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Abstract:

• Bias reduction in tail estimation has received considerable interest in extreme value
analysis. Estimation methods that minimize the bias while keeping the mean squared
error (MSE) under control, are especially useful when applying classical methods
such as the Hill (1975) estimator. In the case of heavy tailed distributions, Caeiro et
al. (2005) proposed minimum variance reduced bias estimators of the extreme value
index, where the bias is reduced without increasing the variance with respect to the
Hill estimator. This method is based on adequate external estimation of a pair of
parameters of second order slow variation under a third order condition. Here we
revisit this problem exploiting the mathematical fact that the bias tends to 0 with
increasing threshold. This leads to shrinkage estimation for the extreme value index,
which allows for a penalized likelihood and a Bayesian implementation. This new
approach is applied starting from the approximation to excesses over a high threshold
using the extended Pareto distribution, as developed in Beirlant et al. (2009). We
present asymptotic results for the resulting shrinkage penalized likelihood estimator
of the extreme value index. Finite sample simulation results are proposed both for
the penalized likelihood and Bayesian implementation. We then compare with the
minimum variance reduced bias estimators.
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1. INTRODUCTION

In this paper we consider the estimation of the extreme value index ξ and
tail probabilities P (X > x) for x large, on the basis of independent and identically
distributed observations X1, X2, . . . , Xn which follow a Pareto-type distribution
with right tail function (RTF) given by

(1.1) F̄ (x) = 1− F (x) = P (X > x) = x−1/ξ`(x)

where ` is a slowly varying function at infinity, i.e.

`(ty)

`(t)
→ 1, as t→∞, for every y > 1.

The most famous estimator of ξ was first derived by Hill (1975) as a maximum
likelihood (ML) estimator approximating the RTF of the excesses X

t |X > t over

a large threshold t by a simple Pareto distribution with RTF y−1/ξ:

(1.2) F̄ (ty)/F̄ (t) ≈ y−1/ξ, t large.

When setting t = Xn−k,n where X1,n ≤ X2,n ≤ . . . ≤ Xn,n the ML estimator is
given by

(1.3) Hk,n =
1

k

k∑
j=1

log
Xn−j+1,n

Xn−k,n
.

A simple estimator of a tail probability P (X > x) with x large, introduced in
Weissman (1978), is then obtained from (1.2) setting ty = x and estimating
P (X > t) by the empirical proportion k/n:

(1.4) p̂x,k =
k

n

(
x

Xn−k,n

)−1/Hk,n
.

In practice, a way to verify the validity of model (1.1) is to check whether the Hill
estimates are stable as a function of k. However in most cases the stability is not
visible, which can be explained by slow convergence in (1.2). For this reason bias
reduced estimators have been proposed which lead to plots that are much more
horizontal in k which facilitates the analysis of a practical case to a great extent.
Here we can refer to Peng (1998), Beirlant et al. (1999, 2008), Feuerverger and
Hall (1999), Caeiro et al. (2005, 2009) and Gomes et al. (2000, 2007) for bias-
reduced estimators based on functions of the top k order statistics. Several of
these methods focus on the distribution of log-spacings of high order statistics.

Beirlant et al. (2009) proposed a more flexible model capable of capturing the
deviation between the true excess RTF F̄ (ty)/F̄ (t) and the asymptotic Pareto
model. For a heavy tailed distribution (1.1), this deviation can be parametrized
using a power series expansion (Hall, 1982), or more generally via second-order
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slow variation (Bingham et al., 1987). More specifically in Beirlant et al. (2009)
the subclass F(ξ, τ) of the Pareto-type tails (1.1) was considered satisfying

F̄ (x) = Cx−1/ξ
(
1 + ξ−1δ(x)

)
,(1.5)

with δ(x) eventually nonzero and of constant sign such that |δ(x)| = xτ `δ(x) with
τ < 0 and `δ slowly varying. It was shown that under F(ξ, τ) as t→∞

sup
y≥1

∣∣∣∣ F̄ (ty)

