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Abstract:

� The analysis of longitudinal survey data is often complicated when informative sam-
pling or nonignorable missing data exists. Existing methods that can handle both
informative sampling and nonignorable missing data are only limited to the situation
of no time dependence in the data. In this paper, we develop a sample likelihood
based approach for estimation of time series model in longitudinal survey data under
informative sampling and nonignorable missingness. In particular, some informative
sampling models and a response model are proposed to describe the mechanisms of
informative sampling and nonignorable missingness. A sample likelihood is derived
based on the conditional distribution of the observed measurements. Also, an effec-
tive computation algorithm is developed to compute the sample likelihood. Simulation
studies are carried out to investigate the performance of the proposed estimator. A
real data example based on data from AIDS Clinical Trial Group 193A Study is
presented to illustrate the proposed method.
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1. INTRODUCTION

Longitudinal surveys are designed to measure a sample of respondents re-
peatedly over time, and have been extensively applied in various fields such as
clinical studies, biological research and social sciences. Longitudinal surveys are
prevalence in studying human’s behaviors, health, and mortality because they
provide efficient means to estimate the change in the population, evaluate inter-
ventions, test causal hypotheses, and reduce the cost of data collection [35]. Since
longitudinal surveys are conducted at different points of time, the serial obser-
vations obtained from a given unit usually show time dependence. Therefore, a
time series model can be employed to analyze longitudinal survey data [12].

Informative sampling, which refers to sampling design in which the sam-
pling probabilities are correlated with the response variable (conditional on co-
variates), is often encountered in longitudinal surveys, see, e.g., Fuller [15]. How-
ever, studies ignoring informative sampling can lead to seriously biased results
(Pfeffermann [27], [26]; Eideh and Nathan [12]; Eideh [9]; Sverchkov and Pfeffer-
mann [33]). To handle informative sampling, Pfeffermann et al. [25] derived the
sample distribution from the population distribution and the sampling probabil-
ities under informative sampling, which can permit the use of classical inference
methods. Chambers and Skinner [7], and Pfeffermann and Sverchkov [24] dis-
cussed the sample likelihood approach, the pseudo-likelihood approach and the
estimating equations approach for fitting generalized linear models under infor-
mative sampling, based on the sample distribution of Pfeffermann et al. [25]. In
fact, the sample likelihood approach has been explored in many different direc-
tions including small area estimation (Pfeffermann and Sverchkov [22]; Eideh and
Nathan [11]; Verret et al. [37]), general linear modelling (Chambers and Skinner
[7]; Pfeffermann and Sverchkov [22]; Eideh [9]), and multi-level model analysis
(Pfeffermann et al. [23]; Cai [6]). Recently, Bonnery et al. [4] established the
asymptotic properties of the sample likelihood approach under informative sam-
pling. Other proposed methods include the inverse probability weighting method
(Boudreau and Lawless [5]; Kim and Skinner [17]) and calibration adjustments
(Moser et al. [20]). However, most of the above studies explored the infor-
mative sampling problem in the non-longitudinal survey context. Informative
sampling in longitudinal surveys was considered in Eideh and Nathan [12], [13],
and Eideh [9]. Eideh and Nathan [12], [13] discussed the sample likelihood and
pseudo-likelihood methods in fitting time series models for longitudinal survey
data under informative sampling. Eideh [9] explored further the sample likeli-
hood, pseudo-likelihood likelihood and estimating equations methods in fitting
general linear model for longitudinal survey data under informative sampling.

In addition to informative sampling, another major issue in longitudinal
surveys is the missing data problem. Following Little and Rubin [18], the mech-
anisms of missing data can be classified into three types: missing completely
at random (MCAR), missing at random (MAR), and not missing at random
(NMAR). In particular, missing completely at random and missing at random
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are called ignorable missingness, whereas not missing at random is called non-
ignorable missingness. Under nonignorable missingness, the missing probability
depends on the response variable, and thus will lead to unreliable estimation
results (Eideh [9]; Schlomer et al. [30]; Taisir and Islam [34]). A solution to
this problem is the modeling of nonignorable missing data, which has been ap-
plied to general linear models (Bahari et al. [2]), generalized linear mixed models
(Stubbendick and Ibrahim [32]; Sabry et al. [29]; Almohisen et al. [1]), quantile
regression models (Yuan and Yin [38]), latent random effects models (Tseng et
al. [36]; Bhuyan [3]), and Markov chain models (Cole et al. [8]; Taisir and Islam
[34]).

When informative sampling and nonignorable missingness occur in longi-
tudinal surveys simultaneously, the joint treatment of the two problems becomes
a key issue. Pfeffermann [21] proposed a unified approach to handle the two
problems by combining the observed data model with the missing data model
and the target population model based on the Bayes theorem. Sverchkov and
Pfeffermann [33] extended the approach in Pfeffermann and Sverchkov [22] in
small area estimation under informative sampling to the case that both infor-
mative sampling and nonignorable missingness exist. However, these approaches
only considered data measured at a certain time point and are not applicable to
longitudinal data. Eideh and Nathan [10], and Farahania et al. [14] considered
methods to handle informative sampling and nonignorable missingness simulta-
neously in longitudinal data analysis. However, their discussions focus mainly on
general regression models.

In this paper, we study time series modeling for longitudinal survey data
under informative sampling and nonignorable missingness. Treating informative
sampling and nonignorable missingness simultaneously becomes especially chal-
lenging in time series models due to the serial correlation of the response variable
at various time points. We consider models to explore the effect of each of in-
formative sampling and nonignorable missingness. For informative sampling, a
variety of models, including exponential, probit, and logistic models are consid-
ered to capture the dependence between the selection probability and the response
variable. For nonignorable missingness, we consider a logistic model to relate the
response probability to the response variables. Based on these models, we derive
a sample likelihood for parameter estimation under informative sampling and
nonignorable missingness. To compute the sample likelihood function efficiently,
an approximation to the integrals in the sample likelihood based on series expan-
sions is proposed. Simulation studies and real data application are provided to
illustrate the effectiveness of the proposed method.

The remainder of the paper is organized as follows. Section 2 describes
time series models and parameter estimation methods for longitudinal survey
data. Section 3 discusses informative sampling and nonignorable missingness in
longitudinal surveys. In Section 4, the sample likelihood is derived for conduct-
ing time series analysis in longitudinal survey data under informative sampling
and nonignorable missingness. Simulations studies and real data analysis are
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performed in Sections 5 and 6, respectively. Concluding remarks are provided in
Section 7.

2. TIME SERIES MODEL FOR LONGITUDINAL SURVEY DATA

Let U = {1, · · · , N} be the index set of a finite population U of size N . Let
yi,t (i = 1, · · · , N , t = 1, · · · , T ) be the value of a response variable y of unit i at
time t, and xi be the values of the covariates of unit i, which are always observed
and remain constant over time. A random sample S of size n is then selected from
the finite population at time 1 (t = 1) and measured independently from time 1 to
time T . Suppose that yi,t is correlated with the past values yi,t′ , 1 ≤ t′ < t ≤ T ,
for each T . A time series model can then be fitted to analyze this longitudinal
survey data. Typically, time series models with short-range dependence are often
applied in decision-making and policymaking [12]. For simplicity, we consider the
first-order autoregressive (AR(1)) model

(2.1) yi,t − µ = φ(yi,t−1 − µ) + εi,t , i = 1, · · · , N, t = 1, · · · , T ,

where µ is the mean level of the data, the errors εi,t
iid∼ N(0, σ2), and |φ| < 1. The

model parameter θ = (µ, φ, σ) is of our interest. Note that unit i in the AR(1)
model will fall into the set {1, · · · , n} when the sample data is used to estimate
the model parameters.

