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1. INTRODUCTION

In this paper, the biased nonparametric regression model is considered.1

It is formulated as follows. Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be identically2

distributed random variables defined on a probability space (Ω,F ,P) with the3

common density function4

(1.1) f(x, y) =
ω(x, y)g(x, y)

µ
, (x, y) ∈ [0, 1]× R,

where ω stands for a known positive function, g denotes the density function5

of the unobserved random variables (U, V ) and µ := Eω(X,Y ) < ∞. In this6

setup g and f mean the target density and weighted density, respectively, and7

the resulting data are biased data. We want to estimate the dth derivative r(d)(x)8

of regression function9

(1.2) r(x) := E(ρ(V )|U = x) =

∫
R

ρ(y)g(x, y)

h(x)
dy, x ∈ [0, 1].

This above model arises in many applications. For example, in order to10

estimate the change rate of agricultural output V when the input U increase11

(decrease) in a country. We obtain data (Xi, Yi)(i = 1, 2, . . . , n) from those re-12

gions where spend more in agriculture, then Xi and Yi stands for the agricultural13

input and output. Because it is more likely to sample those special regions, the14

density f of (Xi, Yi) satisfies f(x, y) = ω(x,y)g(x,y)
µ with some weight function ω15

and the real density g of (U, V ). Then we can estimate the change rate r(d) of16

the country by the given data (Xi, Yi). Hence, the work about this regression17

estimation model is very important.18

The former works have developed kernel or modified local polynomials es-19

timators for the problem of estimating r(x), i.e., r(d)(x) with d = 0. See, for in-20

stance, [1], [20], [10], [21], [11], [12] and [5]. In order to obtain theoretical results,21

as optimal rates of convergence, in a general statistical setting or to reach the goal22

of adaptivity, wavelet methods have been developed by [9], [4] and [6]. Always23

focusing on wavelet methods, the estimation of r(x) for (strongly mixing) depen-24

dent (X1, Y1), (X2, Y2), . . . , (Xn, Yn) has been explored by [7], [8] and [17]. Also,25

for the prime goal, the estimation of the derivative r(d)(x) has been considered26

by [3] and [14], but only for independent (X1, Y1), (X2, Y2), . . . , (Xn, Yn). More27

precisely, [3] provide an upper bound estimation over Lp(R)(1 ≤ p < ∞) risk28

for the derivative r(d)(x) of regression function with a linear wavelet estimator.29

Because this linear wavelet estimator is not adaptive, [14] construct a nonlinear30

wavelet estimator and study its convergence rate over Lp(R)(1 ≤ p <∞) risk.31

In this paper, we investigate a generalization of these works by consider-32

ing the estimation of r(d)(x) from dependent (X1, Y1), (X2, Y2), . . . , (Xn, Yn); the33

negatively associated case is considered. This kind of dependence naturally ap-34

pear in many well-known multivariate distributions involved in a wide variety of35
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applications. We refer to [2] and [16]. In this setting, a linear nonadaptive and1

nonlinear adaptive wavelet estimators are introduced. We determine their rates of2

convergence under the Lp risk with 1 ≤ p <∞, assuming that r(d)(x) belongs to3

Besov spaces Bs
p̃,q(R). We prove that, with mathematical efforts, the established4

results in the independent case can be transposed to the negatively associated5

case, showing the consistency of the wavelet methodology for this problem.6

The rest of this paper is the following. The mathematical assumptions on7

the model are presented in Section 2. The necessary on the wavelets and Besov8

spaces are described in Section 3. The linear wavelet estimation is performed9

in Section 4. The nonlinear wavelet estimation is developed in Section 5. Some10

concluding remarks are postponed in Section 6.11

2. ASUMPTIONS ON THE MODEL

In this section, we will introduce the definition and properties of negatively12

associated sample. In addition, some other assumptions for the model (1.1)-(1.2)13

are proposed.14

Definition 2.1. [2] A sequence of random variable X1, X2, . . . ,
Xn is said to be negatively associated, if for each pair of disjoint nonempty subsets
A and B of {i = 1, 2, . . . , n},

Cov
(
f(Xi, i ∈ A), g(Xj , j ∈ B)

)
≤ 0,

where f and g are real-valued coordinate-wise nondecreasing functions and the15

corresponding covariances exist.16

This definition can be extended to random vectors (see [16]). It is well17

known that Cov
(
Xi, Xj

)
≡ 0 when the random variable X1, X2, . . . , Xn is inde-18

pendent. Hence, the independence case is a special case of negatively associated19

case. Also, let X1, X2, . . . , Xn be independent random variables with log concave20

densities. Then, if
n∑
i=1

Xi = c (c is a constant), X1, X2, . . . , Xn are negatively21

associated.22

For examples of negatively associated case, [16] showed that many well-23

known multivariate distributions process the negatively associated property. Some24

examples include: the multinomial distribution, the multivariate hypergeometric25

distribution, the Dirichlet compound multinomial distribution, the permutation26

distribution and so on. Because of its wide application in multivariate statistical27

analysis and system reliability, many research of negatively associated has already28

considered, see, e.g., [19], [24], [18], [23]. In addition, an important property of29

negative association is given in the following lemma. It will be at a center of one30

of our main result.31
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Lemma 2.1. [16] Let X1, X2, . . . , Xn be a sequence of negatively asso-1

ciated random variables and B1, B2, . . . , Bm be some pairwise disjoint nonempty2

subsets of {i = 1, 2, . . . , n}. If fi (i = 1, 2, . . . ,m) are m coordinate-wise nonde-3

creasing (nonincreasing) functions, then f1

(
Xi, i ∈ B1

)
, f2

(
Xi, i ∈ B2

)
, . . . , fm

(
Xi, i ∈4

Bm
)

are also negatively associated.5

In this paper, A . B denotes A ≤ cB with a positive constant c which is6

independent of A and B; A & B means B . A; A ∼ B stands for both A . B7

and B . A.8

For the problem (1.1)-(1.2), in addition to assume that (X1, Y1), (X2, Y2), . . . , (Xn, Yn)9

are negatively associated, we make the following other assumptions:10

A1. The density function h of the random variable U is nonincreasing, and
has a positive lower bound,

0 < c1 ≤ h(x), x ∈ [0, 1].

