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Abstract:

� A three-parameter lifetime distribution is proposed, named extended Chen-Poisson
distribution, by compounding the Chen and zero-truncated Poisson distributions. The
new distribution belongs to the unified Poisson family, where both distributions of the
minimum and maximum are merged into one. Several properties of the distribution
are studied. The proposed distribution is quite flexible since it accommodates different
complex hazard shapes. Inference is based on the maximum likelihood method in the
presence of a right-censoring mechanism. A simulation study is performed to evaluate
the properties of the parameters estimators. Two real lifetime data sets are analysed
for purposes of comparison with other generalizations of the Chen distribution, as
well as with other members of the unified Poisson family. The obtained results allow
to highlight the potential of the new distribution.
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1. INTRODUCTION

In recent years, several researchers have proposed many generalizations
of classical distributions by adding further parameters. Generally, the aim be-
hind such generalized distributions is to improve goodness-of-fit. For instance,
the choice for modelling a monotonic hazard function (hf) usually falls on the
exponential, Weibull, gamma or others generalized exponential distributions.
However, for complex phenomena in survival and reliability studies, the haz-
ard behaviour is almost certainly not monotonic. Therefore, in a situation of
non-monotonic hf, such as bathtub-shaped or unimodal, the aforementioned dis-
tributions are unreasonable or even unrealistic. These limitations have naturally
increased the interest in developing new extensions or generalizations of the more
traditional distributions.

In the current literature, the methods for generating new distributions can
be divided into two main approaches. The first one consists in the introduc-
tion of shape parameter(s) in the baseline distribution to explore tail properties.
Some well-known techniques are: Lehman alternatives (also known as exponen-
tiated), Marshall-Olkin, Kumaraswamy, transmuted, among others. The second
approach concerns compounding a baseline continuous lifetime distribution with
a discrete distribution, namely Poisson, geometric, negative-binomial or logarith-
mic. One of the reasons for developing compounding distributions is that the
lifetime of a system constituted by Z (discrete random variable) components
can be characterized by the distribution of the minimum or maximum of the
lifetimes of its components (non-negative continuous random variables), depend-
ing on whether they form a series or a parallel system, respectively. A detailed
and comprehensive survey of the existing methods are presented in Tahir and
Cordeiro [30], which also proposed some new distributions.

An interesting two-parameter lifetime distribution that exhibits an increas-
ing or a bathtub-shaped hf was proposed by Chen [11]. Some merits of this
distribution are related with the exact confidence intervals and exact joint con-
fidence region for the parameters. Over the years, several generalizations of
this distribution have been developed. One of the first extensions, named XTG
distribution, was introduced by Xie et al. [34] by adding the lacking scale param-
eter. Although the resulting model provided a better fit to the analysed data,
the variety of shapes of the hf was not enriched. Other researchers have pro-
posed models with an increased number of alternative hazard shapes. The family
of distributions given by Lehman alternatives was considered by Chaubey and
Zang [10] and Sarhan and Apaloo [29], who obtained the exponentiated Chen
and exponentiated XTG distributions, respectively. Nadarajah et al. [23] derived
general properties of the Kumaraswamy family of distributions and illustrated
the new results obtaining the Kumaraswamy versions of the Chen and XTG dis-
tributions. The Marshall-Olkin technique was applied by Alawadhi et al. [2] in
order to develop the Marshall-Olkin Chen distribution. The Chen-geometric and
Marshall-Olkin Chen distributions can be seen as similar models with the same
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number of parameters, but the parameter space of the former model takes a more
limited range of values. Cordeiro et al. [13] proposed a new family of lifetime dis-
tributions compounding a given class of generalized Weibull distributions with the
geometric distribution. Since the Chen and XTG distributions were shown to be
members of such class of models, these authors described the Chen-geometric and
XTG-geometric distributions as particular cases. Another compounding distri-
bution was proposed by Pappas et al. [24], who studied the Chen-logarithmic dis-
tribution and also extended the parameter space of the logarithmic distribution
to R+\{0}. The transmuted Chen distribution has already been developed and
was reported in Tahir and Cordeiro [30]. For other recent generalized versions of
the Chen distribution, the reader is referred to [3, 7, 31].

In the light of the above context, the aim of this paper is to propose a
new flexible generalization of the Chen distribution [11] by compounding it with
the zero-truncated Poisson (ZTP) distribution. The remainder of the paper is
organized as follows. In Section 2, a brief review on the unified Poisson family
of distributions discussed by Ramos et al. [26] is presented. Section 3 begins
with the definition of the new lifetime distribution, followed by the study of its
properties, including the shapes of the probability density function (pdf) and hf
in Subsection 3.1, as well as the quantiles, moment generating function and mean
residual life function in Subsection 3.2. In Subsection 3.3, the maximum likeli-
hood (ML) method is applied in the presence of a right-censoring mechanism and
the estimators performance is evaluated by a simulation study in Subsection 3.4.
In Subsections 3.5 and 3.6, the usefulness of the new distribution is illustrated
in two real data applications with uncensored and censored observations. Some
final remarks are presented in Section 4.