Usually, the maximum likelihood estimation approach is employed to obtain
the model parameter estimators. Let yi = (yi,1, · · · , yi,T )′ be the vector of T
measurements on unit i (i = 1, · · · , N). Then, the density function of yi can
be expressed as f(yi; θ) = f(yi,1; θ)

∏T
t=2 f(yi,t|yi,t−1; θ). For the AR(1) model,

we have yi,1 ∼ N(µ, σ2/(1 − φ2)) and f(yi,t|yi,t−1; θ) = (2πσ2)−1/2 exp{−[yi,t −
φ(yi,t−1 − µ)− µ]2/(2σ2)}. Thus, the log-likelihood function of θ can be written
as

logL(θ) =

n∑
i=1

log f(yi,1; θ) +

n∑
i=1

T∑
t=2

log f(yi,t|yi,t−1; θ) .(2.2)

It follows that the maximum likelihood estimator of θ can be obtained by maxi-
mizing the log-likelihood function in (2.2).
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3. INFORMATIVE SAMPLING AND NONIGNORABLE MISS-
INGNESS IN LONGITUDINAL SURVEYS

3.1. Informative Sampling

Analytic inference from longitudinal survey data usually fails to account
for the complex sampling design, such as informative sampling. A sampling
design is called informative when the sample selection probabilities are related
to the response variable y, even after conditioning on the covariates. In practice,
selection probabilities may be correlated with the response variable, the covariates
and possibly, design variables used for sampling. For simplicity, we consider the
case that selection probabilities depend only on the response variable.

Let Ii be the sample indicator variable, taking values of 1 if unit i ∈ U is
selected to the sample S and 0 if otherwise. The selection probabilities can then be
denoted by πi = P (Ii = 1|yi). Let fs(yi) and fp(yi) denote the sample density and
the population density of yi, respectively. In fact, the density functions f(yi,1; θ)
and f(yi,t|yi,t−1; θ) in Section 2 are the population densities, which can also be
denoted by fp(yi,1; θ) and fp(yi,t|yi,t−1; θ), respectively. Following Pfeffermann et
al. [25] as well as Sikov and Stern [31], the sample density fs(yi) is given by

fs(yi) =f(yi|Ii = 1) =
f(yi, Ii = 1)

P (Ii = 1)
(3.1)

=
P (Ii = 1|yi)fp(yi)

P (Ii = 1)
=
Ep(πi|yi)fp(yi)

Ep(πi)
,

where πi = P (Ii = 1|yi), Ep(πi|yi) =
∫
P (Ii = 1|yi, πi)fp(πi|yi)dπi = P (Ii =

1|yi), and Ep(πi) =
∫
P (Ii = 1|yi)fp(yi)dyi = P (Ii = 1). Under informative

sampling, the selection probability πi = P (Ii = 1|yi) depends on yi. Hence,
Ep(πi|yi) 6= Ep(πi) and P (Ii = 1|yi) 6= P (Ii = 1), yielding fs(yi) 6= fp(yi)
in general. That is, the sample distribution is different from the population
distribution. However, the sample distribution is viewed as the same as the
population distribution in many analysis under informative sampling, which have
resulted in false inferences (Pfeffermann [27], [26]).

In order to access the sample density, Ep(πi|yi) = P (Ii = 1|yi) can be
modeled to explore the relationship between the selection probabilities πi and
the response variable values yi. Pfeffermann et al. [25] and Eideh and Nathan
[12] considered

(3.2) Exponential model : Ep(πi|yi) = exp(a0 + a1yi) ,

where a0 and a1 are unknown model parameters. Besides, the probit model and
logistic model, which are less common in longitudinal surveys under informative
sampling, can also be explored to explain the informative sampling mechanism:

(3.3) Probit model : Ep(πi|yi) = Φ(b0 + b1yi) ,
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(3.4) Logistic model : Ep(πi|yi) =
exp(c0 + c1yi)

1 + exp(c0 + c1yi)
,

where b0, b1, c0, c1 are unknown model parameters.

3.2. Nonignorable missingness

Missing data is another problem which often arises in longitudinal surveys.
Here, we assume that there exists nonignorable missingness in longitudinal sur-
veys. In particular, the values yi,1 at time 1 are complete and some of yi,2, · · · , yi,T
suffer from missingness for i = 1, · · · , n. Denote the response indicator variable
by

δi,t =

{
1 if yi,t is observed ,
0 otherwise .

(3.5)

The nonignorable missingness implies that missingness depends on the response
variable. In other words, the response probability is related to the response
variable. Under the AR(1) model, we model the response mechanism using a
logistic model

P (δi,t = 1|xi, yi,t−1, yi,t) =: π(xi, yi,t−1, yi,t; η)(3.6)

=
exp(η1xi + η2yi,t−1 + η3yi,t)

1 + exp(η1xi + η2yi,t−1 + η3yi,t)
,

where η = (η1, η2, η3) is the unknown parameter. Equation (3.6) asserts that the
response probability P (δi,t = 1|xi, yi,t−1, yi,t) at time t depends not only on the
value yi,t at time t and the covariate xi, but also on its past value yi,t−1. Clearly,
the response mechanism is nonignorable missingness. Note that (3.6) extends the
nonignorable response mechanism in Qin et al. [28] by incorporating the effect
of past observations into the response probability. For notational simplicity, only
one covariate x is considered in the response model. The extension to multiple
covariates x1, · · · , xp in the response model is straightforward.

If we ignore the informative sampling and nonignorable missingness, using
the complete case (CC) analysis (Farahania et al. [14]), the log-likelihood function
of θ in the AR(1) model based on the observed data is rewritten as

logL(θ) =

n∑
i=1

log f(yi,1; θ) +

T∑
t=2

n∑
i=1

δi,t−1δi,t log f(yi,t|yi,t−1; θ)

(3.7)

=
n∑
i=1

{
− 1

2
log
( 2πσ2

1− φ2
)
− (1− φ2)(yi,1 − µ)2

2σ2

}
+

T∑
t=2

n∑
i=1

δi,t−1δi,t

{
− 1

2
log(2πσ2)− 1

2σ2
[yi,t − φ(yi,t−1 − µ)− µ]2

}
.
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Then, we can get the maximum likelihood estimator θ̂ of θ via maximizing the
log-likelihood function in (3.7). However, the obtained estimator θ̂ is obviously
biased because it ignores the informative sampling and nonignorable missingness
(Pfeffermann et al. [25]; Little and Rubin [18]; Farahania et al. [14]). In fact, the
observed sample distribution is different from the population distribution under
both informative sampling and nonignorable missingness, which cannot guarantee
that the log-likelihood function in (3.7) gives the correct estimates.

4. SAMPLE LIKELIHOOD AND ESTIMATION UNDER INFOR-
MATIVE SAMPLING AND NONIGNORABLE MISSINGNESS

4.1. Sample likelihood under informative sampling

The sample distribution differs from the population distribution under in-
formative sampling. Therefore, the sample likelihood will be different from the
general likelihood under noninformative sampling. Because the sample is only
selected from the finite population at time 1 in longitudinal surveys, the sample
distribution at time 1 can be obtained by replacing yi in (3.1) with yi,1 in lon-
gitudinal surveys. In what follows, the sample density function fs(yi) of yi in
longitudinal surveys under informative sampling can be expressed as

fs(yi) =fs(yi,1; θ)
T∏
t=2

fp(yi,t|yi,t−1; θ)(4.1)

=
Ep(πi|yi,1)fp(yi,1; θ)

Ep(πi)

T∏
t=2

fp(yi,t|yi,t−1; θ) .