F̄ (t)
− Ḡξ,δ,τ (y)

∣∣∣∣ = o (|δ(t)|)

with Ḡξ,δ,τ the RTF of the extended Pareto distribution (EPD)

(1.6) Ḡξ,δ,τ (y) = {y(1 + δ − δyτ )}−1/ξ, y > 1,

with τ < 0 < ξ and δ > max(−1, 1/τ). This shows that the EPD improves the
approximation (1.2) with an order of magnitude. Then ML estimation of the pa-
rameters (ξ, δ) based on a set of excesses (Yj,k := Xn−j+1,n/Xn−k,n, j = 1, . . . , k)

was used to obtain a bias reduced estimator ξ̂ML
k,n of ξ. Bias reduction of the

Weissman estimator of tail probabilities can analogously be obtained using

(1.7) p̂EPx,k =
k

n
Ḡξ̂k,δ̂k,τ̂

(
x

Xn−k,n

)
,

where (ξ̂k, δ̂k) denote the ML estimators based on the EPD model, and where
τ̂ is a consistent estimator of τ , to be specified below, which was shown not to
affect the asymptotic distribution of (ξ, δ).

If F satisfies F(ξ, τ), it is shown in Beirlant et al. (2009) that U(x) := Q(1−x−1)
(x > 1), with Q(p) = inf{x : F (x) ≥ p} (p ∈ (0, 1)), satisfies

(1.8) U(x) = Cξxξ (1 + a(x))

with a(x) = δ(Q(1−x−1)){1+o(1)} = δ(Cξxξ){1+o(1)} as x→∞. In particular
a is eventually nonzero and of constant sign and |a(x)| = xρ`a(x) with `a slowly
varying and ρ = ξτ . Here we assume |`a(x)| = Ca(1 + o(1)) as x → ∞ for some
constant Ca > 0.

The following asymptotic results have been derived for Hk,n and ξ̂ML
k,n assum-

ing that F satisfies F(ξ, τ), and
√
ka(n/k) → λ ∈ R and ρ̂k,n = ρ + op(1) as

k, n → ∞ and k/n → 0, the following asymptotic results hold for the EPD-ML
estimator ξ̂ML

k,n and Hk,n:

√
k (Hk,n − ξ) →d N

(
λ

ρ

1− ρ
, ξ2
)
,(1.9)

√
k
(
ξ̂ML
k,n − ξ

)
→d N

(
0, ξ2

(
1− ρ
ρ

)2
)
.(1.10)
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An estimator ρ̂k,n of ρ can be taken from Fraga Alves et al. (2003) using
k = k1 = bn1−εc for some ε > 0. The required consistency for ρ̂k,n was ob-
tained under (1.8).

Asymptotic results of the type (1.9) and (1.10) are typical for bias reduced es-
timators when both ξ and a(n/k) or δ are jointly estimated at every k value:
for larger values of k corresponding to

√
ka(n/k) → λ 6= 0, bias reduced esti-

mators still have asymptotic bias 0 in contrast to the Hill estimator, but their
variance is increased by a factor ((1 − ρ)/ρ)2 compared to Hk,n. In a pioneer-
ing paper, Caeiro et al. (2005) proposed to estimate (n/k)−ρa(n/k) at a high
level k = k1 = bn1−εc, leading to a corrected Hill estimator (denoted below by
CHk,n) with asymptotic variance ξ2 and excellent bias and MSE characteristics.
To obtain the normal asymptotic behaviour of such minimum variance reduced
bias estimators one needs a third-order slow variation condition which is more
restrictive than (1.8) or condition F(ξ, τ).