A2. The weight function ω is coordinate-wise nonincreasing, and has both
positive upper and lower bounds, i.e., for (x, y) ∈ [0, 1]× R,

ω(x, y) ∼ 1.

A3. The function ρ is known, nondecreasing and ρ ∈ L∞(R).11

A4. We have r(u)(0) = r(u)(1) = 0 for any u ∈ {0, . . . , d}.12

A5. There exists a constant c2 > 0 such that

sup
x∈[0,1]

|r(d)(x)| ≤ c2.

These assumptions are quite standard for the considered problem (see [3]13

and [14]). Only those involving the non monotonicity of some functions are deeply14

link with the negatively associated dependence assumption. They will be used15

for technical purpose in the proofs.16

3. WAVELETS AND BESOV SPACES

Throughout this paper, we work with the wavelet basis described below.17

A wavelet function ψ can be constructed from the scaling function φ in a simple18

way such that {2j/2ψ(2jx − k), j ∈ Z, k ∈ Z} constitutes an orthonormal basis19

(wavelet basis) of L2(R). Then, each f ∈ L2(R),20

f =
∑
k∈Z

αj0,kφj0,k +

∞∑
j=j0

∑
k∈Z

βj,kψj,k
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holds in L2(R) sense, where αj0,k = 〈f, φj0,k〉, βj,k = 〈f, ψj,k〉 and

φj0,k(x) = 2
j0
2 φ(2j0x− k), ψj,k(x) = 2

j
2ψ(2jx− k).

Let Pj be the orthogonal projection operator from L2(R) onto the space Vj1

with the orthonormal basis {φj,k(·) = 2j/2φ(2j ·−k), k ∈ Z}. Then, for f ∈ L2(R),2

3

Pjf =
∑
k∈Z

αj,kφj,k.

A scaling function φ is called m regular, if φ ∈ Cm(R) and |Dαφ(x)| ≤ c(1+x2)−l4

for each l ∈ Z (α = 0, 1, . . . ,m). In this paper, we choose Daubechies scaling5

function D2N . Then, φ is m regular when N gets large enough. Furthermore, it6

can be shown that for f ∈ Lp(R) (1 ≤ p <∞),7

(3.1) Pjf(x) =
∑
k∈Z

αj,kφj,k(x)

holds almost everywhere on R ([15]).8

Lemma 3.1. Let a scaling function φ ∈ L2(R) satisfy m regular and
{αk} ∈ lp (1 ≤ p ≤ ∞). Then∥∥∥∥∥∑

k∈Z
αk2

j
2φ(2jx− k)

∥∥∥∥∥
p

∼ 2
j( 1

2
− 1
p

)‖(αk)‖p.

The proof of lemma can be found in [15]. In addition, Lemma 3.1 holds if9

the scaling function φ is replaced by the corresponding wavelet ψ.10

One advantage of wavelets is that it can characterize Besov spaces. Besov11

spaces are important in theory and applications, which contain Hölder and L2
12

Sobolev spaces as special examples. The next lemma provides equivalent defini-13

tion for Besov space.14

Lemma 3.2. Let φ be m regular, ψ be the corresponding wavelets and15

f ∈ Lp(R). If αj,k = 〈f, φj,k〉, βj,k = 〈f, ψj,k〉 , p, q ∈ [1,∞] and 0 < s < m, then16

the following assertions are equivalent:17

(1) f ∈ Bs
p,q(R);18

(2) {2js‖Pjf − f‖p} ∈ lq;19

(3)
{

2
j(s− 1

p
+ 1

2
)‖βj‖p

}
∈ lq.20

The Besov norm of f can be defined by21

(3.2) ‖f‖Bsp,q := ‖(αj0)‖p + ‖(2j(s−
1
p

+ 1
2

)‖βj‖p)j≥j0‖q,

where ‖βj‖pp =
∑
k∈Z
|βj,k|p.22
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In this paper, we will suppose the unknown function r(d)(x) belong to Besov1

balls Bs
p,q(H) with H > 0, which means f ∈ Bs

p,q(H) := {f ∈ Bs
p,q(Rd), ‖f‖Bsp,q ≤2

H}.3

4. LINEAR WAVELET ESTIMATION

This section will introduce a linear wavelet estimator and discuss its con-4

vergence rate over Lp(1 ≤ p < ∞) risk. Now our linear wavelet estimator is5

defined by6

(4.1) r̂(d)
n (x) :=

∑
k∈Ω

α̂j0,kφj0,k(x).

In this definition, we have set7

(4.2) α̂j0,k = (−1)d
µ̂n
n

n∑
i=1

ρ(Yi)

ω(Xi, Yi)h(Xi)
φ

(d)
j0,k

(Xi),

8

(4.3) µ̂n =

[
1

n

n∑
i=1

1

ω(Xi, Yi)

]−1

and Ω = {k ∈ Z, supp r(d) ∩ supp φj0,k 6= ∅}. Then, it follows from the com-9

pactly supported properties of the function r(d) and φj0,k that the cardinality of10

Ω satisfies |Ω| ∼ 2j0 .11

On the other hand, some existing results on these estimators in the in-12

dependent case remain true. Indeed, according to the [14, Lemma 2.1], under13

Condition A4, we know that14

E
(

1

µ̂n

)
=

1

µ
(4.4)

and15

E
[
(−1)d

µρ(Yi)

ω(Xi, Yi)h(Xi)
φ

(d)
j0,k

(Xi)

]
= αj0,k.(4.5)

These two equations mean that µ̂n and α̂j0,k are unbiased estimators of µ and16

αj0,k, respectively. Furthermore, the linear estimator r̂
(d)
n (x) can also be as an17

unbiased estimator of r(d)(x). In the following, we present an important lemma,18

which will be used to prove our theorems.19

Lemma 4.1. For the problem (1.1)-(1.2) with Conditions A1—A5 hold.20

If 2j0 ≤ n, then, for 1 ≤ p <∞, we have21

E
∣∣∣α̂j0,k − αj0,k∣∣∣p . 2j0dpn−

p
2 .
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Proof of Lemma 4.1: According to the definition of α̂j0,k, the follow-1

ing decomposition holds:2

α̂j0,k − αj0,k =
µ̂n
µ

[
(−1)d

µ

n

n∑
i=1

ρ(Yi)

ω(Xi, Yi)h(Xi)
φ

(d)
j0,k

(Xi)− αj0,k

]
+ αj0,k · µ̂n

( 1

µ
− 1

µ̂n

)
.