Then, the log-likelihood function becomes

logL =
n∑
i=1

logEp(πi|yi,1)−
n∑
i=1

logEp(πi)(4.2)

+
n∑
i=1

log f(yi,1; θ) +
n∑
i=1

T∑
t=2

log f(yi,t|yi,t−1; θ) .

4.2. Sample likelihood under informative sampling and nonignorable
missingness

When nonignorable missingness also exists in longitudinal surveys under in-

formative sampling,
n∑
i=1

T∑
t=2

log f(yi,t|yi,t−1; θ) in (4.2) needs to be modified since
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f(yi,t|yi,t−1; θ) is not available when yi,t or yi,t−1 is missing. Taking the response
mechanism (3.6) into account, we propose to replace f(yi,t|yi,t−1; θ) by the condi-
tional densities based on the observed response, namely f(yi,t|xi, δi,t−1 = 0, δi,t =
1) or f(yi,t|xi, yi,t−1, δi,t−1 = 1, δi,t = 1), depending on whether yi,t−1 is missing
or not. It follows that the log-likelihood function under informative sampling and
nonignorable missingness can be rewritten as

logL =

n∑
i=1

logEp(πi|yi,1)−
n∑
i=1

logEp(πi) +

n∑
i=1

log f(yi,1; θ)(4.3)

+
n∑
i=1

T∑
t=2

δi,t−1δi,t log f(yi,t|xi, yi,t−1, δi,t−1 = 1, δi,t = 1)

+
n∑
i=1

T∑
t=2

(1− δi,t−1)δi,t log f(yi,t|xi, δi,t−1 = 0, δi,t = 1) .

Next, we derive the expressions for f(yi,t|xi, yi,t−1, δi,t−1 = 1, δi,t = 1) and
f(yi,t|xi, δi,t−1 = 0, δi,t = 1) in the following lemma. The proof is given in the
Appendix.

Lemma 4.1. The conditional density f(yi,t|xi, yi,t−1, δi,t−1 = 1, δi,t = 1)
satisfies

f(yi,t|xi, yi,t−1, δi,t−1 = 1, δi,t = 1) =
π(xi, yi,t−1, yi,t)f(yi,t|yi,t−1)∫
π(xi, yi,t−1, yt)f(yt|yi,t−1)dyt

,(4.4)

and f(yi,t|xi, δi,t−1 = 0, δi,t = 1) satisfies

f(yi,t|xi, δi,t−1 = 0, δi,t = 1)

(4.5)

=

∫ ∫
f(yt−2)f(yt−1|yt−2)f(yi,t|yt−1)π(xi, yt−1, yi,t)[1− π(xi, yt−2, yt−1)]dyt−2dyt−1

f(xi, δi,t−1 = 0, δi,t = 1)

Substituting (4.4) and (4.5) into (4.3) yields the following log-likelihood
function under informative sampling and nonignorable missingness

logL =
n∑
i=1

logEp(πi|yi,1)−
n∑
i=1

logEp(πi)

(4.6)

+
n∑
i=1

log f(yi,1; θ) +
T∑
t=2

n∑
i=1

δi,t−1δi,t

{
log f(yi,t|yi,t−1; θ)

+ log π(xi, yi,t−1, yi,t; η)− log

∫
π(xi, yi,t−1, yt; η)f(yt|yi,t−1; θ)dyt

}
+

T∑
t=2

n∑
i=1

(1− δi,t−1)δi,t
{

log

∫ ∫
f(yt−2)f(yt−1|yt−2)f(yi,t|yt−1)π(xi, yt−1, yi,t)

· [1− π(xi, yt−2, yt−1)]dyt−2dyt−1 − log f(xi, δi,t−1 = 0, δi,t = 1)
}
.



Time Series Analysis Under Informative Sampling and Nonignorable Missingness 9

Using (3.2), (3.3) and (3.4), the log-likelihood functions under nonignorabe miss-
ingness and the three informative sampling models can be expressed as

Exponential model:

logL(θ, η, a1)
(4.7)

=a1

n∑
i=1

yi,1 − n[a1µ+ σ2a21/(2(1− φ2))]

+
n∑
i=1

log f(yi,1; θ) +
T∑
t=2

n∑
i=1

δi,t−1δi,t

{
log f(yi,t|yi,t−1; θ)

+ log π(xi, yi,t−1, yi,t; η)− log

∫
π(xi, yi,t−1, yt; η)f(yt|yi,t−1; θ)dyt

}
+

T∑
t=2

n∑
i=1

(1− δi,t−1)δi,t
{

log

∫ ∫
f(yt−2)f(yt−1|yt−2)f(yi,t|yt−1)π(xi, yt−1, yi,t)

· [1− π(xi, yt−2, yt−1)]dyt−2dyt−1 − log f(xi, δi,t−1 = 0, δi,t = 1)
}
,

Probit model:

logL(θ, η, b0, b1)
(4.8)

=

n∑
i=1

log Φ(b0 + b1yi,1)−
n∑
i=1

log

∫
Φ(b0 + b1yi,1)f(yi,1)dyi,1

+
n∑
i=1

log f(yi,1; θ) +
T∑
t=2

n∑
i=1

δi,t−1δi,t

{
log f(yi,t|yi,t−1; θ)

+ log π(xi, yi,t−1, yi,t; η)− log

∫
π(xi, yi,t−1, yt; η)f(yt|yi,t−1; θ)dyt

}
+

T∑
t=2

n∑
i=1

(1− δi,t−1)δi,t
{

log

∫ ∫
f(yt−2)f(yt−1|yt−2)f(yi,t|yt−1)π(xi, yt−1, yi,t)

· [1− π(xi, yt−2, yt−1)]dyt−2dyt−1 − log f(xi, δi,t−1 = 0, δi,t = 1)
}
,
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Logistic model:

logL(θ, η, c0, c1)
(4.9)

=−
n∑
i=1

log[1 + exp(−c0 − c1yi,1)]−
n∑
i=1

log

∫
[1 + exp(−c0 − c1yi,1)]−1f(yi,1)dyi,1

+

n∑
i=1

log f(yi,1; θ) +

T∑
t=2

n∑
i=1

δi,t−1δi,t

{
log f(yi,t|yi,t−1; θ)

+ log π(xi, yi,t−1, yi,t; η)− log

∫
π(xi, yi,t−1, yt; η)f(yt|yi,t−1; θ)dyt

}
+

T∑
t=2

n∑
i=1

(1− δi,t−1)δi,t
{

log

∫ ∫
f(yt−2)f(yt−1|yt−2)f(yi,t|yt−1)π(xi, yt−1, yi,t)

· [1− π(xi, yt−2, yt−1)]dyt−2dyt−1 − log f(xi, δi,t−1 = 0, δi,t = 1)
}
.

Therefore, the maximum likelihood estimators of θ, η, a1, b0, b1, c0, and
c1 can be obtained by maximizing the log-likelihood functions in (4.7), (4.8) or
(4.9).

4.3. Computations of the likelihood function

Note that computing the log-likelihood functions in (4.7), (4.8) and (4.9) in-
volves the density f(xi, δi,t−1 = 0, δi,t = 1), as well as the integrals

∫
π(xi, yi,t−1, yt; η)

f(yt|yi,t−1; θ)dyt,
∫

[1+exp(−c0−c1yi,1)]−1f(yi,1)dyi,1,
∫ ∫

f(yt−2)f(yt−1|yt−2)f(yi,t|
yt−1)π(xi, yt−1, yi,t)[1−π(xi, yt−2, yt−1)]dyt−2dyt−1 and

∫
Φ(b0+b1yi,1)f(yi,1)dyi,1.

In this section we discuss effective computations for these quantities.

