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1. INTRODUCTION

Cancer is the name given to a set of more than 100 diseases that have in
common the disordered growth of cells, which invade tissues and organs. Dividing
rapidly, these cells tend to be very aggressive and uncontrollable, determining
the formation (carcinogenesis process) of malignant tumors, which can spread
to other regions of the body. The carcinogenesis process (cancer formation), in
general, occurs slowly and may take several years for a cancer cell proliferate and
give rise to a visible tumor. That process goes through several stages (initiation
of a tumor, promotion and progression) before reaching the tumor. Statistics
show that cancer is one of the most important public health concern around
the world and for this reason it is crucial to estimate its prevalence, incidence,
and mortality/survival rates [17]. An overview of descriptive cancer data on this
disease is a first step to appreciate control measures and preventive interventions
in a global context of progressive cancer burden [21].

Cutaneous malignant melanoma, a type of skin cancer that originates in
melanocytes (cells that produce melanin, a substance that determines skin color),
is a tumor whose incidence is increasing dramatically in persons with light-colored
skin in all parts of the world. As with other cancers, there are several causes of
malignant melanoma formation such as environmental (imminent exposure to
ultraviolet radiation), genetic and immunological factors. In most studies, the
incidence doubles every 6 to 10 years. In years of potential life loss, melanoma is
second to adult leukemia, as it affects younger individuals, causing a major pub-
lic health problem [1]. According to World Health Organization, about 132,000
new cases of cutaneous melanoma are diagnosed worldwide each year. In par-
ticular, the American Cancer Society estimated that there will be 96,000 new
cases of cutaneous melanoma in the United States and 7,000 deaths from this
disease in 2020. In addition, approximately 57,000 new cases of invasive cuta-
neous melanoma will occur in men and 39,000 new cases in women in 2020. On
the other hand, there has been a great improvement in the survival of patients
with cutaneous melanoma, mainly due to the early detection of the tumor, in
recent years. In general, it is taken that “cured” is related to survival beyond 5
years for patients with melanoma. This may be due to earlier diagnosis, when
tumors are still at a thinner depth, as well as improved treatment and surgical
techniques [8].

Survival models with a cure fraction for cutaneous melanoma data have
played an important role in survival analysis in recent years. These types of
survival models cover situations in which there are persons not susceptible to
the occurrence of the event of interest. Consequently, a fraction (or proportion)
of these individuals are not expected to experience the event of interest, that
is, these individuals are considered not susceptible or “cured” in the survival
analysis context. The proportion of cured individuals is denoted by the cure
fraction. Cure rate models have the main purpose to include in their formulation
the possibility of estimating the cure rate and they have been widely studied



The Destructive Zero-Inflated Power Series Cure Rate Models 3

by several authors and used for modeling time-to-event data for various types
of cancers, including breast cancer, non-Hodgkins lymphoma, leukemia, prostate
cancer and melanoma.

The most popular type of cure rate models are the mixture (or Berkson-
Gage) cure model [2] and the promotion time cure rate model ([27] and [7]).
While the Berkson-Gage cure model is based on the assumption that only one
cause is responsible for the occurrence of the event of interest, that is, the un-
known number of causes of the event of interest is assumed to be a Bernoulli
random variable, in the promotion time cure model the number of causes follows
a Poisson distribution. In a biological context, the occurrence of the event of
interest might be due to one of many competing causes [14], with the number
of causes and the distribution of survival times associated with each cause [11]
being unknown which leads to a latent competing causes structure. In this sense,
the event of interest can be the death of a patient or a tumor recurrence, which
can happen because of unknown competing causes [21]. These latent competing
causes can be assigned to metastasis-component tumor cells left active after an
initial treatment. A metastasis-component tumor cell is a tumor cell having the
potential of metastasizing [27]. The statistical literature on distributions which
accommodate different numbers of latent competitors have as the main works in
the books by [19] and [16] as well as the review paper by [26] and the papers of
[10], [29], [6], [24] and [4] can be mentioned as key references.