2. THE UNIFIED POISSON FAMILY OF DISTRIBUTIONS:
A BRIEF REVIEW

The new distribution arises on competitive and complementary risks (CCR)
scenarios, wherein it is only possible to observe the minimum/maximum lifetime
among all causes instead of observing the lifetime associated with a particular
cause [5]. In these settings, a difficulty emerges if the causes are latent in the sense
that there is no information about which cause was responsible for the occurrence
of the event. On many situations, it is impossible to specify the true cause, even
by an expert, because it is somehow masked. For instance, in the biomedical
sciences the interest is often to study the time until death, which can occur due
to several competing causes such as respiratory infection, cardiac arrest, stroke,
cancer, diabetes, among others. This triggers a competitive risks problem (time-
to-event of a series system) due to the fact that it is only possible to observe the
minimum lifetime among all causes. In an opposite example, suppose that the
death of a patient with a given infection is due to multiple organ failures such as
in lungs, kidneys and liver. This is now a complementary risks problem (time-
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to-event of a parallel system) since only the maximum lifetime among all causes
is observed. As mentioned by Basu and Klein [6], since a complementary risks
problem is the dual of a competitive risks problem, in general it is sufficient to
establish the results in terms of the distribution of the minimum or the maximum,
although there are some situations where the distribution of the maximum is
simpler to handle analytically.

Recently, Ramos et al. [26] showed that both distributions of the minimum
and the maximum can be unified in a simple form using a latent variable with
ZTP distribution. Let X1, . . . , XZ be the times to event associated with each
cause and Z a random variable with ZTP distribution, with probability mass
function P (Z = z;φ) = φz

(
z!(eφ − 1)

)−1
, z ∈ N, φ ∈ R+. Assume that the ran-

dom variables X’s and Z are independent and that X1, . . . , XZ are independent
and identically distributed according to a continuous lifetime distribution with a
generic baseline cumulative distribution function (cdf) F0(x;θ), indexed by the
parameters vector θ.

Defining Y = min{X1, . . . , XZ} in a competitive risks problem, the condi-
tional cdf of Y given that Z = z is

F (y|z;θ) = 1− P (Y > y|Z = z;θ) = 1−
[
1− F0(y;θ)

]z
, y > 0.

Then, the marginal cdf of Y is

(2.1) F (y;θ, φ) =

∞∑
z=1

φz

z!(eφ − 1)

(
1−
[
1−F0(y;θ)

]z)
=

1− e−φF0(y;θ)

1− e−φ
, φ > 0.

On the other hand, defining T = max{X1, . . . , XZ} in a complementary risks
problem, the conditional cdf of T given that Z = z is

F (t|z;θ) = P (T ≤ t|Z = z;θ) =
[
F0(t;θ)

]z
, t > 0.

Consequently, the marginal cdf of T is

(2.2) F (t;θ, φ) =

∞∑
z=1

φz

z!(eφ − 1)

[
F0(t;θ)

]z
=

1− eφF0(t;θ)

1− eφ
, φ > 0.

Thus, the distribution obtained from (2.2) belongs to the same family of distri-
butions presented in (2.1) if it is assumed that φ takes negative values. So, when
the latent variable has a ZTP distribution, the distributions of the minimum and
the maximum can be merged into one, giving rise to the unified Poisson family
of distributions.

Thereafter, assume that T has a distribution from the unified Poisson fam-
ily, wherein the parameter space is extended to R\{0}. Since the cdf of T is still
defined by (2.2), the parameter φ of this family of models has a particular inter-
pretation in CCR problems. When φ < 0 (φ > 0), T represents the minimum
(maximum) lifetime among all causes.
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A large number of compounded ZTP distributions has already been pro-
posed considering separately the minimum or maximum, as reviewed by Tahir
and Cordeiro [30]. Following the unified approach, some of these distributions
can be merged or even extended. For instance, Ramos et al. [26] considered the
extended Weibull-Poisson (EWP) distribution [16, 19] (that was initially derived
only by taking the minimum) and showed that the exponential-Poisson [18] and
Poisson-exponential [9] distributions (that were derived by taking the minimum
and maximum, respectively) can be unified into a single distribution, named ex-
tended exponential-Poisson (EEP) distribution.

3. A NEW LIFETIME DISTRIBUTION

Let X be a random variable following a Chen distribution [11] with cdf and
hf given by

(3.1) F0(x;λ, γ) = 1− eλ
(
1−exγ

)
, x > 0

and

(3.2) h0(x;λ, γ) = λγxγ−1ex
γ
, x > 0,

respectively, where λ, γ > 0. Since h′0(x;λ, γ) = [γ(xγ + 1) − 1]h0(x;λ, γ)x−1,
only the parameter γ affects the shape of the hf, which is: i) bathtub-shaped for
γ < 1 (decreasing for 0 < x ≤ (1/γ − 1)1/γ and increasing for x > (1/γ − 1)1/γ);
and ii) monotonically increasing for γ ≥ 1.

By substituting (3.1) in the unified Poisson family of distributions (2.2), a
new generalization of the Chen distribution arises with cdf given by

(3.3) F (t;λ, γ, φ) =
1− eφ

[
1−eλ

(
1−et

γ
)]

1− eφ
, t > 0,

where λ, γ > 0 and φ ∈ R\{0} are the parameters of the distribution. The
corresponding pdf is

(3.4) f(t;λ, γ, φ) =
λγφtγ−1

1− e−φ
et
γ+λ
(
1−etγ

)
−φeλ

(
1−et

γ
)
, t > 0.

Hereafter, the distribution of T will be referred to as extended Chen-Poisson
(ECP) distribution, which is a customary name for distributions belonging to the
unified Poisson family. In fact, this distribution unifies both the minimum (φ < 0)
and the maximum (φ > 0) distributions, which correspond to the Chen-Poisson
and Poisson-Chen distributions, respectively.
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The survival function (sf) and hf of the ECP distribution are defined, re-
spectively, as follows

S(t;λ, γ, φ) =
1− e−φe

λ

(
1−et

γ
)

1− e−φ
, t > 0

and

(3.5) h(t;λ, γ, φ) =
λγφtγ−1et

γ+λ
(
1−etγ

)
eφe

λ

(
1−et

γ
)
− 1

, t > 0.