First, f(xi, δi,t−1 = 0, δi,t = 1) can be approximated by the empirical dis-
tribution

f(xi, δi,t−1 = 0, δi,t = 1) ≈
∑

i,δi,t=1;

δi,t−1=0

(1− δi,t−1)δi,t
/
n .

Next, the following lemma provides a series expansion for the integral∫
π(xi, yi,t−1, yt; η)f(yt|yi,t−1; θ)dyt. The proof is provided in the Appendix.
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Lemma 4.2. The integral
∫
π(xi, yi,t−1, yt)f(yt|yi,t−1)dyt satisfies∫

π(xi, yi,t−1, yt)f(yt|yi,t−1)dyt

=



∞∑
k=0

(−c)k exp(β2k2/2)Φ(γ − βk)

+1
c

∞∑
k=0

(−1
c )
k exp(β2(k + 1)2/2)[1− Φ(γ + βk + β)] , β > 0

∞∑
k=0

(−c)k exp(β2k2/2)[1− Φ(γ − βk)]

+1
c

∞∑
k=0

(−1
c )
k exp(β2(k + 1)2/2)Φ(γ + βk + β) , β < 0

1
1+c , β = 0

(4.10)

where c = exp[−(η1xi + η2yi,t−1 + η3µ̃)], µ̃ = µ + φ(yi,t−1 − µ), β = −η3σ,
γ = − log c/β and Φ is the distribution function of standard normal distribution.

In practice, the infinite series in (4.10) has to be approximated by a finite
truncated sum. Simulation studies show that the truncation of summing up to
k = 10 gives a good approximation to the infinite series in most cases.

Based on Lemma 4.2, the following corollary gives a similar series expan-
sion for the integral

∫
[1 + exp(−c0 − c1yi,1)]−1f(yi,1)dyi,1 in (4.9). The proof is

presented in the Appendix.

Corollary 4.1. The integral
∫

[1 + exp(−c0 − c1yi,1)]−1f(yi,1)dyi,1 sat-
isfies ∫

[1 + exp(−c0 − c1yi,1)]−1f(yi,1)dyi,1

=



∞∑
k=0

(−c)k exp(β2k2/2)Φ(γ − βk)

+1
c

∞∑
k=0

(−1
c )
k exp(β2(k + 1)2/2)[1− Φ(γ + βk + β)] , β > 0

∞∑
k=0

(−c)k exp(β2k2/2)[1− Φ(γ − βk)]

+1
c

∞∑
k=0

(−1
c )
k exp(β2(k + 1)2/2)Φ(γ + βk + β) , β < 0

1
1+c , β = 0

(4.11)

where c = exp(−c0 − c1µ), β = −c1σ/
√

1− φ2, γ = − log c/β and Φ is the
distribution function of standard normal distribution.

Lastly, for the double integral
∫ ∫

f(yt−2)f(yt−1|yt−2)f(yi,t|yt−1)π(xi, yt−1,
yi,t)[1−π(xi, yt−2, yt−1)]dyt−2dyt−1, the series expansion approach is not applica-
ble. Thus, it is necessary to consider other numerical methods for computing the
double integral. Here, we adopt the Gauss-Hermite quadrature (Liu and Pierce
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[19]) to approximate it. Similarly, the Gauss-Hermite quadrature can also be em-
ployed to approximate the integral

∫
Φ(b0 + b1yi,1)f(yi,1)dyi,1 in (4.8). In R, the

function gauss.quad under the package statmod can be employed. Simulations
show that the choice of 9 nodes gives satisfactory performance. In summary, the
computation of maximum likelihood function based on Lemma 4.2, Corollary 4.1
and the Gauss-Hermite quadrature has higher efficiency than that based on direct
integration.

5. SIMULATION STUDIES

To evaluate the performance of the estimators obtained by dealing with
informative sampling and nonignorable missingness in longitudinal surveys, we
conduct a simulation study to compare the estimators under informative sampling
and/or nonignorable missingness. In the simulation, N = 1000 univariate normal
values of yi,1 are independently generated from y1 ∼ N(µ, σ2/(1 − φ2)) for the
first time period (t = 1), where µ = 0.8, φ = 0.3 and σ = 0.5. Then, we generate
N = 1000 population values of yi,t (i = 1, · · · , N) at time t = 2, · · · , T with
T = 10, 20 and 40 from the AR(1) model, yi,t − µ = φ(yi,t−1 − µ) + εi,t, where
εi,t ∼ N(0, 1) is independent error term. The AR(1) model parameters µ, φ and
σ are of our interest.

For the sample selection, samples of size n = 10, 20 and 40 are selected from
the population via probability proportional to size (PPS) systematic sampling
with size variable z. The size variable z values are generated in the following
ways, which produce various sampling methods.

(1) Exponential sampling: zi = exp(0.9 + 0.3yi,1 + µi), µi ∼ U(0, 1).

(2) Probit sampling: zi = Φ(0.72 + 0.09yi,1 + µi), µi ∼ U(0, 2).

(3) Logistic sampling: zi = [1 + exp(0.6− 0.5yi,1 − µi)]−1, µi ∼ U(0, 5).

(4) Noninformative sampling: zi = exp(1.5µi), µi ∼ U(0, 4).

Note that exponential sampling, probit sampling and logistic sampling are infor-
mative. Under the above sampling approaches, selection probabilities are defined

as πi = nzi
/ N∑
i=0

zi.

For the missingness mechanism, the population value of the covariate is
generated from xi ∼ N(0, 1), i = 1, · · · , N . We assume that the covariate
xi and the response variable yi,1 at time t = 1 are always observed, but yi,t
at time t = 2, · · · , T may subject to missingness. The response or missing
indicator δi,t of yi,t are independently generated from a Bernoulli distribution
with the response probabilities πit(η) = P (δi,t = 1|xi, yi,t−1, yi,t; η) specified by
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πit(η) = [1+exp(−η1xi−η2yi,t−1−η3yi,t)]−1, where η1 = 0.2, η2 = 0.4, η3 = −0.5.
The average response rates under exponential sampling, probit sampling, logistic
sampling and noninformative sampling are about 50% for the above nonignorable
missing mechanism.

For samples under exponential sampling, probit sampling and logistic sam-
pling, we compute the model parameter estimates by maximizing the sample like-
lihood under informative sampling and nonignorable missingness. For the sample
under noninformative sampling, the model parameter estimators is obtained by
maximizing the following log-likelihood function.

logL =
n∑
i=1

log f(yi,1; θ) +
T∑
t=2

n∑
i=1

δi,t−1δi,t

{
log π(xi, yi,t−1, yi,t; η) + log f(yi,t|yi,t−1; θ)

(5.1)

− log

∫
π(xi, yi,t−1, yt; η)f(yt|yi,t−1; θ)dyt

}
+

T∑
t=2

n∑
i=1

(1− δi,t−1)δi,t

·
{

log

∫ ∫
f(yt−2)f(yt−1|yt−2)f(yi,t|yt−1)π(xi, yt−1, yi,t)

· [1− π(xi, yt−2, yt−1)]dyt−2dyt−1 − log f(xi, δi,t−1 = 0, δi,t = 1)
}
.

For comparison, we also compute the naive estimators, which ignore informa-
tive sampling and nonignorable missingness, and are obtained by maximizing
the log-likelihood function (3.7). Moreover, the estimators obtained by ignoring
informative sampling or nonignorable missingness under exponential sampling,
probit sampling and logistic sampling are computed. The estimation procedure
is repeated B = 500 times. For each estimator, the Monte Carlo biases (Bias),
standard deviations (SD) under various n and T are presented. Besides, we also
compute the estimation error ‖θ̂− θ‖2 of the parameter θ = (µ, φ, σ), denoted by
ER, and the standard deviation of ER to further measure the performance of θ.
The results are provided in Tables 1, 2 and 3.