Furthermore, one has

E
∣∣∣α̂j0,k − αj0,k∣∣∣p . E

∣∣∣∣∣ µ̂nµ
[

(−1)d
µ

n

n∑
i=1

ρ(Yi)

ω(Xi, Yi)h(Xi)
φ

(d)
j0,k

(Xi)− αj0,k

]∣∣∣∣∣
p

+ E
∣∣∣∣αj0,k · µ̂n( 1

µ
− 1

µ̂n

)∣∣∣∣p .(4.6)

Then, it follows from Condition A5, Hölder’s inequality and the orthonormality
of {φj0,k} that |αj0,k| = |

∫
[0,1] r

(d)(x)φj0,k(x)dx| . 1. Moreover, Condition A2

and the definition of µ̂n imply that |µ̂n| . 1. Hence, the inequality (4.6) reduces
to

E
∣∣∣α̂j0,k − αj0,k∣∣∣p . E

∣∣∣∣∣µn
n∑
i=1

(−1)d
ρ(Yi)

ω(Xi, Yi)h(Xi)
φ

(d)
j0,k

(Xi)− αj0,k

∣∣∣∣∣
p

+ E
∣∣∣∣ 1µ − 1

µ̂n

∣∣∣∣p
:= Q1 +Q2.(4.7)

Let us now bound Q1 and Q2 as sharp as possible.3

• Upper bound of Q1.4

Define ξi := (−1)dµρ(Yi)
ω(Xi,Yi)h(Xi)

φ
(d)
j0,k

(Xi)− αj0,k. Then, one gets5

Q1 := E

∣∣∣∣∣ 1n
n∑
i=1

ξi

∣∣∣∣∣
p

=

(
1

n

)p
E

∣∣∣∣∣
n∑
i=1

ξi

∣∣∣∣∣
p

.

Because φ(d) is a bounded variation function, one can assume

φ(d) := φ− φ̃,

where φ and φ̃ are bounded, nonnegative and nondecreasing functions ([22]).
Then, we can write

φ
(d)
j0,k

:= 2j0d(φj0,k − φ̃j0,k).

Moreover, one defines

αj0,k :=

∫
(−1)d2j0dφj0,k(x)r(x)dx, α̃j0,k :=

∫
(−1)d2j0dφ̃j0,k(x)r(x)dx

and

ξi :=
(−1)d2j0dµρ(Yi)

ω(Xi, Yi)h(Xi)
φj0,k(Xi)− αj0,k, ξ̃i :=

(−1)d2j0dµρ(Yi)

ω(Xi, Yi)h(Xi)
φ̃j0,k(Xi)− α̃j0,k.
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Then, we have αj0,k = αj0,k− α̃j0,k, ξi = ξi− ξ̃i and, by an elementary inequality1

of convexity, one gets2

Q1 =

(
1

n

)p
E

∣∣∣∣∣
n∑
i=1

(
ξi − ξ̃i

)∣∣∣∣∣
p

.

(
1

n

)p [
E

∣∣∣∣∣
n∑
i=1

ξi

∣∣∣∣∣
p

+ E

∣∣∣∣∣
n∑
i=1

ξ̃i

∣∣∣∣∣
p]
.(4.8)

Using (1.1), (1.2) and Condition A4, one knows that Eξi = 0. Note that
ρ(y)φj0,k(x)

ω(x,y)h(x) is a nondecreasing function by the monotonicity of φj0,k(x) and Con-

ditions A1-A3. Furthermore, we get that {ξi, i = 1, 2, . . . , n} is negatively associ-

ated by Lemma 2.1. On the other hand, |ξi|p .
∣∣∣ (−1)d2j0dµρ(Yi)
ω(Xi,Yi)h(Xi)

φj0,k(Xi)
∣∣∣p+|αj0,k|p

and |αj0,k|p =
∣∣∣E [ (−1)d2j0dµρ(Yi)

ω(Xi,Yi)h(Xi)
φj0,k(Xi)

]∣∣∣p ≤ E
∣∣∣ (−1)d2j0dµρ(Yi)
ω(Xi,Yi)h(Xi)

φj0,k(Xi)
∣∣∣p thanks

to Jensen’s inequality. Then, one has

E|ξi|p . E
∣∣∣∣(−1)d2j0dµρ(Yi)

ω(Xi, Yi)h(Xi)
φj0,k(Xi)

∣∣∣∣p
=

∫
R

∫
[0,1]

∣∣∣∣(−1)d2j0dµρ(y)

ω(x, y)h(x)
φj0,k(x)

∣∣∣∣p f(x, y)dxdy.

Using Conditions A1—A3 and (1.1), one finds that3

E|ξi|p . 2j0dp
∫

[0,1]
|φj0,k(x)|pdx . 2j0[(d+ 1

2
)p−1].(4.9)

In particular, E|ξi|2 . 22j0d. Recall Rosenthal’s inequality ([18]): IfX1, X2, . . . , Xn

are negatively associated random variables such that EXi = 0 and E|Xi|p < ∞,
then

E

∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣
p

.


n∑
i=1

E|Xi|p +

(
n∑
i=1

EX2
i

) p
2

, p > 2;(
n∑
i=1

EX2
i

) p
2

, 1 ≤ p ≤ 2.

According to this inequality and (4.9), one gets

E

∣∣∣∣∣
n∑
i=1

ξi

∣∣∣∣∣
p

.

