2))J3 + γFY (y1)(2− 3FY (y1))J4

+γFY (y2)(2− 3FY (y2))J5 + γ2FY (y1)FY (y2)(2− 3FY (y1))(2− 3FY (y2))J6

+λγFY (y2)(1−2FY (y1))(2−3FY (y2))J7+λγFY (y1))(1−2FY (y2))(2−3FY (y1))J8],
(4.3)
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where J1 = Υn:1, J2 = Υm:1, J3 = 4Υn:1 +Υm:1−Υn,m:1,1, J4 = Υn:2−Υn:1,
J5 = Υm:2 −Υm:1, J6 = Υn,m:2,1 + Υn,m:1,2 −Υn,m:1,1 −Υn,m:2,2, J7 = Υm:2 +
Υn,m:1,1 −Υm:1 −Υn,m:1,2, J8 = Υn:2 + Υn,m:1,1 −Υn:1 −Υn,m:2,1 and

Υn,m:p,q =

1− (1 + p)(1 + q)

ℵ(p)∑
i=0

ℵ(q)∑
j=0

(−1)i+j
(p
i

) (q
j

)
(i+ j + 1)n(j + 1)m−n

 .
The representation (4.3) enables us to derive the product moment and the co-
variance of R[n] and R[m], respectively, as

µ[Rn,Rm]:p =
1

θ2
2

[B2(α2)ξ1(λ, n,m)−B(α2)B(2α2)ξ2(γ, λ, n,m)

+ B2(2α2)ξ3(γ, λ, n,m)−B(α2)B(2α2)ξ4(γ, λ, n,m)

+ B2(3α2)γ2J6],

where ξ1(λ, n,m) = 1 + λ(J1 + J2 + J3), ξ2(γ, λ, n,m) = λ(J1 + J2 + 2λJ3) −
γ(J4 + J5) − λγ(J7 + J8), ξ3(γ, λ, n,m) = λ2J3 + γ2J6 − λγ(J7 + J8) and
ξ4(γ, λ, n,m) = γ(J4 + J5) + λγ(J7 + J8) and

σ[Rn,Rm] =
1

θ2
2

[B2(α2)η(1)
n,m −B(α2)B(2α2)η(2)

n,m

+B2(2α2)η(3)
n,m −B(α2)B(3α2)η(4)

n,m +B2(3α2)η(5)
n,m], (4.4)

where

η(1)
n,m = 1 + λ(J1 + J2 + λJ3 −Υn:1 −Υm:1),

η(2)
n,m = λ(J1+J2+2λJ3−Υn:1−Υm:1)−γ(J4 + J5 −Υn:2−Υm:2)−λγ(J7 + J8),

η(3)
n,m = λ2(J3 + Υn:1Υm:1) + γ2(J6 + Υn:2Υm:2)− λγ(J7 + J8) and

η(4)
n,m = γ(J4 + J5 −Υn:2Υm:2) + λγ(J7 + J8) and η(5)

n,m = γ2(J6 + Υn:2Υm:2).

Finally, by combining (4.2) and (4.4), we get the correlation coefficient of the
concomitants R[n] and R[m] as

ρ[Rn,Rm] =
σ[Rn,Rm]√
σ2

[Rn]σ
2
[Rm]

.

Clearly, by putting γ = 0 in (4.2) and (4.4), we can easily check that the ρ[Rn,Rm]

is exactly the coefficient of correlation between Rn and Rm calculated by Barakat
et al. (2017), at p = 1.

5. Applications

Concomitants of os’s and record values have received a continued remark-
able attention in recent years due to their applicability in many problems. The
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most striking application of concomitants of os’s arises in biological selection
problems. For example, in choosing the top k out of n rams as judged by their
genetic make up is selected for breeding, then Y[n−k+1:n], ..., Y[n:n], might repre-
sent the quality of the wool of one of their female offspring. In such type of
experiments a geneticist is more likely to choose the best set of offsprings with
less number of trials than one in which all trials are undertaken which is much
expensive and time consuming. Examples of such application can be found in
Scaria and Thomas (2014).

Estimation of the parameters associated with the df of the rv Y of primary
interest using concomitants of os’s or record values on the auxiliary rv X is an
another important application, where extensive works are seen carried out. For
example see, Begum and Khan (2000), Scaria (2003), Philip and Thomas (2015),
Veena and Thomas (2015) and Domma and Giordano (2016).

Another important application of concomitants of os’s and record values
is a method of sampling known as ranked set sampling. Namely, when we have
an auxiliary rv X, which is easily measurable while the measurement of the rv
Y of primary interest is hard and expensive. In order to achieve observational
economy, we choose n2 units randomly from the population and arrange them in
n groups of n units each for measurement of the observed rv X. Therefore, based
on the observations on X, units in each group are ranked among themselves and
from the jth group the unit ranked j is chosen for measurement of the variable Y
of primary interest for j = 1, 2, ..., n. Clearly the observations finally measured on
Y are concomitants of os’s. For some references in this area one may refer, Chen
et al. (2004), Chacko and Thomas (2008, 2009), Lesitha and Thomas (2013),
Paul and Thomas (2017) and Philip and Thomas (2017).

Moreover, some results on characterization of bivariate distributions by
properties of concomitants of os’s are available in Thomas and Veena (2011). Be-
sides the preceding applications, there are important other recent applications,
For example, Jung et al. (2008) presented an application of generalized FGM
copula function in exchange markets using directional dependence concept. Hlu-
binka and Kotz (2010) used the generalized FGM distribution and related copulas
as bivariate models for the distribution of spheroidal characteristics. Sheikhi and
Tata (2013) modeled the joint distribution of a linear combination of concomi-
tants of os’s and linear combinations of their os’s as a unified skew-normal family
assuming a multivariate normal distribution. Eryilmaz (2016) has shown that
the concomitants are potentially useful in reliability modeling.