INSERT TABLE 1, 2 AND 3 ABOUT HERE

From Table 1, it can be seen that the proposed method that deals with
informative sampling and nonignorable missingness simultaneously generally has
smaller biases in comparison with the others under the four sampling mecha-
nisms. As expected, the parameter estimation error of the proposed method is
the smallest among all methods under various sampling schemes, followed by the
estimators handling nonignorable missingness but ignoring informative sampling,
whereas the estimation errors of the naive estimators and the estimators dealing
with informative sampling but ignoring nonignorable missingness are relatively
large among the four methods under exponential sampling, probit sampling and
logistic sampling. Moreover, it is obvious that the proposed estimators of the
parameters µ, φ, σ in AR(1) model have smaller biases than the naive estima-
tors when the sampling design is noninformative. All of these indicate that the
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proposed method has a good performance in handling nonignorable missingness.
Besides, the proposed method generally yields the smallest standard deviations
of the four methods for the estimation of the parameters µ, φ, σ under different
sampling approaches. Similar results can be found in Table 2 and 3 which focus
on different sample sizes. From Tables 1, 2 and 3, it can be seen as well that the
estimation error of the proposed method decreases with the increase in the sample
size n and the time period T for the four sampling schemes. It is noteworthy that
the differences between the estimation errors of the proposed estimators and the
estimators ignoring informative sampling but handling nonignorable missingness
become smaller under various sampling schemes as n and T increase. This is
reasonable because the sampling at time 1 may have a smaller effect on the esti-
mation of the AR(1) model parameters as the time period T becomes larger. In
conclusion, the proposed method performs best in the estimation of parameters.

6. REAL DATA ANALYSIS

The longitudinal data examined in this section comes from AIDS Clinical
Trial Group 193A Study (Henry et al. [16]). It concerns AIDS patients with
advanced immune suppression which is measured with CD4 counts. A total of
1309 patients were randomized to one of the four treatment groups including
(1) 600mg zidovudine alternating monthly with 400mg didanosine, (2) 600mg
zidovudine plus 2.25mg of zalcitabine, (3) 600mg zidovudine plus 400mg of di-
danosine, and (4) 600mg zidovudine plus 400mg of didanosine plus 400mg of
nevirapine. The numbers of patients in the four treatment groups are n = 325,
324, 330 and 330, respectively. Treatments started at the time of week 0 (base-
line), and were measured before the treatments and every 8 weeks. That is,
data is collected on the 0, 8, 16, 24, 32, 40th weeks. Here, we denote the
six follow-up time points by t = 1, 2, 3, 4, 5, 6. The measured outcome variable
log(CD4 count + 1) is of our interest, whose values in six time intervals (0, 4],
(4, 12], (12, 20], (20, 28], (28, 36], (36, 40] are viewed as yt for t = 1, 2, 3, 4, 5, 6.
Note that the last record of the variable log(CD4 count + 1) in the interval
is adopted as yt if there are more than one values of log(CD4 count + 1) in
a time interval. The covariates related to the response variable include Age
(years) and Gender (Male=1, Female=0). Details on the data set can be found
at https://content.sph.harvard.edu/fitzmaur/ala/cd4.txt.

In the longitudinal survey, the covariates are completely observed, whereas
the response variable yt (CD4 counts) is subject to missingness due to skipping
visits or dropouts. In fact, a low CD4 count implies that HIV has damaged a
patient’s immune system to an extent that they are at risk of serious illnesses or
even deaths. Thus, a lower CD4 count increases the chance of dropouts due to
serious illnesses or deaths. As the patients’ dropouts are related to the CD4 count,
the missing process is potentially nonignorable. The missing rates under the four
treatments are approximately 37.79%, 37.19%, 37.93% and 35.86%, respectively.
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Let δi,t be the indicator variable for yi,t. Define

δi,t =

{
1 if yi,t is observed ,
0 otherwise ,

(6.1)

for i = 1, 2, · · · , n and t = 1, 2, 3, 4, 5, 6. We are interested in estimating the
response probability P (δi,t = 1|xi, yi,t−1, yi,t). We fit the response model using
the age variable x1 and the gender variable x2 in the following logistic model.

(6.2) P (δi,t = 1|xi1, xi2, yi,t−1, yi,t) =
exp(η1xi1 + η2xi2 + η3yi,t−1 + η4yi,t)

1 + exp(η1xi1 + η2xi2 + η3yi,t−1 + η4yi,t)
,

where η1, η2, η3, η4 are the unknown parameters. This missing mechanism is ob-
viously nonignorable. For comparison, we also consider the following working
model for the response probability under ignorable missing mechanism:

(6.3) P (δi,t = 1|xi1, xi2) =
exp(η′1xi1 + η′2xi2)

1 + exp(η′1xi1 + η′2xi2)
,

where η′1 and η′2 are the unknown parameters. The response probability in equa-
tion (6.3) only depends on the covariates x1 and x2, implying that the missing
mechanism is ignorable.

Assume that the sampling design is exponential sampling, probit sampling
and logistic sampling, respectively. For comparison, we consider two models, the
AR(1) model (2.1) and the following mean model.

(6.4) yi,t = µ+ εi,t , i = 1, · · · , n, t = 1, · · · , 6 ,

where εi,t ∼ N(0, σ2). In fact, the mean model has no time dependence and been
considered by Zhao et al. [39]. The estimates of model parameters µ, φ, σ under
different missing models, sampling schemes and treatments, together with the
mean squares of the model residuals (MSE), are presented in Tables 4 and 5.

INSERT TABLE 4 and 5 ABOUT HERE

As shown in Tables 4 and 5, Treatment 4 presents greater estimated values
of µ than other Treatments regardless of models, missing mechanisms or sampling
approaches. Also, the estimates of µ under Treatment 1 are the lowest among all
treatments for all sampling methods and two missing models. That is, patients
under Treatment 4 are superior to those under other Treatments in terms of the
average number of CD4 counts, and the average number of patients’ CD4 counts
under Treatment 1 is relatively low. In fact, a high CD4 counts indicates a strong
immune system, which suggests that the patient lives longer. This may reduce
the possibility to drop outs for patients, which in turn reduces the differences
between the parameter estimates under nonignorable missingness and ignorable
missingness. This point is in line with the fact that the estimates of the key
model parameter φ under nonignorable missingness are very close to those under
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ignorable missingness in the same Treatment 4 for various sampling approaches,
whereas there is a clear difference between the parameter estimates of φ under
nonignorable missingness and ignorable missingness in Treatment 1 for differ-
ent sampling schemes. Moreover, the estimator of φ in the AR(1) model under
Treatment 4 is the largest among all treatments under each informative sampling
model for each missing mechanism, suggesting that the number of CD4 counts of
Treatment 4 keeps decreasing more slowly in comparison with the others. There-
fore, we conclude that Treatment 4 has better effect on the AIDS disease than
other treatments. Besides, in terms of the variance estimators σ̂2 of residuals and
MSE, the AR(1) model yields lower σ̂2 and MSE than the mean model. Thus, it
seems very reasonable to use the AR(1) model over the mean model to analyze
this data set.
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Appendix

Proof of Lemma 4.1

First, the conditional density f(yi,t|xi, yi,t−1, δi,t−1 = 1, δi,t = 1) can be
obtained, similar to Pfeffermann et al. [25], as

f(yi,t|xi, yi,t−1, δi,t−1 = 1, δi,t = 1)(A1)

=
P (δi,t = 1|xi, yi,t−1, yi,t, δi,t−1 = 1)f(yi,t|xi, yi,t−1, δi,t−1 = 1)∫
P (δi,t = 1|xi, yi,t−1, yt, δi,t−1 = 1)f(yt|xi, yi,t−1, δi,t−1 = 1)dyt

.