{
[2j0[(d+ 1

2
)p−1] · n+ (n · 22j0d)

p
2 ], p ≥ 2;

2j0dpnp/2, 1 ≤ p < 2.

This with 2j0 < n shows that E
∣∣∣∣ n∑
i=1

ξi

∣∣∣∣p . 2j0dpnp/2. Similarly, E
∣∣∣∣ n∑
i=1

ξ̃i

∣∣∣∣p .4

2j0dpnp/2. Combining those with (4.8), one knows that5

Q1 . 2j0dpn−p/2.(4.10)

• Upper bound of Q2.6
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Using the definition of µ̂n, one has

E
∣∣∣ 1
µ
− 1

µ̂n

∣∣∣p = E

∣∣∣∣∣ 1n
n∑
i=1

1

ω(Xi, Yi)
− 1

µ

∣∣∣∣∣
p

=
1

np
E

∣∣∣∣∣
n∑
i=1

[
1

ω(Xi, Yi)
− 1

µ

]∣∣∣∣∣
p

.(4.11)

Define ηi := 1
ω(Xi,Yi)

− 1
µ . Then, E(ηi) = 0 by (4.4). The monotonicity of ω(x, y) in1

Condition A2 and Lemma 2.1 imply that η1, . . . , ηn are negatively associated. In2

addition, E|ηi|p . 1 thanks to Condition A2. According to Rosenthal’s inequality,3

one has4

E
∣∣∣∣ 1µ − 1

µ̂n

∣∣∣∣p . n−
p
2 .(4.12)

Now it is easy to see from (4.7), (4.10) and (4.12) that

E
∣∣∣α̂j0,k − αj0,k∣∣∣p . 2j0dpn−

p
2 .

This completes the proof of Lemma 4.1.5

In this position, we will state our first theorem.6

Theorem 4.1. For the problem (1.1)—(1.2) with Conditions A1—A5.7

Let r(d) ∈ Bs
p̃,q(H)(p̃, q ∈ [1,∞), s > 0), and p̃ ≥ p ≥ 1, or p̃ ≤ p < ∞ and8

s > 1
p̃ . The linear wavelet estimator r̂

(d)
n be defined in (4.1) with 2j0 ∼ n

1
2s′+2d+19

and s′ = s−
(

1
p̃ −

1
p

)
+

. Then, for 1 ≤ p <∞, we have10

E
∫

[0,1]

∣∣∣r̂(d)
n (x)− r(d)(x)

∣∣∣p dx . n
− s′p

2s′+2d+1 .

Proof of Theorem 4.1: Note that11

E
∫

[0,1]

∣∣∣r̂(d)
n (x)− r(d)(x)

∣∣∣pdx . E

∥∥∥∥∥∑
k∈Ω

(α̂j0,k − αj0,k)φj0,k

∥∥∥∥∥
p

p

+
∥∥∥Pj0r(d) − r(d)

∥∥∥p
p
.

(4.13)

It follows from Lemma 3.1 that

E

∥∥∥∥∥∑
k∈Ω

(α̂j0,k − αj0,k)φj0,k

∥∥∥∥∥
p

p

. 2
p(
j0
2
− j0
p

)
∑
k∈Ω

E
∣∣∣α̂j0,k − αj0,k∣∣∣p.
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Using Lemma 4.1, |Ω| ∼ 2j0 and 2j0 ∼ n
1

2s′+2d+1 , one knows1

E

∥∥∥∥∥∑
k∈Ω

(α̂j0,k − αj0,k)φj0,k

∥∥∥∥∥
p

p

.

(
2j0(1+2d)

n

) p
2

∼ n
− s′p

2s′+2d+1 .(4.14)

Next, one estimates
∥∥∥Pj0r(d) − r(d)

∥∥∥p
p
. When p̃ ≤ p and s > 1

p̃ , Bs
p̃,q(R) ⊆2

Bs′
p,q(R). Then, r(d) ∈ Bs′

p,q(R) and3 ∥∥∥Pj0r(d) − r(d)
∥∥∥p
p
. 2−j0s

′p(4.15)

thanks to Lemma 3.2. When p̃ > p, s′ = s. Using Hölder’s inequality and the
compact support of r(d) and φ, one gets∥∥∥Pj0r(d) − r(d)

∥∥∥p
p
.
∥∥∥Pj0r(d) − r(d)

∥∥∥p
p̃
.

Then, it is easy to see from Lemma 3.2 and r(d) ∈ Bs
p̃,q(H) that

∥∥Pj0r(d) − r(d)
∥∥p
p
.4

2−j0s
′p. This result with (4.15) shows that, for 1 ≤ p <∞,5 ∥∥∥Pj0r(d) − r(d)

∥∥∥p
p
. 2−j0s

′p.(4.16)

Furthermore, by 2j0 ∼ n
1

2s′+2d+1 , one gets6 ∥∥∥Pj0r(d) − r(d)
∥∥∥p
p
. n

− s′p
2s′+2d+1 .(4.17)

Combining this with (4.13) and (4.14),7

E
∫

[0,1]

∣∣∣r̂(d)
n (x)− r(d)(x)

∣∣∣p dx . n
− s′p

2s′+2d+1 .

This ends the proof of Theorem 4.1.8

Since j0 depends on s′ which remains unknown, r̂
(d)
n (x) is not adaptive.9

Theorem 4.1 is however of interest to determine in a simple manner sharp rates10

of convergence in our statistical setting. We do not however claim that they are11

optimal in the minimax sense; the lower bounds in this case are not proved in12

this study. Also, Theorem 4.1 can be viewed as generalization to the [3, Theorem13

3.3] to the negatively associated case.14

5. NONLINEAR WAVELET ESTIMATION

In this section, we will construct a adaptive nonlinear wavelet estimator15

and consider its upper bound over Lp(1 ≤ p < +∞) risk. Now, we define our16
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nonlinear wavelet estimator1

(5.1) r̃(d)
n (x) :=

∑
k∈Ω

α̂j0,kφj0,k(x) +

j1∑
j=j0

∑
k∈Λj

β̂j,kI{|β̂j,k|≥κtn}
ψj,k(x),

where tn := 2jd
√

lnn
n ,2

(5.2) β̂j,k = (−1)d
µ̂n
n

n∑
i=1

ρ(Yi)