Up to now, to the best of our knowledge, the fact that δ(t) → 0 as t → ∞, or
a(n/k) → 0 as n/k → ∞ has not been exploited in the literature. However,
this calls for shrinkage estimators. Such shrinkage approach can be implemented
by putting a penalty on δ in an ML procedure, leading to penalized ML. Al-
ternatively a penalty on δ can be naturally introduced in a Bayesian approach
putting an appropriate prior on this parameter. Here we investigate the use of
shrinkage estimation when modelling the distribution of the vector of excesses
Yk := (Yj,k, j = 1, . . . , k) with an EPD. In section 2 we show that a quadratic
penalty, or equivalently a normal prior, on δ with zero mean and variance σ2k,n,
depending in an appropriate way on k and n, leads to interesting asymptotic MSE
results for ξ. In section 3 we consider the finite sample behaviour of the penal-
ized likelihood and Bayes approach, and make a comparison with the minimum
variance reduced bias estimator, and consider a practical case.

2. Shrinkage estimators of the EPD parameters

2.1. Penalized likelihood and Bayesian interpretation

ML estimation of the EPD parameters (ξ, δ), given a value of τ , follows by
maximizing the log-likelihood

1

k
lEP (ξ, δ|y) = − log ξ − (

1

ξ
+ 1)

1

k

k∑
j=1

[
log yj,k + log(1 + δ{1− yτj,k})

]
+

1

k

k∑
j=1

log
(
1 + δ{1− (1 + τ)yτj,k}

)
.(2.1)
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Shrinkage estimators are then obtained by putting a penalty on δ. Below it
will be shown that a quadratic penalty is appropriate in view of the asymptotic
results for the penalized maximum likelihood (PML) estimators (ξ̂Pk,n, δ̂

P
k,n). These

estimators are then obtained by optimizing the log-likelihood

(2.2)
1

k
lpen(ξ, δ|y) =

1

k
lEP (ξ, δ|y)− ω δ2

2kσ2k,n
,

where ω > 0 serves as a tuning constant regulating the amount of penalty, and
σ2k,n indicating the penalty rate as a function of k. From the asymptotic analysis

below, it follows that σ2k,n = (k/n)−2ρ is appropriate.

Alternatively, from a Bayesian perspective, a shrinkage estimator is obtained
by considering the posterior mode estimators (ξ̂Bk , δ̂

B
k ) of the log-posterior

(2.3)
1

k
log p(ξ, δ|y) =

1

k
lEP (ξ, δ|y) +

1

k
log π(ξ, δ),

where π(ξ, δ) denotes the prior density on (ξ, δ). Following a objective Bayesian
point of view, we assign a maximal data information (MDI) prior to ξ, which for
a general parameter θ is defined as π(θ) ∝ exp(E(log f(Y|θ))). The concept of
MDI priors was introduced in Zellner (1971) in order to maximize the information
contributed by the data density, relative to that of the prior density. Beirlant et
al. (2004) derived that the MDI for a Pareto distribution is given by

(2.4) π(ξ) ∝ e−ξ

ξ
.

Next, in correspondance with the choice for the penalized log-likelihood (2.2), we
here choose a normal prior on δ with mean 0 and variance σ2k,n. We also truncate
it from the left in order to comply with the restriction δ > max(−1, 1/τ):

(2.5) π(δ) =
1√

2πσk,n
e
− 1

2
δ2

σ2
k,n /

(
1− Φ(max(−1, τ−1)/σk,n)

)
.

2.2. Asymptotic results for the penalized ML estimator ξ̂Pk

In the Appendix we derive that the first order approximations (ξ̂Pk , δ̂
P
k ) of

the penalized ML estimators are given by

ξ̂Pk = Hk,n + δ̂Pk (1− Ek,n(τ)) ,

δ̂Pk =
1−Hk,nτ

DP
k,n

(
Ek,n(τ)− 1

Hk,nτ

)
where

Ek,n(s) =
1

k

k∑
j=1

Y s
j,k, s < 0,
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and

DP
k,n =

ωξ̂Pk
kσ2k,n

−
(

1 − 2(1− ξ̂Pk τ)Ek,n(τ) + (1− 2ξ̂Pk τ − ξ̂Pk τ2)Ek,n(2τ)

− τ(1− Ek,n(τ))Ek,n(τ)
)
.