The term P (δi,t = 1|xi, yi,t−1, yi,t, δi,t−1 = 1) on the right side of (A1) can be
written as

P (δi,t = 1|xi, yi,t−1, yi,t, δi,t−1 = 1)(A2)

=
P (δi,t = 1|xi, yi,t−1, yi,t)P (δi,t−1 = 1|xi, yi,t−1, yi,t, δi,t = 1)

P (δi,t−1 = 1|xi, yi,t−1, yi,t)
= P (δi,t = 1|xi, yi,t−1, yi,t)
= π(xi, yi,t−1, yi,t) .

The term f(yi,t|xi, yi,t−1, δi,t−1 = 1) on the right side of (A1) can be written as

f(yi,t|xi, yi,t−1, δi,t−1 = 1) =
P (δi,t−1 = 1|xi, yi,t−1, yi,t)f(yi,t|yi,t−1)

P (δi,t−1 = 1|xi, yi,t−1)
,(A3)

where f(yi,t|yi,t−1) = exp{−[yi,t − µ− φ(yi,t−1 − µ)]2/2σ2}/
√

2πσ.

Next, the two conditional probabilities of δi,t−1 in (A3) can be expressed
as

P (δi,t−1 = 1|xi, yi,t−1, yi,t)(A4)

=

∫
P (δi,t−1 = 1|xi, yt−2, yi,t−1)f(yt−2|yi,t−1, yi,t)dyt−2

=

∫
π(xi, yt−2, yi,t−1)f(yt−2|yi,t−1, yi,t)dyt−2 ,

and

P (δi,t−1 = 1|xi, yi,t−1)(A5)

=

∫
P (δi,t−1 = 1|xi, yt−2, yi,t−1)f(yt−2|yi,t−1)dyt−2

=

∫
π(xi, yt−2, yi,t−1)f(yt−2|yi,t−1)dyt−2 ,
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respectively, where π(xi, yt−2, yi,t−1) is defined in (3.6).

According to the AR(1) model, we can easily prove f(yt−2|yi,t−1, yi,t) =
f(yt−2|yi,t−1). Then, we have P (δi,t−1 = 1|xi, yi,t−1, yi,t) = P (δi,t−1 = 1|xi, yi,t−1).
Moreover, f(yi,t|xi, yi,t−1, δi,t−1 = 1) = f(yi,t|yi,t−1) holds. Thus, the conditional
density in (A1) can be written as

f(yi,t|xi, yi,t−1, δi,t−1 = 1, δi,t = 1) =
π(xi, yi,t−1, yi,t)f(yi,t|yi,t−1)∫
π(xi, yi,t−1, yt)f(yt|yi,t−1)dyt

.(A6)

Therefore, (4.4) in Lemma 4.1 holds.

Now we derive the results for f(yi,t|xi, δi,t−1 = 0, δi,t = 1). Based on the
definition of the conditional density, we have

f(yi,t|xi, δi,t−1 = 0, δi,t = 1) =
f(xi, yi,t, δi,t−1 = 0, δi,t = 1)

f(xi, δi,t−1 = 0, δi,t = 1)
,(A7)

where f(xi, yi,t, δi,t−1 = 0, δi,t = 1) can be given by

f(xi, yi,t, δi,t−1 = 0, δi,t = 1)

(A8)

=

∫ ∫
f(xi, yt−2, yt−1, yi,t)f(δi,t−1 = 0, δi,t = 1|xi, yt−2, yt−1, yi,t)dyt−2dyt−1

=

∫ ∫
f(xi, yt−2)f(yt−1|xi, yt−2)f(yi,t|xi, yt−2, yt−1)P (δi,t = 1|xi, yt−2, yt−1, yi,t)

· P (δi,t−1 = 0|xi, yt−2, yt−1, yi,t, δi,t = 1)dyt−2dyt−1

=

∫ ∫
f(yt−2)f(yt−1|yt−2)f(yi,t|yt−1)π(xi, yt−1, yi,t)[1− π(xi, yt−2, yt−1)]dyt−2dyt−1 .

Thus, we can obtain

f(yi,t|xi, δi,t−1 = 0, δi,t = 1)

(A9)

=

∫ ∫
f(yt−2)f(yt−1|yt−2)f(yi,t|yt−1)π(xi, yt−1, yi,t)[1− π(xi, yt−2, yt−1)]dyt−2dyt−1

f(xi, δi,t−1 = 0, δi,t = 1)
.

It follows that (4.5) in Lemma 4.1 holds.

Proof of Lemma 4.2

According to π(xi, yi,t−1, yi,t) = exp(η1xi+η2yi,t−1 +η3yi,t)/[1+exp(η1xi+
η2yi,t−1 + η3yi,t)] = 1/[1 + exp(−η1xi − η2yi,t−1 − η3yi,t)] and f(yi,t|yi,t−1) =
(2πσ2)−1/2 exp{−[yi,t − φ(yi,t−1 − µ)− µ]2/(2σ2)}, we have

∫
π(xi, yi,t−1, yt)f(yt|yi,t−1)dyt

(A10)

=
1√
2πσ

∫
1

1 + exp[−(η1xi + η2yi,t−1 + η3yt)]
exp

{
− [yt − φ(yi,t−1 − µ)− µ]2

2σ2

}
dyt .
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Let µ̃ = µ+ φ(yi,t−1 − µ) and c = exp[−(η1xi + η2yi,t−1 + η3µ̃)], we can obtain

∫
π(xi, yi,t−1, yt)f(yt|yi,t−1)dyt

(A11)

=
1√
2πσ

∫
1

1 + exp{−[η1xi + η2yi,t−1 + η3µ̃+ η3(yt − µ̃)]}
exp

[
− (yt − µ̃)2

2σ2
]
dyt

=
1√
2πσ

∫
1

1 + c · exp(−η3x)
exp

(
− x2

2σ2
)
dx

=
1√
2π

∫
1

1 + c · exp(βy)
exp

(
− y2

2

)
dy ,

where β = −η3σ.

When β > 0 and 0 < c · exp(βy) < 1, we have y < γ = − log c/β. Further,
we can write

∫
π(xi, yi,t−1, yt)f(yt|yi,t−1)dyt

(A12)

=
1√
2π

[ ∫ γ

−∞

1

1 + c · exp(βy)
exp

(
− y2

2

)
dy +

∫ ∞
γ

1

1 + c · exp(βy)
exp

(
− y2

2

)
dy
]

=
1√
2π

[ ∫ γ

−∞

∞∑
k=0

[−c · exp(βy)]k exp
(
− y2

2

)
dy

+
exp(β2/2)

c

∫ ∞
γ

∞∑
k=0

[−1/(c · exp(βy))]k exp
[
− (y + β)2

2

]
dy
]

=
1√
2π

[ ∫ γ

−∞

∞∑
k=0

(−c)k exp
(β2k2

2

)
exp

[
− (y − βk)2

2

]
dy

+
1

c

∫ ∞
γ

∞∑
k=0

(−1

c
)k exp

[β2(k + 1)2

2

]
exp

{
− [y + β(k + 1)]2

2

}
dy
]

=

∞∑
k=0

(−c)k exp(β2k2/2)Φ(γ − βk) +
1

c

∞∑
k=0

(−1

c
)k exp[β2(k + 1)2/2][1− Φ(γ + βk + β)] .