ω(Xi, Yi)h(Xi)
ψ

(d)
j,k (Xi)

and IA denotes the indicator function over a set A, i.e., IA = 1 if A is satisfied and3

0 otherwise. The positive integers j0, j1 (depend on n) and the positive number4

κ will be given later on. The main difference between r̃(d) and the linear wavelet5

estimator is the individual selection of the β̂j,k’s done by the hard thresholding6

rule (formalized by the indicator function over {|β̂j,k| ≥ κtn}). We refer to7

[13] and [15] for the deep link between this selection technique and the intrinsic8

properties of the wavelets.9

It should be pointed out that E
[
(−1)d µρ(Yi)

ω(Xi,Yi)h(Xi)
ψ

(d)
j,k (Xi)

]
= βj,k thanks10

to [14, Lemma 2.1] (which uses Condition A4).11

Note that Lemma 4.1 is still true if α̂j0,k is replaced by β̂j,k, which leads to12

the following lemma.13

Lemma 5.1. For the problem (1.1)-(1.2) with Conditions A1—A5 hold.14

If 2j ≤ n, then for 1 ≤ p <∞, we have15

E
∣∣∣β̂j,k − βj,k∣∣∣p . 2jdpn−

p
2 .

Lemma 5.2. For the problem (1.1)-(1.2) with Conditions A1-A5. Then,
for j2j ≤ n and each w > 0, there exists a constant κ > 1 such that

P
(∣∣∣β̂j,k − βj,k∣∣∣ ≥ κtn) . 2−wj .

Proof of Lemma 5.2: Via similar arguments to those used in (4.7), we16

obtain17 ∣∣∣β̂j,k − βj,k∣∣∣ .
∣∣∣∣∣µn

n∑
i=1

(−1)d
ρ(Yi)

ω(Xi, Yi)h(Xi)
ψ

(d)
j,k (Xi)− βj,k

∣∣∣∣∣+

∣∣∣∣ 1µ − 1

µ̂n

∣∣∣∣ .
Hence, it suffices to prove18

P

(∣∣∣∣∣ 1n
n∑
i=1

[
(−1)dµρ(Yi)

ω(Xi, Yi)h(Xi)
ψ

(d)
j,k (Xi)− βj,k

]∣∣∣∣∣ ≥ κ

2
tn

)
. 2−wj(5.3)
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and1

P

(
1

n

∣∣∣∣∣
n∑
i=1

[
1

ω(Xi, Yi)
− 1

µ

]∣∣∣∣∣ ≥ κ

2
tn

)
. 2−wj .

One shows the first inequality (5.3) only, the second one is similar and even2

simpler.3

Define γi := (−1)dµρ(Yi)
ω(Xi,Yi)h(Xi)

ψ
(d)
j,k (Xi)− βj,k. Then, one has4

P

(∣∣∣∣∣ 1n
n∑
i=1

[
(−1)dµρ(Yi)

ω(Xi, Yi)h(Xi)
ψ

(d)
j,k (Xi)− βj,k

]∣∣∣∣∣ ≥ κ

2
tn

)
= P

(∣∣∣∣∣ 1n
n∑
i=1

γi

∣∣∣∣∣ ≥ κ

2
tn

)
.

Because ψ(d) is a bounded variation function, one can assume

ψ(d) := ψ − ψ̃,

where ψ and ψ̃ are bounded, nonnegative and nondecreasing functions ([22]).
Then,

ψ
(d)
j,k := 2jd(ψj,k − ψ̃j,k).

Moreover, one defines

βj,k :=

∫
(−1)d2jdψj,k(x)r(x)dx, β̃j,k :=

∫
(−1)d2jdψ̃j,k(x)r(x)dx,

and

γi :=
(−1)d2jdµρ(Yi)

ω(Xi, Yi)h(Xi)
ψj,k(Xi)− βj,k, γ̃i :=

(−1)d2jdµρ(Yi)

ω(Xi, Yi)h(Xi)
ψ̃j,k(Xi)− β̃j,k.

Then, βj,k = βj,k − β̃j,k, γi = γi − γ̃i and

P

(∣∣∣∣∣ 1n
n∑
i=1

γi

∣∣∣∣∣ ≥ κ

2
tn

)

. P

(∣∣∣∣∣ 1n
n∑
i=1

γi

∣∣∣∣∣ ≥ κ

4
tn

)
+ P

(∣∣∣∣∣ 1n
n∑
i=1

γ̃i

∣∣∣∣∣ ≥ κ

4
tn

)
.(5.4)

According to (1.1), (1.2) and Condition A4, one gets Eγi = βj,k. Moreover,5

γ1, γ2, . . . , γn are negatively associated by Conditions A1-A3, Lemma 2.1 and the6

nondecreasing property of ψj,k. On the other hand, by the bounded properties7

of functions in Conditions A1-A3,
∣∣∣ (−1)d2jdµρ(Yi)
ω(Xi,Yi)h(Xi)

ψj,k(Xi)
∣∣∣ . 2j(d+ 1

2
) and8

|γi| .
∣∣∣∣(−1)d2jdµρ(Yi)

ω(Xi, Yi)h(Xi)
ψj,k(Xi)

∣∣∣∣+ E
∣∣∣∣(−1)d2jdµρ(Yi)

ω(Xi, Yi)h(Xi)
ψj,k(Xi)

∣∣∣∣ . 2j(d+ 1
2

).
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Similar to the arguments of (4.9) with p = 2, E(γi)
2 . 22jd. Recall Bernstein’s

inequality: Let X1, . . . , Xn be negatively associated random variables such that
EXi = 0, |Xi| ≤M and EX2

i = σ2. Then, for each v ≥ 0,

P

(
1

n

∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≥ v
)
≤ 2 · exp

{
− nv2

2(σ2 + vM
3 )

}
.