3.1. Shapes of the probability density function and hazard function

The pdf (3.4) and hf (3.5) for some combinations of parameters values are
depicted in Figures 1 and 2, respectively. It is challenging to study analytically
the theoretical behaviour of these functions due to their complex expressions. In
addition, the monotonicity study is hampered by the fact that all three parame-
ters, λ, γ and φ, affect both the density and hazard shapes.

Based on the analytical analysis of the pdf, and as illustrated on the
graphical representation in Figure 1, the density shape can be: (a) monotonic
decreasing; (b)-(c) unimodal; or (d) decreasing-increasing-decreasing (DID). In
what concerns the hazard shape, Figure 2 suggests that it can be: (a) monotonic
increasing; (b) monotonic decreasing; (c) unimodal; (d) bathtub; (e) increasing-
decreasing-increasing (IDI); or (f) decreasing-increasing-decreasing-increasing
(DIDI). Accordingly, the ECP distribution is shown to be quite flexible. Nonethe-
less, some care is needed as the monotonicity study of the hf should not be solely
based on graphical analysis. Since limt→∞ h(t;λ, γ, φ) = ∞, for all λ, γ > 0 and
φ ∈ R\{0}, the hf is ultimately increasing, so a pure monotonic decreasing or
unimodal shape is impossible. However, it was verified that when γ takes values
close to zero the hf takes a long time to increase. In such cases it is usual to
admit that, from the practical point of view, the hf has a generally decreasing
right tail.

Proposition 3.1. The Chen distribution is a limiting case of the ECP
distribution, since when φ approaches 0 it follows that

lim
φ→0

h(t;λ, γ, φ) = λγtγ−1et
γ
,

which is the hf (3.2) of the Chen distribution.
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Proposition 3.2. The limiting behaviour of the pdf (3.4) and hf (3.5)
of the ECP distribution is

(i) lim
t→0+

f(t;λ, γ, φ) = lim
t→0+

h(t;λ, γ, φ) =


∞, 0 < γ < 1

λφ

eφ − 1
, γ = 1

0, γ > 1

,

∀λ > 0 and φ ∈ R\{0};

(ii) lim
t→∞

f(t;λ, γ, φ) = 0 and lim
t→∞

h(t;λ, γ, φ) =∞, ∀λ, γ > 0 and φ ∈ R\{0}.
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Figure 1: Probability density functions of the ECP distribution for differ-
ent combinations of parameters values.
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Figure 2: Hazard functions of the ECP distribution for different combina-
tions of parameters values.
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Proposition 3.3. The theoretical behaviour of the pdf (3.4) of the ECP
distribution may be characterized separately for the minimum (φ < 0) and max-
imum (φ > 0) distributions, as summarized in the following statements.

(i) Distribution of the minimum:

� For φ < 0, 0 < γ ≤ 1 and λ ≥ (1− φ)−1, the pdf is monotonically
decreasing;

� For φ < 0, γ = 1 and 0 < λ < (1− φ)−1, the pdf is unimodal;

� For φ < 0, 0 < γ < 1 and 0 < λ < (1 − φ)−1, the pdf is
monotonically decreasing or DID;

� For φ < 0, γ > 1 and λ > 0, the pdf is unimodal;

(ii) Distribution of the maximum:

� For 0 < φ ≤ 1−λ−1, 0 < γ ≤ 1 and λ > 1, the pdf is monotonically
decreasing;

� For φ > 1− λ−1, γ = 1 and λ > 1, the pdf is unimodal;

� For φ > 1 − λ−1, 0 < γ < 1 and λ > 1, the pdf is monotonically
decreasing or DID;

� For φ > 0, γ > 1 and λ > 1, the pdf is unimodal;

� For φ > 0, γ ≥ 1 and 0 < λ ≤ 1, the pdf is unimodal;

� For φ > 0, 0 < γ < 1 and 0 < λ ≤ 1, the pdf is monotonically
decreasing or DID.

The proofs of Propositions 3.1 and 3.2 are straightforward and, therefore, are
omitted. The proof of Proposition 3.3 is given in supplementary material file.

3.2. Quantiles, moments and mean residual life function

Some of the most important characteristics of a distribution, such as disper-
sion, skewness and kurtosis, can be studied through its quantiles and moments.
By inverting the cdf (3.3), the quantile function of the ECP distribution is given
by

(3.6) Q(u;λ, γ, φ) =

{
log

[
1− λ−1 log

(
1− φ−1 log

(
(eφ − 1)u+ 1

))]}1/γ

,

for 0 < u < 1. This expression can be used for simulating pseudo-random values
of T ∼ ECP(λ, γ, φ), considering that
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(3.7) T =

{
log

[
1− λ−1 log

(
1− φ−1 log

(
(eφ − 1)U + 1

))]}1/γ

,

where U is a uniformly distributed random variable on (0, 1) interval.

The moment generating function of T can be defined as

MT (w) = E(ewT ) = φ(1− e−φ)−1
∫ 1

0
exp

{
w

[
log

(
1−λ−1 log(v)

)]1/γ
−φv

}
dv,

by making the change of variable v = eλ
(
1−etγ

)
. Then, the rth raw moment of T

is given by

E(T r) = φ(1− e−φ)−1
∫ 1

0
e−φv

[
log

(
1− λ−1 log(v)

)]r/γ
dv, r = 1, 2, . . . .