More recently, [23] extended the works of [27] and [7] by considering a
cure rate model (also known as a destructive weighted Poisson cure rate model)
to deal with the assumption that each initiated cell (competing cause) becomes
cancerous with probability one. They argue that this development is a much more
realistic alternative to the cure rate model in explaining the biological mechanism
underlying the occurrence of the event in presence of a cure fraction. This is
because the proposed cure rate survival model presumes that the original number
of lesions, or altered cells are not repaired or eliminated after some intensive
treatment, and this group (which is represented by a variable) of unrepaired cells
(or latent factors) are potentially competing to give rise to a tumor, or risk of
failure. Figure 1 represents the destructive model in a diagram form.

However, there is an amount (or proportion) of cells that have not been ini-
tiated (normal cells), which includes repaired cells, that are not being explained
properly by those cure rate models that consider the number of initiated cells re-
lated to the occurrence of a tumor being a random variable that follows the power
series family of distributions which has as special cases the Poisson, Bernoulli,
geometric, negative binomial, etc.

In a biological context, it is noted that there is a much larger number
of cells that are not initiated (normal cells) than cells that are initiated (and
consequently become malignant cells), which leads to an “excess of not initiated
cells” (or “excess number of zero counts”) in relation to cells which are lesioned.

In this sense, the excess of zeros (not initiated cells) can be explained in
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Figure 1:
Representation of the proposed destructive model in a diagram
form.

terms of zero-inflated models as follows:

1. First, there exist an amount of not initiated cells (zeros) which have never
experienced any type of alterations or lesions (structural zeros).

2. On the other hand, there exist an amount of not initiated cells which have
experienced alterations (or lesions), but those cells were repaired (sampling
zeros).

Therefore, it is maybe desirable to construct tractable statistical models that
can adequately incorporate a biological mechanism for the initiation process of
carcinogenesis, and this is the main motivation for the present research work.

Here, we introduce a new cure rate survival model which extends the works
of [23] and [4] by incorporating a structure to estimate the proportion of not ini-
tiated cells (those one that have never been altered/lesioned and those one that
have been repaired). To create such structure, we use the concept of zero-inflated
models by considering an extension of the discrete power series distributions by
including an additional parameter π. Its interpretation is related to the propor-
tion of repaired cells by means a repair system of the body. In this approach,
we assume that the number of initiated cells follow the zero-inflated power series
(ZIPS) [15] distribution, which is a suitable choice for modelling data sets that
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possesses excess of zeros and overdispersion. Furthermore, it provides a realistic
interpretation related to the biological mechanism o f the occurrence of the event
of interest. Also, it includes a process of destruction of tumor cells after an initial
treatment ([23], [3] and [22]).

The rest of the paper is outlined as follows. In Section 2, we formulate the
new cure rate model. Some special models are reported in Section 3. Inference
based on maximum-likelihood (ML) is discussed in Section 4. In Section 5, we
perform a simulation study to verify the precision of the estimates of the model
parameters. An application to a real data set on cutaneous melanoma is addressed
in Section 6. Finally, Section 7 provides some concluding remarks.

2. MODEL FORMULATION

Let N be an unobservable (latent) random variable which follows the zero-
inflated power series (ZIPS) distribution, denoting the initial number of initiated
cells related to the occurrence (or recurrence) of a tumor for an individual in a
population, with probability mass function (pmf)

P [N = n] =


π + (1− π)

a0
g(θ)

for n = 0,

(1− π)
an θ

n

g(θ)
for n = 1, 2, 3, . . . ,

(2.1)

where 0 < π < 1, an > 0 (an depends only on n) and g(θ) =
∑∞

n=0 an θ
n is a

positive, finite and differentiable function.

Here, the parameter π is interpreted as the proportion of cells that have
never experienced alterations (or modifications) in their genes, while the inter-
pretation for the quantity (1−π) refers to the proportion of cells which have been
repaired from a body repair mechanism.