These expressions are identical to the asymptotic EPD-ML estimators derived in

Beirlant et al. (2009) except for the extra term
ξ̂Pk
kσ2
k,n

in the expression of DP
k,n.

As an external estimator of τ we use τ̂ = ρ̂k,n/Hk,n with ρ̂k,n taken from Fraga
Alves et al. (2003). Moreover we set ζ = ξ2(1− 2ρ)(1− ρ)2. The following result
is derived in the Appendix.

Theorem. Let F ∈ F(ξ, τ) with |a(x)| = xρCa(1 + o(1)) as x → ∞. As-
sume that

√
ka(n/k) → λ as k, n → ∞, k/n → 0. Setting σ2k,n = (k/n)−2ρ, it

follows that Ξk,n :=
√
k
(
ξ̂Pk − ξ

)
is asymptotically normal with asymptotic mean

and variance given by

E∞(Ξk,n) =
λρ

1− ρ
ζC2

aω

ζC2
aω + ρ4λ2

,(2.6)

V ar∞(Ξk,n) =
ξ2ρ8λ4

(ρ4λ2 + ζC2
aω)2

((
1− ρ
ρ

)2

+
ζ2C4

aω
2

ρ8λ4
+ 2

ζC2
aω

ρ4λ2

)
.(2.7)

2

Minimizing MSE∞(Ξk,n) = E2
∞(Ξk,n) + V ar∞(Ξk,n) with respect to ω, after

some lengthy calculations, leads to the asymptotically optimal value

ωopt = C−2a .

One then obtains from (2.6) and (2.7) that

Eopt∞ (Ξk,n) =
λρ

1− ρ
ζ

ζ + λ2ρ4
,

V aropt∞ (Ξk,n) =
ξ2

(λ2ρ4 + ζ)2
{

(1− ρ)2ρ6λ4 + ζ2 + 2ζρ4λ2
}
,

from which

(2.8) MSEopt∞ (Ξk,n) = ξ2 +
λ2ρ2ξ2(1− 2ρ)

ξ2(1− 2ρ)(1− ρ)2 + ρ4λ2
.

Since the right hand side of (2.8) is an increasing function in λ2 it follows that

MSEopt∞ (Ξk,n) ≤ lim
λ→∞

MSEopt∞ (Ξk,n) = MSE∞

(√
k(ξ̂ML

k,n − ξ)
)

= ξ2(
1− ρ
ρ

)2.

Also, expanding the right hand side of (2.8) for λ2 → 0 leads to

MSEopt∞ (Ξk,n) = ξ2 + λ2
ρ2

(1− ρ)2
(1 + o(1)).
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We can conclude that the asymptotic MSE of the optimal penalized estimator
is uniformly smaller than the MSE of the EPD-ML estimator as given in (1.10),
while for smaller λ this asymptotic MSE follows the asymptotic MSE of the
Hill estimator, given in (1.9), up to terms of order λ2. Hence with the penalty
ω/σ2k,n = C−2a (k/n)2ρ = a−2(n/k) in (2.2), the penalized ML estimator asymp-
totically follows the better of the two existing estimators as a function of λ or k.

Replacing (ξ̂k, δ̂k) by (ξ̂Pk , δ̂
P
k ) in p̂EPx,k , it follows from the proof of Theorem 5.2

in Beirlant et al. (2009) that the resulting tail probability estimator p̂Px,k satisfies
the following asymptotic result under the conditions of the Theorem:
when pn = P (X > xn) satisfies npn/k → 0 and log(npn)/

√
k → 0, then

√
k

log(k/(npn))
ξ(
p̂Pxn,k
pn
− 1)

is asymptotically normal with the same limit distribution as in the Theorem.
Hence the asymptotic MSE behaviour for the tail probability estimator has the
same characteristics as the tail index estimator.