In particular, the mean and variance of ECP distribution are, respectively, given
by

E(T ) = φ(1− e−φ)−1
∫ 1

0
e−φv

[
log

(
1− λ−1 log(v)

)]1/γ
dv,

and

Var(T ) = φ(1− e−φ)−1
∫ 1

0
e−φv

[
log

(
1− λ−1 log(v)

)]2/γ
dv − [E(T )]2.

The mean residual life function, as well as the hf, plays an important role
in survival analysis for characterizing lifetime. While the latter represents the
instantaneous event rate, the former summarizes the entire residual lifetime. The
mean residual life function, mrl(t;λ, γ, φ) = E(T − t|T ≥ t), of the ECP distri-
bution is given by

mrl(t;λ, γ, φ) = φ(1− e−φA)−1
∫ A

0
e−φv

[
log

(
1− λ−1 log(v)

)]1/γ
dv − t,

with A = eλ
(
1−etγ

)
.

The moments have no closed-form expressions and so they can only be ob-
tained using numerical integration. Therefore, the classical measures of skewness
and kurtosis based on moments are intractable. In this case, quantile-based mea-
sures are often considered, namely the Bowley skewness and Moors kurtosis that
are given, respectively, by B = [Q(3/4) − 2Q(1/2) + Q(1/4)]/[Q(3/4) −Q(1/4)]
and M = [Q(7/8) − Q(5/8) − Q(3/8) + Q(1/8)]/[Q(3/4) − Q(1/4)], where Q(·)
comes from (3.6). These measures exist even for distributions without finite
moments and are less sensitive to outliers.
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3.3. Statistical inference

For statistical inference, the ML method is usually preferred due to the
attractive properties of the resulting estimators, such as consistency, asymptotic
efficiency, invariance property and asymptotic normality. Therefore, the ML
method to estimate the three unknown parameters of the ECP distribution for
the general case of right-censored time-to-event data is presented.

Let T̃i = min{Ti, Ci}, i = 1, . . . , n, where Ti is the lifetime of ith sub-
ject, following a ECP distribution, and Ci is the censoring time, assumed to
have a distribution that does not depend on the parameters of Ti. Moreover,
it is assumed that Ti and Ci are independent. So, the censoring mechanism is
non-informative. The censoring indicator is defined as δi = I(Ti ≤ Ci), tak-
ing the value 1 if Ti is a time-to-event and 0 if it is right-censored. Consider-
ing a random sample of n pairs, (t1, δ1), . . . , (tn, δn), the log-likelihood function
` = logL(λ, γ, φ) is given by

` =
n∑
i=1

{
δi log f(ti;λ, γ, φ) + (1− δi) logS(ti;λ, γ, φ)

}
= n log

(
φ

1− e−φ

)
+m

(
λ+ log(λγ)

)
+ (γ − 1)

n∑
i=1

δi log(ti) +
n∑
i=1

δit
γ
i(3.8)

−λ
n∑
i=1

δie
tγi +

n∑
i=1

(1− δi) log

(
1− e−φe

λ

(
1−e

t
γ
i

)
φ

)
− φ

n∑
i=1

δie
λ
(
1−et

γ
i

)
where m =

∑n
i=1 δi is the observed number of events. Some care must be taken

when φ < 0, since the values of log(φ) cannot be computed. This problem is
easily overcome by considering the fact that log

(
φ/(1− e−φ)

)
∈ R, ∀φ ∈ R\{0},

and log
(
(1− exp{−φeλ

(
1−et

γ
i

)
})/φ

)
∈ R, ∀λ, γ > 0 and φ ∈ R\{0}.

The first-order partial derivatives of the log-likelihood function with respect
to each of the three parameters are

∂`

∂λ
= m

(
1 +

1

λ

)
−

n∑
i=1

δie
tγi −

n∑
i=1

(1− δi)
φ
(
1− et

γ
i

)
eλ
(
1−et

γ
i

)
1− eφe

λ

(
1−e

t
γ
i

)
−φ

n∑
i=1

δi
(
1− et

γ
i
)
eλ
(
1−et

γ
i

)
,

∂`

∂γ
=

m

γ
+

n∑
i=1

δi log
(
ti
)

+
n∑
i=1

δit
γ
i log

(
ti
)
− λ

n∑
i=1

δit
γ
i log

(
ti
)
et
γ
i

+λφ
n∑
i=1

(1− δi)
tγi log

(
ti
)
et
γ
i +λ
(
1−et

γ
i

)
1− eφe

λ

(
1−e

t
γ
i

) + λφ
n∑
i=1

δit
γ
i log

(
ti
)
et
γ
i +λ
(
1−et

γ
i

)
,
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∂`

∂φ
= n

(
1

φ
+

1

1− eφ

)
− 1

φ

n∑
i=1

(1− δi)
1 + φeλ

(
1−et

γ
i

)
− eφe

λ

(
1−e

t
γ
i

)
1− ee

λ

(
1−e

t
γ
i

)
−

n∑
i=1

δie
λ
(
1−et

γ
i

)
.

The ML estimates are determined by setting these partial derivatives equal to
zero, obtaining a nonlinear system of equations that can only be solved using a
numerical optimization method such as Newton–Raphson or Broyden–Fletcher–
Goldfarb–Shanno (BFGS).

Under mild regularity conditions, the ML estimators of λ, γ and φ have an
asymptotic multivariate normal distribution given by

(λ̂, γ̂, φ̂)
a∼ N

[
(λ, γ, φ), I−1(λ, γ, φ)

]
, as n −→∞,

where the observed information matrix, I(λ, γ, φ), is defined as

I(λ, γ, φ) = −



∂2`

∂λ2
,

∂2`

∂λ∂γ
,
∂2`

∂λ∂φ

∂2`

∂γ∂λ
,
∂2`

∂γ2
,

∂2`

∂γ∂φ

∂2`

∂φ∂λ
,
∂2`

∂φ∂γ
,
∂2`

∂φ2


.