It follows from Bernstein’s inequality, tn = 2jd
√

lnn
n and j2j ≤ n that1

P

(∣∣∣∣∣ 1n
n∑
i=1

γi

∣∣∣∣∣ ≥ κ

4
tn

)
. exp

{
−

n(κtn4 )2

2(22jd + κtn
12 2j(d+ 1

2
))

}
. exp

{
− lnn κ2

32(1 + κ
12)

}
.

Obviously, there exists sufficiently large κ > 1 such that exp{− lnn κ2

32(1+ κ
12

)} . 2−wj .

Hence,

P

(∣∣∣∣∣ 1n
n∑
i=1

γi

∣∣∣∣∣ ≥ κ

4
tn

)
. 2−wj .

Similarly, P
(∣∣∣∣ 1

n

n∑
i=1

γ̃i

∣∣∣∣ ≥ κ
4 tn

)
. 2−wj . Those results with (5.4) show that

P

(∣∣∣∣∣ 1n
n∑
i=1

[
(−1)dµρ(Yi)

ω(Xi, Yi)h(Xi)
ψ

(d)
j,k (Xi)− βj,k

]∣∣∣∣∣ ≥ κ

2
tn

)
. 2−wj .

This ends the proof of Lemma 5.2.2

Now we will give our last theorem in this position.3

Theorem 5.1. For the problem (1.1)—(1.2) with Conditions A1—A5.4

Let r(d) ∈ Bs
p̃,q(H)(p̃, q ∈ [1,∞), s > 0), and p̃ ≥ p ≥ 1, or p̃ ≤ p < ∞5

and s > 1
p̃ . Then, the nonlinear wavelet estimator r̃

(d)
n defined in (5.1) with6

2j0 ∼ n
1

2m+2d+1 (m > s) and 2j1 ∼ ( n
lnn)

1
2d+1 satisfies7

E
∫

[0,1]
|r̃(d)
n (x)− r(d)(x)|pdx . (lnn)

3p
2 n−αp,(5.5)

where8

(5.6) α =


s

2s+2d+1 , p̃ ≥ p(2d+1)
2s+2d+1 ,

s−1/p̃+1/p
2(s−1/p̃)+2d+1 , p̃ <

p(2d+1)
2s+2d+1 .

Proof of Theorem 5.1: For the proof of Theorem 5.1, we will prove it9

under two case respectively.10

(i) Upper bound estimation under p̃ ≤ p <∞ and s > 1
p̃ .11
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In this case, (5.6) can be rewritten as

α = min

{
s

2s+ 2d+ 1
,

s− 1/p̃+ 1/p

2(s− 1/p̃) + 2d+ 1

}
.

By the definition of r̃
(d)
n (x),

E
∫

[0,1]
|r̃(d)
n (x)− r(d)(x)|pdx . E

∥∥∥∥∥∑
k∈Ω

(α̂j0,k − αj0,k)φj0,k

∥∥∥∥∥
p

p

+
∥∥∥r(d) − Pj1+1r

(d)
∥∥∥p
p

+ E

∥∥∥∥∥∥
j1∑
j=j0

∑
k∈Λj

[
β̂j,kI{|β̂j,k|≥κtn}

− βj,k
]
ψj,k

∥∥∥∥∥∥
p

p

.(5.7)

It follows from Lemma 3.1 that

E

∥∥∥∥∥∑
k∈Ω

(α̂j0,k − αj0,k)φj0,k

∥∥∥∥∥
p

p

. 2
p(
j0
2
− j0
p

)
∑
k∈Ω

E
∣∣∣α̂j0,k − αj0,k∣∣∣p.

Using Lemma 4.1, |Ω| ∼ 2j0 and 2j0 ∼ n
1

2m+2d+1 (m > s), one knows1

E

∥∥∥∥∥∑
k∈Ω

(α̂j0,k − αj0,k)φj0,k

∥∥∥∥∥
p

p

. n−
mp

2m+2d+1 < n−
sp

2s+2d+1 ≤ n−αp.(5.8)

Similar to the arguments of (4.15), when p̃ ≤ p and s > 1
p̃ , one gets that2 ∥∥∥Pj1+1r

(d) − r(d)
∥∥∥
p
. 2−j1(s−1/p̃+1/p).(5.9)

On the other hand, s − 1
p̃ + 1

p ≥ α thanks to p̃ ≤ p and s > 1
p̃ . Then, it follows

from 2j1 ∼ ( n
lnn)

1
2d+1 that

∥∥∥Pj1+1r
(d) − r(d)

∥∥∥p
p
.

(
lnn

n

) (s−1/p̃+1/p)p
2d+1

.

(
lnn

n

)αp
.

The main work for the proof of Theorem 5.1 is to show3

Z := E

∥∥∥∥∥∥
j1∑
j=j0

∑
k∈Λj

[
β̂j,kI{|β̂j,k|≥κtn}

− βj,k
]
ψj,k

∥∥∥∥∥∥
p

p

. (lnn)
3p
2 n−αp.(5.10)

It is easy to see from Lemma 3.1 that

Z . (j1 − j0 + 1)p−1
j1∑
j=j0

2
p( j

2
− j
p

)
∑
k∈Λj

E
∣∣∣β̂j,kI{|β̂j,k|≥κtn} − βj,k∣∣∣p .
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Then, the classical technique ([13]) gives1

Z . (j1 − j0 + 1)p−1(Z1 + Z2 + Z3),(5.11)

where

Z1 =

j1∑
j=j0

2
p( j

2
− j
p

)
∑
k∈Λj

E
[
|β̂j,k − βj,k|pI{|β̂j,k−βj,k|>κtn

2
}

]
,

Z2 =

j1∑
j=j0

2
p( j

2
− j
p

)
∑
k∈Λj

E
[
|β̂j,k − βj,k|pI{|β̂j,k|≥κtn, |βj,k|≥κtn2 }

]
,

Z3 =

j1∑
j=j0

2
p( j

2
− j
p

)
∑
k∈Λj

|βj,k|pI{|β̂j,k|<κtn, |βj,k|≤2κtn}.