From the simulations it will follow that the choice ω = 1 and the use of esti-
mator of ρ taken from Fraga Alves (2003) yields good results. However, in order
to alleviate the problem of choosing the number of top order statistics k that are
used in the estimation procedure, one can choose ω adaptively with each sam-
ple aiming for a plot of ξ̂Pk as a function of k which is as horizontal as possible.

Setting ξ̂Pk = ξ̂Pk (ω) in order to emphasize the dependence of the penalized ML
estimator on ω, a possible choice of ω is obtained by minimizing the variance of
the resulting estimators for k = 1, . . . , n:

(2.9) ωmv = argminωs
2
n

(
ξ̂P (ω)

)
,

with s2n(ξ̂P (ω)) = 1
n−1

∑n
k=1

(
ξ̂Pk (ω)− ¯̂

ξP
)2

.

3. Simulations and practical case studies

Both the Bayes maximum a posteriori probability estimator and the pe-
nalized maximum likelihood estimator are implemented in R using the general
optim function with default parameters.

We performed a simulation study, taking 1000 repetitions of samples of size
n = 200, 500, 1000 studying the finite sample behaviour of ξ̂Pk,n(ω) for different
distributions. The bias and RMSE are plotted as a function of k.

The following distributions are used:
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• The extreme value distribution (EV) with F (x) = exp(−(1 + ξx)−1/ξ) (1 +
ξx > 0) taking ξ = 0.25 in which case ρ = −0.25 and Ca = 1.

• The Fréchet distribution with F̄ (x) = 1 − exp(−x−1/ξ) taking ξ = 0.5 in
which case ρ = −1 and Ca = 0.25.

• The Burr distribution with F̄ (x) = (1 + x)−4/3 so that ξ = 0.75 and ρ =
−0.75 and Ca = 1.

• The loggamma distribution with F̄ (x) ∼ constant × x−2(log x)3 so that
ξ = 0.5, which does not belong to the class F(ξ, τ).

First in Figures 1-4 we plotted the bias and the RMSE of the Hill estimator Hk,
the EPD-ML estimator ξ̂ML

k , the penalized ML estimator ξ̂Pk (1) with ω = 1, the

Bayesian estimator ξ̂Bk (1) with ω = 1, and the minimum variance reduced bias
estimator CHk from Caeiro et al. (2005) given by

CHk = Hk,n

(
1− β̂k1(ρ̂k1)

1− ρ̂k1

(n
k

)ρ̂k1)
,

with

β̂k(ρ) =

(
k
n

)ρ {( 1
k

∑k
j=1(

j
k )−ρ

)(
1
k

∑k
j=1 Zj

)
−
(
1
k

∑k
j=1(

j
k )−ρZj

)}
(
1
k

∑k
j=1(

j
k )−ρ

)(
1
k

∑k
j=1(

j
k )−ρZj

)
−
(
1
k

∑k
j=1(

j
k )−2ρZj

) ,

where Zj := j(logXn−j+1,n − logXn−j,n) (j = 1, 2, . . .), and k1 = bn0.99c.

In Figure 5 we briefly report on the effect of the choice of ω using ω = 1 and
ω = ωmv and compare these with the optimal asymptotic RMSE expression from
(2.8).

We conclude from the simulations that the finite sample behaviour of the pro-
posed estimators follows the characteristics predicted by the asymptotic analysis
to a great extent: for small k the shrinkage estimators ξPk and ξBk show a similar
behaviour as the Hill estimator, while for larger k the proposed estimators tend
to follow the characteristics of the bias reduced EPD-ML estimator. In between
these two k-regions the shrinkage estimators make a transition from the EPD-
ML to the Hill RMSE curve. Only in the Frchet case the Hill estimator shows
a smaller RMSE than the shrinkage estimators for small k, while the shrinkage
estimators then still show a much smaller RMSE than the EPD-ML estimator.