The mathematical expressions of the elements of I(λ, γ, φ) are given in supple-
mentary material file.

For interval estimation and hypothesis testing, let V̂ar(λ̂), V̂ar(γ̂) and

V̂ar(φ̂) denote the estimates of the main diagonal elements of the inverse of the
observed information matrix, evaluated at the ML estimates of the parameters.
The large-sample (1− α)100% confidence intervals (CI) for λ, γ and φ are

λ̂± zα/2
√

V̂ar(λ̂), γ̂ ± zα/2
√

V̂ar(γ̂) and φ̂± zα/2
√

V̂ar(φ̂),

respectively, where zα/2 is the upper α/2 quantile of the standard normal distri-
bution.

For computational implementation, the optim function available in R [25]
statistical software (version 4.1.0) was used for direct maximization of the log-
likelihood function (3.8).



The extended Chen-Poisson lifetime distribution 13

3.4. Simulation study

In order to investigate the performance of ML estimators of the three pa-
rameters of the ECP distribution and to evaluate the accuracy of the resulting
estimates, a simulation study was conducted through R [25] statistical software.
In such simulation, the following steps were followed:

1. specification of the parameters values (λ, γ, φ) = (0.2, 1.5, 3.0), (1.3, 0.2,
-2.0), (3.0, 0.3, 20.0) and (0.6, 0.6, -3.5). These sets of parameters values
were selected in order to yield increasing, decreasing, unimodal and bathtub
shapes of the hazard function, respectively, as shown in Figure 2;

2. specification of the sample size n = 20, 50, 100, 500 and 1000;

3. generation of a pseudo-random sample from (3.7), in the presence of random
censoring (that has the types I and II of censoring mechanisms as special
cases). Here, it is assumed that the event times follow an ECP distribu-
tion and the censoring times are uniformly distributed. The percentage of
pseudo-random censoring is specified as 0%, 10% and 30%, following the
procedures discussed in [27];

4. computation of the ML estimates of the three parameters using the BFGS
method and evaluation of the elements of the inverse of the observed infor-
mation matrix at the ML estimates;

5. repetition of the steps 1 to 4, N = 1000 times;

6. calculation of the average of the N ML estimates and their standard errors;

7. calculation of the bias, mean squared error (MSE) and coverage probabil-
ity (CP) of the 95% CI for each parameter. The bias and MSE associated
with the ML estimates of the parameter ϑ are, respectively, given by

Biasϑ =
1

N

N∑
l=1

(
ϑ̂l − ϑ

)
and MSEϑ =

1

N

N∑
l=1

(
ϑ̂l − ϑ

)2
,

where ϑ̂l is the ML estimate obtained from the lth sample, l = 1, . . . , N ,
and ϑ = (λ, γ, φ)′. The CP is the proportion of the N generated 95% CIs
that include the real value of the parameter.

The results obtained from the simulation study are presented in Table 1.
For samples generated with 0% of censoring, it is observed that the averages of
the ML estimates of λ, γ and φ tend to the true value of the parameter as the
sample size increases, as well as their standard errors tend to zero. Both the
bias and MSE are smaller for larger sample sizes, reflecting that the ML esti-
mators are asymptotically unbiased. Besides, the CP tends to be closer to the
nominal level of 95%. However, it appears that φ has higher values for bias and
MSE in comparison to the remaining parameters. This aspect is more visible for
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the set of parameters values corresponding to a unimodal hazard shape, but then
it vanishes for large sample sizes and does not compromise the estimation of
λ and γ.

In general, these results suggest that the estimation of parameters was
performed consistently. Similar results were obtained for samples generated with
10% and 30%, despite the bias and MSE of all three parameters having slightly
higher values. Although it is not shown here, the results were similar to the ones
obtained for other choices of parameter values.

The programming codes of the simulation study, developed in R, are avail-
able in supplementary material file. Further research may be carried out to assess
and explore other potential estimation procedures for the parameters of the ECP
distribution, such as least-square estimators, minimum distance estimators, per-
centile based estimators, among others (see, for example, Dey et al. [14]).

3.5. Application to uncensored data: guinea pigs

In this section, the ECP distribution is applied to the (uncensored) guinea
pigs data set reported by Bjerkedal [8]. The data represent the survival times,
in days, of 72 guinea pigs infected with virulent tubercle bacilli. Dey et al. [15]
analysed a transformed version of the original data (divided by 100), which is
also considered in this work. Moreover, the adequacy of the ECP distribution is
assessed in comparison with some other generalizations of the Chen distribution.
Those models are listed in Table 2.

Table 2: List of distributions fitted to the guinea pigs data.

jth Model, [ref.] Probability density function, f(t), t > 0

1 Chen, [11] λ1γ1t
γ1−1et

γ1+λ1(1−et
γ1

), λ1, γ1 > 0

2 XTG, [34] λ2γ2(t/φ2)
γ2−1e(t/φ2)

γ2+λ2φ2(1−e(t/φ2)γ2 ), λ2, γ2, φ2 > 0

3 ECP
λ3γ3φ3tγ3−1

1− e−φ3
et
γ3+λ3(1−et

γ3
)−φ3e

λ3(1−et
γ3

)
, λ3, γ3 > 0, φ3 ∈ R\{0}

4 Chen-logarithmic, [24]
λ4γ4(φ4 − 1)tγ4−1[

1− (1− φ4)eλ4(1−et
γ4 )
]
log φ4

et
γ4+λ4(1−et

γ4
), λ4, γ4, φ4 > 0

5 Exponentiated Chen, [10] λ5γ5φ5t
γ5−1

[
1− eλ5(1−et

γ5
)
]φ5−1

et
γ5+λ5(1−et

γ5
), λ5, γ5, φ5 > 0

6 Marshall-Olkin Chen, [2]
λ6γ6φ6tγ6−1[

1− (1− φ6)eλ6(1−et
γ6 )
]2 etγ6+λ6(1−et

γ6
), λ6, γ6, φ6 > 0

7 Transmuted Chen, [30]
λ7γ7tγ7−1[

1− φ7 + 2φ7eλ7(1−et
γ7 )
]−1

et
γ7+λ7(1−et

γ7
), λ7, γ7 > 0, φ7 ∈ (−1, 1)