Similarly, when β < 0 and 0 < c · exp(βy) < 1, we have y > γ = − log c/β.
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Then we can obtain

∫
π(xi, yi,t−1, yt)f(yt|yi,t−1)dyt

(A13)

=
1√
2π

[ ∫ γ

−∞

1

1 + c · exp(βy)
exp

(
− y2

2

)
dy +

∫ ∞
γ

1

1 + c · exp(βy)
exp

(
− y2

2

)
dy
]

=
1√
2π

[ ∫ ∞
γ

∞∑
k=0

(−c)k exp
(β2k2

2

)
exp

[
− (y − βk)2

2

]
dy

+
1

c

∫ γ

−∞

∞∑
k=0

(−1

c
)k exp

[β2(k + 1)2

2

]
exp

{
− [y + β(k + 1)]2

2

}
dy
]

=

∞∑
k=0

(−c)k exp(β2k2/2)[1− Φ(γ − βk)] +
1

c

∞∑
k=0

(−1

c
)k exp[β2(k + 1)2/2]Φ(γ + βk + β) .

Specially, when β = 0, we get∫
π(xi, yi,t−1, yt)f(yt|yi,t−1)dyt(A14)

=
1√
2π

∫
1

1 + c
exp

(
− y2

2

)
dy =

1

1 + c
.

Thus, Lemma 4.2 holds.

Proof of Corollary 4.1

Note that the results in Lemma 4.2 can also be used to compute the integral∫
[1 + exp(−c0− c1yi,1)]−1f(yi,1)dyi,1 in (4.9). Similar to the proof of Lemma 4.2,

the integral
∫

[1 + exp(−c0 − c1yi,1)]−1f(yi,1)dyi,1 can be written as∫
[1 + exp(−c0 − c1yi,1)]−1f(yi,1)dyi,1(A15)

=

√
1− φ2√
2πσ

∫
1

1 + exp(−c0 − c1yi,1)
exp

{
− (1− φ2)(yi,1 − µ)2

2σ2

}
dyi,1 .

Let y =
√

1− φ2(yi,1 − µ)/σ, we have∫
[1 + exp(−c0 − c1yi,1)]−1f(yi,1)dyi,1(A16)

=
1√
2π

∫
1

1 + exp[−c0 − c1(σy/
√

1− φ2 + µ)])
exp

(
− y2

2

)
dy

=
1√
2π

∫
1

1 + c · exp(βy)
exp

(
− y2

2

)
dy ,

where c = exp(−c0 − c1µ) and β = −c1σ/
√

1− φ2. Thus, we can compute
the integral

∫
[1 + exp(−c0 − c1yi,1)]−1f(yi,1)dyi,1 by replacing c = exp[−(η1xi +

η2yi,t−1 + η3µ̃)] and β = −η3σ in Lemma 4.2 with c = exp(−c0 − c1µ) and

β = −c1σ/
√

1− φ2. It follows that Corollary 4.1 holds.
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Sampling Estimate
Naive Proposed Ignore Sampling Ignore Missingness

Bias SD Bias SD Bias SD Bias SD

µ̂ -0.0103 0.1129 -0.0001 0.0735 0.0186 0.0732 -0.0947 0.1712

Exponential φ̂ -0.0241 0.2032 -0.0093 0.1196 -0.0096 0.1139 -0.0256 0.2003
σ̂ -0.0232 0.0648 -0.0032 0.0507 -0.0003 0.0521 -0.0355 0.0638

Missing η̂1 -0.0135 0.0592 -0.0103 0.0636
46.28% η̂2 0.0425 0.0548 0.0461 0.0527

η̂3 0.0206 0.0526 0.0131 0.0559
â1 0.0203 0.0657 0.4578 1.0580

ER(SD) 0.2134(0.1176) 0.1147(0.0958) 0.1147(0.0912) 0.2529(0.1425)

Probit µ̂ -0.7105 14.8879 0.0011 0.0743 0.0035 0.0777 -0.0919 0.2255

φ̂ -0.0420 0.4807 -0.0163 0.1061 -0.0170 0.1226 -0.0029 0.2371
Missing σ̂ -0.0184 0.1993 -0.0043 0.0500 -0.0051 0.0505 -0.0190 0.0725
46.76% η̂1 -0.0092 0.0504 -0.0061 0.0616

η̂2 0.0337 0.0462 0.0475 0.0645
η̂3 0.0179 0.0452 0.0260 0.0509

b̂0 0.0210 0.0517 8.3838 135.7257

b̂1 0.0176 0.0485 5.4545 114.8679
ER(SD) 0.9055(14.8865) 0.1061(0.0910) 0.1175(0.1007) 0.2855(0.1988)

Logistic µ̂ -0.0412 0.1105 -0.0021 0.0492 0.0032 0.0764 -0.0625 0.1091

φ̂ -0.0361 0.2065 0.0113 0.0460 -0.0150 0.1152 0.0188 0.0801
Missing σ̂ -0.0300 0.0612 0.0015 0.0425 -0.0033 0.0510 -0.0118 0.0555
46.55% η̂1 -0.0055 0.0323 -0.0048 0.0600

η̂2 0.0134 0.0252 0.0454 0.0536
η̂3 0.0061 0.0217 0.0228 0.0561
ĉ0 0.0190 0.0241 0.0478 0.0497
ĉ1 0.0289 0.0223 0.0656 0.0569

ER(SD) 0.2183(0.1213) 0.0631(0.0499) 0.1145(0.0938) 0.1335(0.0892)

Noninform µ̂ -0.0404 0.1103 0.0032 0.0779

φ̂ -0.0411 0.2348 -0.0230 0.1312
Missing σ̂ -0.0258 0.0660 -0.0029 0.0516
46.29% η̂1 -0.0052 0.0645

η̂2 0.0516 0.0721
η̂3 0.0213 0.0680

ER(SD) 0.2327(0.1463) 0.1249(0.1042)

Table 1: Monte Carlo biases, standard deviations and estimation errors of the
point estimators under n = 10 and T = 10.
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Sampling Estimate
Naive Proposed Ignore Sampling Ignore Missingness

Bias SD Bias SD Bias SD Bias SD

µ̂ -0.0374 0.0625 0.0043 0.0439 0.0140 0.0395 -0.0904 0.0735

Exponential φ̂ -0.0069 0.0976 -0.0139 0.0710 -0.0115 0.0671 -0.0077 0.0963
σ̂ -0.0053 0.0332 0.0039 0.0269 0.0048 0.0261 -0.0113 0.0331

Missing η̂1 -0.0322 0.0507 -0.0319 0.0507
49.36% η̂2 0.0533 0.1096 0.0541 0.0399

η̂3 0.0117 0.1068 0.0162 0.0381
â1 0.0263 0.0452 0.3980 0.5521

ER(SD) 0.1148(0.0529) 0.0669(0.0585) 0.0701(0.0467) 0.1419(0.0629)

Probit µ̂ -0.0612 0.0629 0.0008 0.0381 0.0004 0.0400 -0.0880 0.0806

φ̂ -0.0020 0.0977 -0.0116 0.0621 -0.0063 0.0658 0.0061 0.1022
Missing σ̂ -0.0082 0.0341 0.0037 0.0262 0.0035 0.0273 -0.0052 0.0365
49.40% η̂1 -0.0337 0.0508 -0.0308 0.0543

η̂2 0.0422 0.0319 0.0553 0.0406
η̂3 0.0157 0.0335 0.0232 0.0386

b̂0 0.0218 0.0311 -1.4934 14.4169

b̂1 0.0197 0.0358 10.9502 95.3024
ER(SD) 0.1233(0.0571) 0.0636(0.0457) 0.0675(0.0465) 0.1472(0.0662)