The Bayesian implementation shows a smaller RMSE than the penalized ML
estimator, except for the Fréchet distribution where both RMSEs are compara-
ble. In the latter case ξ̂Bk shows a negative bias. Also note that the difference
between both the Bayesian and penalized likelihood implementation decreases as
n increases.

The results in case of the loggamma distribution are quite good. Hence it appears
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that the proposed method exhibits some robustness against deviations from the
underlying model.

When the plots of the shrinkage estimators are not systematically increasing
with increasing k as in the case of the Fréchet and the Burr distribution, it is
useful to use the choice ω = ωmv when using the penalized ML estimator. In
the case of the Fréchet distribution with ωopt = 16, this adaptive choice of ω
leads to a clear RMSE improvement in the transition zone (in k) between the
Hill and EPD-ML RMSE behaviour (see Figure 5, top). In the Burr case (see
Figure 5, bottom) where Ca = 1 and hence ωopt = 1 the choice ω = 1 is best,
but the adaptive minimum variance choice ω = ωmv is almost as good in RMSE
behaviour.

Overall, the proposed shrinkage estimators are competitive with respect to the
minimum variance reduced bias estimator CHk.
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Figure 1: Bias (left) and root mean squared error (right) in case of the EV distribution
with ξ = 0.25 for sample sizes n = 200 (top), n = 500 (middle) and n = 1000 (bottom)

for the Hill estimator (H), the EPD-ML estimator ξ̂ML
k (ML), the penalized ML estimator

ξ̂Pk (1) with ω = 1 (PML), the Bayesian estimator ξ̂Bk (1) with ω = 1 (B), and the minimum
variance reduced bias estimator CHk (CH).
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Figure 2: Bias (left) and root mean squared error (right) in case of the Fréchet dis-
tribution with ξ = 0.5 for sample sizes n = 200 (top), n = 500 (middle) and n = 1000

(bottom) for the Hill estimator (H), the EPD-ML estimator ξ̂ML
k (ML), the penalized

ML estimator ξ̂Pk (1) with ω = 1 (PML), the Bayesian estimator ξ̂Bk (1) with ω = 1 (B),
and the minimum variance reduced bias estimator CHk (CH).
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Figure 3: Bias (left) and root mean squared error (right) in case of the Burr distri-
bution with ξ = 0.75 for sample sizes n = 200 (top), n = 500 (middle) and n = 1000

(bottom) for the Hill estimator (H), the EPD-ML estimator ξ̂ML
k (ML), the penalized

ML estimator ξ̂Pk (1) with ω = 1 (PML), the Bayesian estimator ξ̂Bk (1) with ω = 1 (B),
and the minimum variance reduced bias estimator CHk (CH).
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Figure 4: Bias (left) and root mean squared error (right) in case of the loggamma
distribution with ξ = 0.5 for sample sizes n = 200 (top), n = 500 (middle) and

n = 1000 (bottom) for the Hill estimator (H), the EPD-ML estimator ξ̂ML
k (ML), the

penalized ML estimator ξ̂Pk (1) with ω = 1 (PML), the Bayesian estimator ξ̂Bk (1) with
ω = 1 (B), and the minimum variance reduced bias estimator CHk (CH).
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Figure 5: Bias (left) and root mean squared error (right) in case of the Fréchet dis-
tribution with ξ = 0.5 (top) and Burr distribution with ξ = 0.75 (bottom) for sample

size n = 200 comparing the penalized ML estimator ξ̂Pk (1) with ω = 1, ω = ωmv from

(2.9), and the optimal asymptotic RMSE from (2.8) replacing λ by Ca
√
k(k/n)−ρ.

In order to illustrate the use of the proposed method we consider the Secura
Belgian Re data introduced in section 6.2 in Beirlant et al. (2004). For k ≤ 100
the penalized ML estimator ξ̂Pk (1) is quite constant and follows the Hill estimator
quite closely. This is in contrast with the EPD-ML estimates which vary a lot
in that region. The Bayesian estimates ξ̂Bk (1) and CH estimates show somewhat
lower estimates. Beirlant et al. (2004) concluded that the Hill estimate in this
k-region is an appropriate choice and the adaptive choice k̂ = 98 was proposed
as one of the largest k-values in this region. This proposal is also supported by
the present analysis, leading to an estimate ξ̂P (1) = 0.28.