8 Kumaraswamy Chen, [23]
λ8γ8φ8ψ8tγ8−1(1− eλ8(1−et

γ8
))φ8−1[

1−
[
1− eλ8(1−et

γ8 )
]φ8
]1−ψ8

et
γ8+λ8(1−et

γ8
), λ8, γ8, φ8, ψ8 > 0
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The AdequacyModel [21] package was used for fitting models to the guinea
pigs data. The ML estimates, their corresponding standard errors and −log-
likelihood values of the fitted models are shown in Table 3. The AdequacyModel

package also provides some useful statistics to assess the adequacy of the fitted
models [22], such as the Cramér-von Mises (CM), Anderson-Darling (AD), Akaike
information criterion (AIC), consistent Akaike information criterion (CAIC),
Bayesian information criterion (BIC), Hannan-Quinn information criterion
(HQIC) and in addition performs the Kolmogorov-Smirnov (KS) test. The ob-
tained values are compiled in Table 4.

Table 3: ML estimates, standard errors and −log-likelihood values for
the guinea pigs data.

ML estimates Standard error

Model λ̂j γ̂j φ̂j ψ̂j λ̂j γ̂j φ̂j ψ̂j −ˆ̀

Chen 0.208 0.759 0.034 0.043 104.241

XTG 0.391 0.322 0.010 0.165 0.023 0.005 100.839

ECP 1.225 0.407 12.094 0.256 0.061 5.158 93.537

Chen-logarithmic 0.208 0.758 1.008 0.131 0.094 1.395 104.241

Exponentiated Chen 0.995 0.444 7.209 0.306 0.080 4.095 94.186

Marshall-Olkin Chen 0.003 1.131 0.016 0.001 0.043 0.006 97.975

Transmuted Chen 0.117 0.809 0.753 0.025 0.045 0.203 102.617

Kumaraswamy Chen 0.896 0.339 9.229 2.364 0.391 0.324 11.159 6.413 94.108

Table 4: Goodness-of-fit statistics for the guinea pigs data.

Model CM AD KS (p-value) AIC CAIC BIC HQIC

Chen 0.367 2.130 0.165 (0.040) 212.482 212.656 217.036 214.295

XTG 0.304 1.775 0.131 (0.172) 207.678 208.031 214.508 210.397

ECP 0.085 0.514 0.082 (0.719) 193.075 193.428 199.905 195.794

Chen-logarithmic 0.367 2.130 0.165 (0.040) 214.482 214.835 221.312 217.201

Exponentiated Chen 0.094 0.585 0.090 (0.601) 194.372 194.725 201.202 197.091

Marshall-Olkin Chen 0.199 1.153 0.137 (0.134) 201.652 202.005 208.482 204.371

Transmuted Chen 0.336 1.950 0.158 (0.055) 211.235 211.588 218.065 213.954

Kumaraswamy Chen 0.092 0.570 0.090 (0.610) 196.217 196.814 205.323 199.842

Bold values correspond to the best model.

The ECP distribution stands out as the best model among the fitted mod-
els, since its values of goodness-of-fit measures are the smaller ones and it has the
highest p-value from the KS test. Interestingly, Dey et al. [15] showed that the
alpha power transformed inverse Lindley (APTIL) distribution provides a bet-
ter fit to the guinea pigs data, when compared to the fits of the inverse Lindley,
generalized inverse Lindley, exponentiated generalized inverse Lindley, exponenti-
ated inverse Lindley and inverse Weibull distributions. Nevertheless, the reported
values of the AIC, BIC and KS statistic associated to the fit of the APTIL distri-
bution are 234.817, 239.370 and 0.146, respectively, which are much higher than
those obtained for the ECP distribution.
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Figure 3: (a) Empirical and estimated survival functions of the Chen and
ECP distributions; (b) Histogram and estimated probability
density functions; (c) Estimated hazard functions; (d) Empirical
scaled TTT-transform for the guinea pigs data.

Additionally, the adequacy of the ECP distribution to model the guinea
pigs data was informally evaluated through the two plots positioned on the upper
panel of Figure 3, where plot (a) displays the empirical and model-based estimates
of the sf; and plot (b) exhibits the histogram and model-based estimates of the
pdf. In order to avoid a graphical overload, only the estimates of the Chen
and ECP distributions are depicted. In both plots, the curves corresponding
to the ECP distribution show close agreement, corroborating the fact that this
distribution provides an adequate superior fitting to the survival times of guinea
pigs with tuberculous infection.