• Upper bound of Z1.2

It follows from Hölder’s inequality that

E
[∣∣∣β̂j,k − βj,k∣∣∣p I{|β̂j,k−βj,k|>κtn

2
}

]
≤
[
E
∣∣∣β̂j,k − βj,k∣∣∣2p] 1

2
[
P
(∣∣∣β̂j,k − βj,k∣∣∣ > κtn

2

)] 1
2

.

Furthermore, Lemmas 5.1 and 5.2 imply that3

E
[∣∣∣β̂j,k − βj,k∣∣∣p I{|β̂j,k−βj,k|>κtn

2
}

]
. 2jdpn−

p
2 2−

wj
2 ,

where κ > 1 is chosen for w > p + 2dp in Lemma 5.2. This with the choice

2j0 ∼ n
1

2m+2d+1 (m > s) shows that

Z1 . n−
p
2

j1∑
j=j0

2j(
p
2

+dp−w
2

) . n−
p
2 2j0( p

2
+dp) . n−

mp
2m+2d+1

≤ n−
sp

2s+2d+1 ≤ n−αp.(5.12)

• Upper bound of Z2.4

Taking

2j
∗
0 ∼

( n

lnn

) 1−2α
2d+1

.

Because 0 < α ≤ s
2s+2d+1 and 2j0 ∼ n

1
2m+2d+1 (m > s), 2j

∗
0 ≤ 2j1 ∼ ( n

lnn)
1

2d+1 and

2j
∗
0 ≥ ( n

lnn)
1− 2s

2s+2d+1
2d+1 = ( n

lnn)
1

2s+2d+1 & n
1

2m+2d+1 ∼ 2j0 . Furthermore, it follows
from Lemma 5.1 that

Z21 :=

j∗0∑
j=j0

2
p( j

2
− j
p

)
∑
k∈Λj

E
[∣∣∣β̂j,k − βj,k∣∣∣p I{|β̂j,k|≥κtn, |βj,k|≥κtn2 }] .

.

j∗0∑
j=j0

2
p( j

2
− j
p

)
∑
k∈Λj

2jdpn−
p
2 . 2j

∗
0 ( p

2
+dp)n−

p
2 . n−αp.(5.13)
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On the other hand, by Lemmas 5.1 and 3.2, and tn = 2jd
√

lnn
n , one has

Z22 :=

j1∑
j=j∗0+1

2
p( j

2
− j
p

)
∑
k∈Λj

E
[∣∣∣β̂j,k − βj,k∣∣∣p I{|β̂j,k|≥κtn, |βj,k|≥κtn2 }]

.
j1∑

j=j∗0+1

2
p( j

2
− j
p

)
∑
k∈Λj

E
∣∣∣β̂j,k − βj,k∣∣∣p( |βj,k|

κtn/2

)p̃

.
j1∑

j=j∗0+1

(lnn)−p̃/2n−
p−p̃
2 2−j[sp̃−

(p−p̃)(2d+1)
2

].(5.14)

Define

ε := sp̃− (p− p̃)(2d+ 1)

2
.

Then, ε > 0 holds if and only if p̃ > p(2d+1)
2s+2d+1 , and (5.14) can be rewritten as1

Z22 . (lnn)−p̃/2n−
p−p̃
2

j1∑
j=j∗0+1

2−jε.(5.15)

When ε > 0, p̃ > p(2d+1)
2s+2d+1 and α = s

2s+2d+1 thanks to (5.6). Moreover, it can be

easily checked that p−p̃
2 + 1−2α

2d+1 [sp̃− (p−p̃)(2d+1)
2 ] = αp. This with the choice of 2j

∗
0

leads to

Z22 . (lnn)−p̃/2n−
p−p̃
2 2−j

∗
0ε ≤ (lnn)

(
1

n

) p−p̃
2

+ 1−2α
2d+1

[sp̃− (p−p̃)(2d+1)
2

]

= (lnn)n−αp.(5.16)

For the case ε ≤ 0, p̃ ≤ p(2d+1)
2s+2d+1 and α =

s− 1
p̃

+ 1
p

2(s− d
p̃

)+2d+1
. Define p1 :=

(1 − 2α)p. Then, α ≤ s
2s+2d+1 and p̃ ≤ p(2d+1)

2s+2d+1 < (1 − 2α)p = p1. Similarly to
(5.14), one has

Z22 .
j1∑

j=j∗0+1

2
p( j

2
− j
p

)
∑
k∈Λj

E
∣∣∣β̂j,k − βj,k∣∣∣p( |βj,k|

κtn/2

)p1

.
j1∑

j=j∗0+1

2
p( j

2
− j
p

)
2jdpn−

p
2 t−p1n ‖βj‖p1p1 .

Because p̃ ≤ p1 and r(d) ∈ Bs
p̃,q(H), we get ‖βj‖p1p1 ≤ ‖βj‖

p1
p̃ . 2

−j(s− 1
p̃

+ 1
2

)p1 and

Z22 .
j1∑

j=j∗0+1

2
p( j

2
− j
p

)
2jdpn−

p
2 t−p1n 2

−j(s− 1
p̃

+ 1
2

)p1

≤
(

1

n

) p−p1
2

j1∑
j=j∗0+1

2
−j(sp1− p1p̃ +

p1
2

+dp1−dp− p2+1)
.
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By the definitions of p1 and α, sp1 − p1
p̃ + p1

2 + dp1 − dp − p
2 + 1 = 0 and1

Z22 . ( 1
n)

p−p1
2 (lnn) = (lnn)( 1

n)αp. This with (5.13) and (5.16) shows in both2

cases,3

Z2 = Z21 + Z22 . (lnn) n−αp.(5.17)

• Upper bound of Z3.4

It is easy to see that

Z31 :=

j∗0∑
j=j0

2
p( j

2
− j
p

)
∑
k∈Λj

|βj,k|pI{|β̂j,k|<κtn, |βj,k|≤2κtn}

≤
j∗0∑
j=j0

2
p( j

2
− j
p

)
∑
k∈Λj

|2κtn|p .
j∗0∑
j=j0

2j(
p
2

+dp)

(
lnn

n

) p
2

.