4. Conclusion

We introduced the use of shrinkage estimators in tail estimation, in order
to obtain bias reduction jointly with good MSE behaviour. Shrinkage estimators
can be obtained through a penalized ML approach, or through a Bayesian imple-
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Figure 6: Estimates of ξ for Secura Belgian Re data set: results for the Hill estimator (H),
the EPD-ML estimator ξ̂ML

k (ML), the penalized ML estimator ξ̂Pk (1) with ω = 1 (PML), the
Bayesian estimator ξ̂Bk (1) with ω = 1 (B), and the minimum variance reduced bias estimator
CHk (CH) (left), focused plot for k = 1, . . . , 100 (right).

mentation. For larger thresholds the proposed estimators follow the behaviour of
the classical Hill estimator with small bias and minimal variance, while the new
estimators are never worse than the corresponding bias reduced ML estimators
without penalization. The simulated MSE results are competitive with those of
other bias reduced estimators. In contrast to existing minimum variance bias
reduced estimators we only use second order slow variation conditions.

ACKNOWLEDGMENTS

This work is based on the research supported wholly/in part by the National
Research Foundation of South Africa (Grant Number 102628). The Grantholder
acknowledges that opinions, findings and conclusions or recommendations ex-
pressed in any publication generated by the NRF supported research is that of
the author(s), and that the NRF accepts no liability whatsoever in this regard.

The authors take pleasure in thanking S. van der Merwe for his valuable ad-
vice concerning the Bayesian implementations.

Thanks to the referee for the constructive comments which improved the pre-
sentation of the paper significantly.

REFERENCES

[1] Beirlant, J., Dierckx, G., Goegebeur, Y. and Matthys, G., 1999. Tail index esti-
mation and an exponential regression model. Extremes, 2,2, 177-200.



17

[2] Beirlant, J., Goegebeur, Y., Segers, J. and Teugels, J., 2004. Statistics of Ex-
tremes: Theory and Applications. Wiley, Chichester.

[3] Beirlant, J., Figueiredo, F., Gomes, M.I. and Vandewalle, B., 2008. Improved
reduced-bias tail index and quantile estimators. Journal of Statistical Planning
and Inference, 138, 6, 1851-1870.

[4] Beirlant, J., Joossens, E., Segers, J., 2009. Second-order refined peaks-over-
threshold modelling for heavy-tailed distribution. Journal of Statistical Planning
and Inference 139, 2800-2815.

[5] Bingham, N.H., Goldie, C.M. and Teugels, J.L., 1987. Regular Variation. Cam-
bridge University Press.

[6] Caeiro, F., Gomes, M.I. and Pestana, D., 2005. Direct reduction of bias of the
classical Hill estimator. Revstat, 3, 2, 113-136.

[7] Caeiro, F., Gomes, M.I. and Rodrigues, L.H., 2009. Reduced-bias tail index es-
timators under a third-order framework. Communications in Statistics, Theory
and Methods, 38, 7, 1019-1040.

[8] Feuerverger, A. and Hall, P., 1999. Estimating a tail exponent by modelling
departure from a Pareto distribution. The Annals of Statistics, 27, 2, 760-781.

[9] Fraga Alves, M.I., Gomes, M.I. and de Haan, L., 2003. A new class of semi-
parametric estimators of the second order parameter. Portugaliae Mathematica,
60, 2, 193-214.

[10] Gomes, M.I., Martins, M.J. and Neves, M., 2000. Alternatives to a semi-
parametric estimator of parameters of rare events - The jackknife methodology.
Extremes, 3, 3, 207-229.