The hf estimates of the referred distributions are shown in Figure 3 (c).
With the purpose of identifying the hazard shape, a graphical method based
on the total time on test (TTT) transform suggested by Aarset [1] was consid-
ered. The TTT plot is obtained by plotting the empirical scaled TTT-transform
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given by G(r/n) =
[∑r

i=1 Ti:n + (n− r)Tr:n
]
/
[∑n

i=1 Ti:n
]

versus r/n, where r =
1, . . . , n and Ti:n are the order statistics of the sample. It has been shown that the
hf is increasing or decreasing if the TTT plot is concave or convex, respectively.
Although this is a sufficient but not a necessary condition, this graphical method
is commonly used as a rough indicative of the hazard shape. Figure 3 (d) shows
that the TTT plot is concave for the considered data, suggesting an increasing hf,
which in theory would be properly accommodated by both distributions. How-
ever, the ML estimate of γ1 of the Chen distribution is less than 1 (see Table 3),
indicating that its hf is bathtub-shaped, as confirmed by Figure 3 (c). Hence, this
distribution provides a poor fit. In fact, based on the p-value of the KS test (see
Table 4), at significance level of 5%, there is evidence that the Chen distribution
is not adequate for modelling this data. In contrast, the ECP distribution was
able to capture an increasing hazard shape, reinforcing that it provides a good
fit to the guinea pigs data.

Under the unified approach of Ramos et al. [26], it is possible to find
whether the ECP distribution comes from the distribution of the minimum or
maximum. Since the ML estimate of φ3 is a positive value (see Table 3), the
resulting distribution comes from the maximum of Chen distributions, that is, if
Ti, i = 1, . . . , 72, are the guinea pigs lifetimes, then Ti = max{Xi,1, . . . , Xi,Z},
where Xi,z, z = 1, . . . , Z, follows a Chen distribution and Z is a non-observable
random variable following a ZTP distribution.

3.6. Application to censored data: Rotterdam breast cancer

In this section, the ECP distribution is applied to the Rotterdam breast can-
cer data set reported by Sauerbrei et al. [28]. The data represent the relapse-free
survival from 2982 patients with primary breast cancer whose records were in-
cluded in the Rotterdam tumour bank. Here, the survival times (in years)
since tumour removal until death from the disease is analysed. The maximum
follow-up time is 19.283 years, the median (estimated by the reverse Kaplan-Meier
method) is 9.273 years and the percentage of censoring is 57.3%. The Rotterdam
data is also available in the survival [32] package.

The adequacy of the ECP distribution is assessed in comparison with some
other members of the unified Poisson family [26], in particular with the EEP,
EWP, generalized extended exponential-Poisson (GE2P) and extended exponen-
ciated Weibull-Poisson (E2WP) distributions. Those models are listed in Table 5.
Note that the E2WP distribution was proposed only by taking the maximum
(φ7 > 0) [20], but we consider φ7 ∈ R\{0} because it belongs to the unified
Poisson family. Besides the Chen distribution being a limiting case of the ECP
distribution (when φ4 → 0), the Weibull distribution is a limiting case of the
EWP (when φ5 → 0) and E2WP (when ψ7 = 1 and φ7 → 0) distributions. For
this reason, the Weibull distribution was also fitted to the Rotterdam data.
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Table 5: List of distributions fitted to the Rotterdam breast cancer data.

jth Model, [ref.] Probability density function, f(t), t > 0

1 Chen, [11] λ1γ1t
γ1−1et

γ1+λ1(1−et
γ1

), λ1, γ1 > 0

2 Weibull λ2γ2t
γ2−1e−λ2t

γ2
, λ2, γ2 > 0

3 EEP, [18, 9]
λ3φ3

1− e−φ3
e−λ3t−φ3e

−λ3t
, λ3 > 0, φ3 ∈ R\{0}

4 ECP
λ4γ4φ4tγ4−1

1− e−φ4
et
γ4+λ4(1−et

γ4
)−φ4e

λ4(1−et
γ4

)
, λ4, γ4 > 0, φ4 ∈ R\{0}

5 EWP, [16, 19, 26]
λ5γ5φ5tγ5−1

1− e−φ5
e−λ5t

γ5−φ5e
−λ5t

γ5

, λ5, γ5 > 0, φ5 ∈ R\{0}

6 GE2P, [4, 26]
λ6γ6φ6

1− e−φ6

(
e−φ6e

−λ6t − e−φ6

1− e−φ6

)γ6−1

e−λ6t−φ6e
−λ6t

, λ6, γ6 > 0, φ6 ∈ R\{0}

7 E2WP, [20]
λγ77 γ7φ7ψ7tγ7−1

[
1− e−(λ7t)

γ7
]ψ7−1(

eφ7 − 1
)
e(λ7t)

γ7−φ7

[
1−e−(λ7t)

γ7
]ψ7

, λ7, γ7, ψ7 > 0, φ7 ∈ R\{0}

Table 6: ML estimates, standard errors and −log-likelihood values for
the Rotterdam breast cancer data.

ML estimates Standard error

Model λ̂j γ̂j φ̂j ψ̂j λ̂j γ̂j φ̂j ψ̂j −ˆ̀

Chen 0.034 0.469 0.002 0.007 4913.724

Weibull 0.035 1.254 0.003 0.031 4817.114

EEP 0.101 1.479 0.006 0.194 4839.735

ECP 1.792 0.108 83.000 0.017 0.002 1.407 4780.796

EWP 0.227 2.330 39.353 0.005 0.035 1.047 4780.882

GE2P 1.609 0.046 -2.233 0.065 0.015 0.993 4797.261

E2WP 14.908 0.257 0.378 25.107 0.903 0.013 0.840 1.332 4780.297

Table 7: Goodness-of-fit statistics for the Rotterdam breast cancer data.

Model AIC CAIC BIC HQIC

Chen 9831.448 9831.452 9843.449 9835.766

Weibull 9638.228 9638.232 9650.229 9642.546

EEP 9683.471 9683.475 9695.472 9687.789

ECP 9567.591 9567.599 9585.592 9574.068

EWP 9567.765 9567.773 9585.766 9574.242

GE2P 9600.522 9600.530 9618.523 9606.999

E2WP 9569.527 9569.540 9593.528 9578.163

Bold values correspond to the best models.