Logistic µ̂ -0.0570 0.0617 -0.0010 0.0288 0.0036 0.0395 -0.0661 0.0638

φ̂ -0.0035 0.1012 0.0095 0.0331 -0.0083 0.0688 0.0170 0.0585
Missing σ̂ -0.0074 0.0329 0.0056 0.0209 0.0031 0.0251 0.0001 0.0301
49.27% η̂1 -0.0190 0.0322 -0.0285 0.0489

η̂2 0.0178 0.0198 0.0555 0.0426
η̂3 0.0095 0.0215 0.0199 0.0366
ĉ0 0.0193 0.0191 0.0438 0.0394
ĉ1 0.0308 0.0191 0.0601 0.0382

ER(SD) 0.1222(0.0592) 0.0433(0.0246) 0.0677(0.0491) 0.0984(0.0579)

Noninform µ̂ -0.0699 0.0622 0.0014 0.0423

φ̂ 0.0012 0.0985 0.0002 0.0641
Missing σ̂ -0.0093 0.0331 0.0020 0.0258
49.39% η̂1 -0.0391 0.0540

η̂2 0.0575 0.0398
η̂3 0.0216 0.0393

ER(SD) 0.1253(0.0625) 0.0681(0.0438)

Table 2: Monte Carlo biases, standard deviations and estimation errors of the
point estimators under n = 20 and T = 20.
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Sampling Estimate
Naive Proposed Ignore Sampling Ignore Missingness

Bias SD Bias SD Bias SD Bias SD

µ̂ -0.0614 0.0342 0.0014 0.0297 0.0078 0.0282 -0.0890 0.0377

Exponential φ̂ 0.0012 0.0504 -0.0097 0.0677 -0.0090 0.0613 0.0023 0.0504
σ̂ -0.0040 0.0194 0.0039 0.0160 0.0051 0.0175 -0.0066 0.0190

Missing η̂1 -0.0746 0.0666 -0.0745 0.0660
50.69% η̂2 0.0891 0.1987 0.1009 0.1384

η̂3 -0.0025 0.1928 -0.0081 0.1423
â1 0.0344 0.0425 0.3001 0.3354

ER(SD) 0.0828(0.0318) 0.0462(0.0608) 0.0485(0.0517) 0.1048(0.0360)

Probit µ̂ -0.0742 0.0316 0.00081 0.0224 0.0027 0.0346 -0.0904 0.0390

φ̂ 0.0002 0.0474 -0.0085 0.0373 -0.0107 0.0813 0.0045 0.0503
Missing σ̂ -0.0051 0.0180 0.0043 0.0151 0.0052 0.0206 -0.0038 0.0189
50.67% η̂1 -0.0788 0.0548 -0.0769 0.0784

η̂2 0.0663 0.0372 0.1129 0.2268
η̂3 0.0098 0.0325 -0.0103 0.2049

b̂0 0.0301 0.0282 -0.7884 7.4087

b̂1 0.0261 0.0303 5.5026 38.9418
ER(SD) 0.0905(0.0302) 0.0394(0.0256) 0.0501(0.0765) 0.1059(0.0372)

Logistic µ̂ -0.0716 0.0344 -0.0029 0.0190 0.0029 0.0332 -0.0693 0.0358

φ̂ 0.0061 0.0496 0.0094 0.0298 -0.0073 0.0741 0.0191 0.0392
Missing σ̂ -0.0040 0.0166 0.0070 0.0112 0.0062 0.0173 -0.0004 0.0160
50.58% η̂1 -0.0389 0.0391 -0.0704 0.0632

η̂2 0.0278 0.0179 0.1123 0.2690
η̂3 0.0080 0.0243 -0.0142 0.2514
ĉ0 0.0245 0.0175 0.0494 0.0320
ĉ1 0.0357 0.0170 0.0524 0.0323

ER(SD) 0.0892(0.0337) 0.0340(0.0190) 0.0481(0.0684) 0.0830(0.0368)

Noninform µ̂ -0.0754 0.0347 0.0013 0.0256

φ̂ 0.0004 0.0477 -0.0079 0.0465
Missing σ̂ -0.0043 0.0169 0.0049 0.0160
50.56% η̂1 -0.0725 0.0551

η̂2 0.0939 0.0724
η̂3 0.0049 0.0746

ER(SD) 0.0915(0.0331) 0.0451(0.0335)

Table 3: Monte Carlo biases, standard deviations and estimation errors of the
point estimators under n = 40 and T = 40.

Sampling Estimate
Treatment 1 Treatment 2 Treatment 3 Treatment 4

Bias SD Bias SD Bias SD Bias SD

AR(1) Model Mean Model AR(1) Model Mean Model AR(1) Model Mean Model AR(1) Model Mean Model

Exponential µ̂ 2.5268 2.7442 2.6766 2.7326 2.6609 2.7989 2.8167 2.8772

φ̂ 0.7124 0.6561 0.7228 0.7730
σ̂ 0.7076 0.9504 0.7618 1.0893 0.7739 1.1018 0.7203 1.1377

MSE 0.5539 0.6781 0.5848 0.8760 0.7674 1.0883 0.9008 1.3400

Probit µ̂ 2.9169 2.7406 2.8934 2.8550 2.8528 2.9042 2.9490 3.1211

φ̂ 0.6963 0.7092 0.7470 0.7591
σ̂ 0.7202 0.9300 0.7641 1.0827 0.7526 1.1261 0.7392 1.1644

MSE 0.5265 0.6784 0.5761 0.8511 0.7504 1.0439 0.8805 1.2657

Logistic µ̂ 2.6969 2.7452 2.9060 2.7831 2.8900 2.7952 2.9263 2.9543

φ̂ 0.6276 0.6951 0.7671 0.7809
σ̂ 0.7544 0.9577 0.7740 1.0982 0.7597 1.1136 0.7288 1.1028

MSE 0.5182 0.6780 0.5717 0.8621 0.7538 1.0903 0.8903 1.3036

Table 4: Estimates for the AIDS clinical trial group 193A study data under
nonignorable missingness.
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Sampling Estimate
Treatment 1 Treatment 2 Treatment 3 Treatment 4

Bias SD Bias SD Bias SD Bias SD

AR(1) Model Mean Model AR(1) Model Mean Model AR(1) Model Mean Model AR(1) Model Mean Model

Exponential µ̂ 2.5349 2.6818 2.6518 2.7504 2.7867 2.9202 3.1894 3.0855

φ̂ 0.6718 0.6961 0.7288 0.7639
σ̂ 0.7002 0.9481 0.7563 1.0625 0.7701 1.1311 0.7490 1.1440

MSE 0.5428 0.6880 0.5938 0.8705 0.7523 1.0391 0.8573 1.2691

Probit µ̂ 2.7210 2.7339 2.7974 2.7847 2.8407 2.8982 3.2598 3.1054

φ̂ 0.6775 0.6994 0.7286 0.7692
σ̂ 0.7065 0.9519 0.7614 1.0698 0.7728 1.1334 0.7365 1.1449

MSE 0.5289 0.6792 0.5806 0.8617 0.7461 1.0458 0.8535 1.2669

Logistic µ̂ 2.8759 2.7102 2.8401 2.7172 2.7586 2.9382 2.8827 2.9391

φ̂ 0.6661 0.7182 0.7373 0.7777
σ̂ 0.7525 0.9815 0.7634 1.0796 0.7772 1.0921 0.7411 1.1267

MSE 0.5184 0.6825 0.5822 0.8812 0.7579 1.0343 0.8941 1.3098

Table 5: Estimates for the AIDS clinical trial group 193A study data under
ignorable missingness.
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