[11] Hall, P., 1982. On some simple estimates of an exponent of regular variation.
Journal of the Royal Statistical Society. Series B (Methodological), 37-42.

[12] Hill, B.M., 1975. A simple general approach to inference about the tail of a
distribution. The Annals of Statistics, 3, 5, 1163-1174.

[13] Peng, L., 1998. Asymptotically unbiased estimators for the extreme-value index.
Statistics & Probability Letters, 38, 2, 107-115.

[14] Weissman, I., 1978. Estimation of parameters and large quantiles based on the
k largest observations. Journal of the American Statistical Association, 73, 364,
812-815.

[15] Zellner, A., 1971. An Introduction to Bayesian Inference in Econometrics. Wiley.

5. Appendix

Derivation of the expressions of (ξ̂Pk , δ̂
P
k ). First consider the asymptotic

approximations of the penalize ML estimator of ξ based on maximization of
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(2.2). From (2.1)-(2.2) using expansions in δ → 0 we obtain

1

k
log lpen(ξ, δ|y) = −(1 +

1

k
) log ξ − 1

k
(1 + ξ)− (

1

ξ
+ 1)

1

k

k∑
j=1

log yj,k

− δ

1 + ξ

1

k

k∑
j=1

(1− yτj,k) + δ
1

k

k∑
j=1

(1− (1 + τ)yτj,k)

− ωδ2

2kσ2k,n
+

δ2

2(1 + ξ)

1

k

k∑
j=1

(1− yτj,k)2 −
δ2

2

1

k

k∑
j=1

(1− (1 + τ)yτj,k)
2

+O(δ3) + c,

where c is a constant only depending on σ2k,n and τ . Note that 1
k

∑k
j=1 log yj,k =

Hk,n. Then the score functions admit the following expansions in δ ↓ 0 for
j = 1, . . . , k:

∂

∂ξ
log lpen(ξ, δ|yj,k) = −1

ξ
+

1

ξ2
log yj,k +

δ

ξ2
(1− yτj,k) +O(δ2),

∂

∂δ
log lpen(ξ, δ|yj,k) = −1

ξ

(
1− (1− ξτ)yτj,k

)
− ωδ

kσ2k,n

+
δ

ξ

(
1− 2(1− ξτ)yτj,k + (1− 2ξτ − ξτ2)y2τj,k

)
+O(δ2).

Derivation of Theorem. Note that as k, n → ∞, k/n → 0 and
√
ka(n/k) → λ,

we also have kσ2k,n → λ2C−2a . Also as
√
ka(n/k) → λ we find using Ek,n(s) →

1/(1− ξs) (see Theorem A.1 in Beirlant et al., 2009) that

DP
k,n = −ξC

2
a

λ2
+

ρ4

ξ(1− 2ρ)(1− ρ)2
+ op(1).

Then, proceeding as in the proof of Theorem 3.1 in Beirlant et al. (2009), we
obtain with Γk,n =

√
k(Hk,n − ξ), Ek,n(s) =

√
k(Ek,n(s)− 1

1−ξs) (s < 0), that

√
k
(
ξ̂Pk − ξ

)
=
√
k

(
Hk,n − ξ − δ̂Pk

ρ

1− ρ

)
= Γk,n −

ρ

1− ρ
√
kδ̂Pk

= Γk,n

(
1 +

ρ2

ξ(1− ρ2)
1

ξC2
a/λ

2 + ρ4/ξ(1− 2ρ)(1− ρ)2

)
− ρ

ξC2
a/λ

2 + ρ4/ξ(1− 2ρ)(1− ρ)2
Ek,n(τ̂) + op(1)

= Γk,n

(
1 +

ρ2(1− 2ρ)

ζ + ρ4

)
+ Ek,n(τ̂)

(
(−ρ)ξ(1− 2ρ)(1− ρ)2

ρ4 + ζ

)
+ op(1).

Using Theorem A.1 in Beirlant et al. (2009), (2.6) and (2.7) follow under√
ka(n/k)→ λ.
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