(
lnn

n

) p
2

2j
∗
0 ( p

2
+dp) .

(
lnn

n

)αp
.(5.18)

On the other hand, one has

Z32 :=

j1∑
j=j∗0+1

2
p( j

2
− j
p

)
∑
k∈Λj

|βj,k|pI{|β̂j,k|<κtn, |βj,k|≤2κtn}

≤
j1∑

j=j∗0+1

2
p( j

2
− j
p

)
∑
k∈Λj

|βj,k|p
∣∣∣∣2κtnβj,k

∣∣∣∣p−p̃

.
j1∑

j=j∗0+1

2
p( j

2
− j
p

)
tp−p̃n ‖βj‖p̃p̃ .

(
lnn

n

) p−p̃
2

j1∑
j=j∗0+1

2−jε.(5.19)

The same arguments as (5.15) shows that, for ε > 0,5

Z32 .

(
lnn

n

)αp
.(5.20)

For the case of ε ≤ 0, one defines

2j
∗
1 ∼

( n

lnn

) α
s−1/p̃+1/p

.

Note that ε ≤ 0 and s > 1
p̃ . Then, p̃ ≤ p(2d+1)

2s+2d+1 , α =
s− 1

p̃
+ 1
p

2(s− 1
p̃

)+2d+1
and α ≤ s− 1

p̃+ 1
p .

Hence, n
1−2α
2d+1 . 2j

∗
0 ≤ 2j

∗
1 ≤ 2j1 ∼ ( n

lnn)
1

2d+1 and Z32 = Z321 + Z322, where

Z321 :=

j∗1∑
j=j∗0+1

2
p( j

2
− j
p

)
∑
k∈Λj

|βj,k|pI{|β̂j,k|<κtn, |βj,k|≤2κtn},
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Z322 :=

j1∑
j=j∗1+1

2
p( j

2
− j
p

)
∑
k∈Λj

|βj,k|pI{|β̂j,k|<κtn, |βj,k|≤2κtn}.

By the arguments of (5.15) and the choice of 2j
∗
1 , one has1

Z321 .

(
lnn

n

) p−p̃
2

2−j
∗
1ε =

(
lnn

n

) p−p̃
2

+ αε
s−1/p̃+1/p

.

It is easy to check that p−p̃
2 + αε

s−1/p̃+1/p = αp. Then,

Z321 .

(
lnn

n

)αp
.

On the other hand, using ‖βj‖p̃ . 2
−j(s− 1

p̃
+ 1

2
)
, s > 1

p̃ and 2j
∗
1 ∼ ( n

lnn)
α

s−1/p̃+1/p .

Z322 ≤
j1∑

j=j∗1+1

2
p( j

2
− j
p

)
∑
k∈Λj

|βj,k|p ≤
j1∑

j=j∗1+1

2
p( j

2
− j
p

)‖βj‖pp̃

.
j1∑

j=j∗1+1

2−j(1+sp−p/p̃) . 2−j
∗
1 (1+sp−p/p̃) ∼

(
lnn

n

)αp
.

Now, it follows that for ε ≤ 0,2

Z32 = Z321 + Z322 .

(
lnn

n

)αp
.

Combining this with (5.18) and (5.20), one knows3

Z3 .

(
lnn

n

)αp
.(5.21)

Then, it follows from (5.11), (5.12), (5.17) and (5.21) that4

Z . (lnn)
3p
2 n−αp.

Hence,5

E

∫
[0,1]
|r̃(d)
n (x)− r(d)(x)|pdx . (lnn)

3p
2 n−αp(5.22)

in the case of p̃ ≤ p <∞ and s > 1
p̃ .6

(ii) Upper bound estimation under p̃ > p.7

From the above arguments, one finds that when p̃ = p, the inequality
(5.22) still holds without the assumption s > 1

p̃ . It remains to conclude (5.22) for
p̃ > p ≥ 1. By Hölder’s inequality,∫

[0,1]
|r̃(d)
n (x)− r(d)(x)|pdx .

[∫
[0,1]
|r̃(d)
n (x)− r(d)(x)|p̃dx

] p
p̃

.
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Using Jensen’s inequality and (5.22) with p̃ = p, one gets

E
∫

[0,1]
|r̃(d)
n (x)− r(d)(x)|pdx .

[
E
∫

[0,1]
|r̃(d)
n (x)− r(d)(x)|p̃dx

] p
p̃

. (lnn)
3p
2 n−αp.

This completes the proof of Theorem 5.1.1

Contrary to the linear wavelet estimator given by (4.1), r̃
(d)
n (x) is fully2

adaptive; its construction does not depend on s. The convergence rate of the3

nonlinear estimator keeps the same as that of the linear one up to a logarithmic4

factor when p̃ > p. However, it gets better in the case of p̃ ≤ p. This aspect5

remains standard in nonlinear wavelet estimation in the standard regression (or6

density) estimation framework (see [15]). Also, Theorem 5.1 can be viewed as7

generalization to the [14, Theorem 1] to the negatively associated case.8

6. Concluding remarks

In this paper, the estimation of the derivatives of a regression function for9

biased data is considered. The feature of the study is to investigate the negatively10

dependent assumption on the data, beyond the independent assumption, opening11

new perspective of applications. Two wavelet estimators are introduced. The first12

estimator is based on wavelet projection of wavelet coefficient estimators only, the13

second estimator is nonlinear; a selection of the wavelet coefficient estimators are14

applied according to their magnitude via a hard thresholding rule. Sharp rates15

of convergence are obtained under the Lp risk with 1 ≤ p < ∞, assuming that16

the function of interest belongs to a ball of Besov spaces Bs
p̃,q(R). These rates17

correspond to those obtained in the independent setting, showing that the wavelet18

methodology is consistent for this problem. Perspectives of this work are to prove19

the optimal lower bounds in the minimax sense, to relax some assumptions on20

the model, mainly the compact support of r(d) and explore the practical aspects21

of the proposed estimators. These points needs further investigations that we22

leave for a future work.23
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