Given that in this application there are censored observations, the maxLik

[33] package was conveniently used to maximize the log-likelihood function for
censored data associated to each model, using the BFGS method. Table 6 com-
piles the ML estimates, their corresponding standard errors and −log-likelihood
values. Here, it is verified that almost all fitted models come from the distribution
of the maximum, except the GE2P distribution that comes from the distribution
of the minimum (φ̂6 < 0). Since the current application is not a CCR problem,



The extended Chen-Poisson lifetime distribution 21

the sign of φ̂j is not relevant. The observed values of the AIC, CAIC, BIC and
HQIC statistics were also calculated in order to informally assess the adequacy
of the fitted models, as presented in Table 7. From these results it is seen that,
although the ECP distribution has the smaller values of those criteria, the EWP
distribution provides a similar fit. Thus, both ECP and EWP distributions are
the best models among the fitted models to analyse the Rotterdam data.

In addition, the overall goodness-of-fit of the ECP distribution was infor-
mally evaluated through the two plots positioned on the upper panel of Figure 4,
where plot (a) displays the estimates of the sf based on the Kaplan-Meier estima-
tor and on the Chen and ECP distributions; and plot (b) exhibits the Cox-Snell
residuals of the ECP distribution. The residuals are defined as r̂i = Ĥ(ti; λ̂, γ̂, φ̂),
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Figure 4: (a) Estimated survival functions based on the Kaplan-Meier es-
timator and on the Chen and ECP distributions; (b) Cox-Snell
residuals of the ECP distribution; (c) Estimated hazard func-
tions of the Chen, Weibull, ECP and EWP distributions; (d)
Empirical scaled TTT-transform based on the Kaplan-Meier es-
timator for the Rotterdam breast cancer data.
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i = 1, . . . , n, where Ĥ(ti; λ̂, γ̂, φ̂) is the estimated cumulative hazard function (chf)
of the fitted model. When the model is adequate, the residuals behave approx-
imately as a sample from a population with unit exponential distribution [12].
This assumption is informally checked through the graphical representation of(
r̂i, ĤNA(r̂i)

)
, where ĤNA(r̂i) is the Nelson-Aalen estimate of the chf of the resid-

uals. There is a good fit when this representation yields a straight line through
the origin with slope 1. In both (a) and (b) plots, the curves corresponding to the
ECP distribution show general agreement, even though there are a few poorly
fitted observations on the upper tail. This is acceptable since the 90th quantile
of the follow-up time (estimated by the reverse Kaplan-Meier method) is equal
to 13.227 years, from which the model begins to provide a poor fit to the data.

The hf estimates of the Chen, Weibull, ECP and EWP distributions are de-
picted in Figure 4 (c). With the purpose of identifying the hazard shape, the TTT
plot is once again considered. However, the existence of censored observations
must be taken into account. As mentioned by Klefsjö [17], a natural general-
ization of the empirical scaled TTT-transform, G(r/n), to accommodate right
censored data consists in replacing the empirical cdf, r/n, by the estimator of the
cdf based on the Kaplan-Meier estimator, 1 − ŜKM(t). Figure 4 (d) shows that,
in this case, the TTT plot is initially concave and then becomes convex, suggest-
ing an unimodal hf. Both ECP and EWP distributions were able to capture an
unimodal hazard shape, providing quite similar estimates. Therefore, in addition
to both models being suitable for modelling the Rotterdam data, the proposed
distribution is an adequate parametric alternative to the EWP distribution.

4. CONCLUDING REMARKS

In this paper, we introduce a new three-parameter lifetime distribution,
named ECP distribution. The proposed distribution is a generalization of the
Chen distribution [11] and arises from the unified Poisson compounding approach
of Ramos et al. [26], where both distributions of the minimum and maximum
are merged into one when it is assumed that the latent variable follows a ZTP
distribution. Under this approach, the obtained distribution allows a practical
interpretation in CCR settings. It was verified that if the parameter from the
ZTP distribution takes a negative (or positive) value, then the random variable
with ECP distribution represents the minimum (or maximum) lifetime among
all unobservable causes. Several features of the new distribution are deduced,
including the explicit expressions for the sf, pdf, hf, quantile function, moment
generating function (particularly, for the mean and variance) and mean residual
life function. The ECP distribution can take a richer variety of flexible haz-
ard shapes regarding to the baseline distribution. In fact, the main advantage
of the ECP distribution is that its hf can be monotonic increasing, monotonic
decreasing, unimodal, bathtub, IDI or DIDI.
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The estimation of the parameters is done by the ML method, considering
a right-censoring mechanism. The results of the simulation study showed the
effectiveness of the ML method, in which the bias and MSE of the parameters
estimates are close to zero as the sample size increases. Additionally, two real
data applications were presented with the following purposes: i) to assess the
adequacy of the ECP distribution for modelling uncensored (guinea pigs) and
censored (Rotterdam breast cancer) data; and ii) to compare the proposed distri-
bution with other generalizations of the Chen distribution, as well as with other
members of the unified Poisson family. In both applications, the ECP distribu-
tion clearly revealed to be a suitable parametric alternative for modelling the
data, when compared with the competing models. It is noteworthy that some of
the considered models have quite flexible hfs (such as the Marshal-Olkin Chen
and E2WP distributions) but, for the analysed data sets, none was better than
the ECP distribution. This fact emphasizes the potential and flexibility of the
proposed model.
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