Eryilmaz (2016) has analysed the FGM with exponential marginals from
a reliability point of view. We extend some of these results to the FGM(λ, γ :
θ1, α1; θ2, α2).

Let Xi ∼ GE(θ1;α1) and Yi ∼ GE(θ2;α2) denote respectively the lifetime
of the ith component, and the utility of the ith component during its lifetime,
i = 1, ..., n. Total utility of n components is defined by the rv

∑n
i=1 Yi. More-

over, the residual performance after the first failure in the system is given by
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∑n
i=1 Yi− Y[1:n]. Although the components are identical, they may have different

contribution/utility to the performance of the whole system since the components
may be located in different positions or they may be used by different operators.
The utility of the component is positively correlated with its lifetime. Such a
dependence can be modeled by FGM(λ, γ : θ1, α1; θ2, α2).

The residual performance after time t is defined by the process (cf. Eryil-
maz, 2016)

S(t) =
n∑

i=N(t)+1

Y[i:n], t > 0,

where the process N(t) denotes the number of failures up to time t, i.e., P (N(t) =
r) =

(n
r

)
F rX(t)(1 − FX(t))n−r, r = 0, 1, ..., n, with P (N(t) = 0) = 1. Clearly,

knowing the mean value of S(t) may help to an engineer at various stages such as
design, and preventive maintenance. By using Proposition 1 of Eryilmaz (2016)
and after some algebra, we can show that

E(S(t)) =
n

θ2
[B(α2)(1− FX(t)) + λD(2α2)(FX(t)− FU1(t))

+γD(3α2)(FU1(t)− FU2(t))] ,

where U1 ∼ GE(θ1; 2α1) and U2 ∼ GE(θ1; 3α1).

On the other hand, it is useful to know about the mean residual performance
of the system when at a specific time there are exactly m working components.
For this purpose, we consider the conditional mean residual performance defined
by ψm(t) = E(S(t) = j|M(t) = n − N(t) = m), where M(t) is the number of
working components at time t. Now, using Theorem 1 of Eryilmaz (2016), we get
after some algebra

ψm(t) =
m

n

E(S(t))

1− FX(t)

=
m

θ2

[
B(α2) + λD(2α2)

FX(t)− FU1(t)

1− FX(t)
+ γD(3α2)

FU1(t)− FU2(t)

1− FX(t)

]
.

By using applying L’Hospital’s rule, we get

lim
t→∞

ψm(t) =
m

θ2
[B(α2) + λD(2α2) + γD(3α2)] = lim

t→∞
E(Y |X = t)

(E(Y |X = t) is given by (2.3)).

Furthermore, we can consider the random time until the total output of
the system first falls below the critical level k. Clearly, the waiting time until
the total output first falls below k is of special importance in the analysis. The
corresponding time is defined by the rv T (k) = inf{t : S(t) < k}. Since this
waiting time corresponds to one of the failure time of the components, the two
events {T (k) = Xr:n} and {S(Xr−1:n) ≥ k and S(Xr:n) < k} are equivalent,
where the rv S(Xr:n) =

∑n
i=r+1 Y[i:n] defines the residual performance after the
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rth failure in the system (cf. Eryilmaz, 2016). For a system consisting of n = 3
components, using Proposition 3 of Eryilmaz, 2016), we get

P (T (k) = X2:3) =

∫ ∞
0

P (Y ?
1 + Y ?

2 ≥ k)dFX1:3(x)−
∫ ∞

0
P (Y ?

1 ≥ k)dFX2:3(x),

P (T (k) = X3:3) =

∫ ∞
0

P (Y ?
1 ≥ k)dFX2:3(x),

and P (T (k) = X1:3) = 1 − P (T (k) = X2:3) − P (T (k) = X3:3), where P (Y ? <
y) = FY |X(y|x) is defined by (2.2). Thus,

P (Y ?
1 + Y ?

2 > k) =

∫ ∞
0

P (Y ?
1 + Y ?

2 > k|Y ?
1 = y)dy

=

∫ k

0
P (Y ?

1 + Y ?
2 > k|Y ?

1 = y)dy +

∫ ∞
k

P (Y ?
1 + Y ?

2 > k|Y ?
1 = y)dy

=

∫ k

0
(1− P (Y ?

2 ≤ k − y))fY ?1 (y)dy + 1

−FY (k)
[
1− λFX(x)F̄Y (k)− γF 2

X(x)FY (k)F̄Y (k)
]
.

By using the binomial theorem, the above integration can be easily explicitly
evaluated. However, Eryilmaz (2016) presented a simple Monte-Carlo simulation
algorithm to compute the probability P (T (k) = Xr:n) for general bivariate df
FX,Y .

6. Concluding remarks

While introducing the iterated FGM distribution by Hauge and Kotz (1984),
and thereby showed that the maximum correlation is higher than was previously
know. Moreover, Hauge and Kotz (1984) showed that just one single iteration
can result in tripling the covariance for certain marginals. Other than this a
systematic study (by Hauge and Kotz, 1984) of the properties of this promis-
ing distribution and its application does not appear to have been discussed in
literature. The present paper is an attempt in this direction. Some new distri-
butional properties of concomitants of os’s of the iterated FGM based on the GE
df were presented in Section 2. Moreover, several new useful recurrence relations
between single and product moments of concomitants were established. Finally,
by relying of the results of Section 2, we gave an application of this model in
reliability theory. Besides this application we reviewed some various applica-
tions for concomitants and the FGM distribution. Most probably, the utilization
of the iterated FGM distribution instead FGM distribution for studying these
applications will give more accurate results.
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