Also, we note that if π = 0, the ZIPS distribution reduces to the power
series (PS) distribution proposed by [20]. Some important well-known discrete
distributions belong to this family of distributions. For example, if g(θ) = (1 +
θ)m and m is positive integer, equation (2.1) becomes the zero-inflated binomial
(ZIBin) distribution. If g(θ) = exp(θ), it defines the zero-inflated Poisson (ZIP)
distribution. Further, if g(θ) = (1 + θ)−φ, φ > 0 and 0 < θ < 1, the zero-inflated
negative binomial (ZINB) distribution is obtained from equation (2.1), among
others.

For the ZIPS random variable N , the probability generating function (pgf)
is

AN (z) = π + (1− π)
g(θz)

g(θ)
, for 0 ≤ z ≤ 1,(2.2)
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where the ratio g(θz)/g(θ) is the pgf of the PS distribution. More details, see
[20].

The first consequence of a prolonged treatment (destructive process) is the
possible formation of precancerous lesions into the genome of the cells. These
cells are denoted as malignant cells. Given N = n, let Xj , j = 1, 2, . . . , n be inde-
pendent random variables (independent of N) following a Bernoulli distribution
with success probability p indicating presence of the jth lesion. The pgf of the
Bernoulli random variable Xj can be expressed as

AXj (z) = 1− p (1− z), for 0 ≤ z ≤ 1.(2.3)

The variable D, representing the total number of malignant cells among
the N initial cells (competing causes) which are not eliminated by the treatment
is defined as

D =

{
X1 +X2 + · · ·+XN , if N > 0
0, if N = 0,

(2.4)

where D ≤ N . The idea involved in (2.4) was suggested by [28] considering
that the initial N cells are primary initiated malignant cells, where Xj in (2.4)
represents the number of living malignant cells that are descendants of the jth
initiated malignant cell during some time interval. In this case, D denotes the
total number of living malignant cells at some specific time. The time to event for
the jth competing cause is represented by Vj , j = 1, . . . , D. Conditional on D,
the Vj ’s are assumed iid with cumulative distribution function F (t) and survival
function S(t) = 1− F (t). Also, we note that the total number of malignant cells
D and the time Vj are not observable.

As pointed out by [3], in the competing causes scenario, the number of
unrepaired lesions D in (2.4) and the time V taken to transform these lesions into
a detectable tumor are both not observable (latent variables). In this context,
we denote V a progression time. Thus, the observed time to the event of interest
(the patient’s death) is defined by the following random variable

Y = min{V1, · · · , VD}(2.5)

for D ≥ 1, and Y =∞ if D = 0, which leads to a proportion p0 of the population
which is called the cured fraction.

Under this setup, [23] showed that the survival function for the population
of the random variable Y in (2.5) has the form

Spop(y) = P [Y ≥ y] = AD(S(y)) =
∞∑
d=0

P [D = d]{S(y)}d = AN
(
AXj (S(y))

)
,

where S(·) is the survival function for non-cured population and AD(·) is the
pgf for the variable D. Combining (2.2) and (2.3), the survival function of the



The Destructive Zero-Inflated Power Series Cure Rate Models 7

observable lifetime of the event of interest can be expressed as

Spop(y) = π + (1− π)
g (θ [1− pF (y)])

g(θ)
,(2.6)

where F (y) = 1−S(y). Hereafter, Equation (2.6) is referred to as the destructive
zero inflated power series (DZIPS) cure rate model. This model includes two
important special cases: For π = 0, it reduces to the destructive power series
(DPS) cure rate model and if π = 0 in addition p = 1, it gives the power series
(PS) cure rate model ([4]).

From model (2.6), the proportion p0 of cured individuals in the population
is

p0 = lim
y→∞

Spop(y) = π + (1− π)
g (θ (1− p))

g(θ)
.

The density function associated with (2.6) can be expressed as

fpop(y) = −dSpop(y)

dy
= −

[
(1− π)

g′ (θ [1− pF (y)])

g(θ)

]
,(2.7)

where g′(·) = dg(·)/dy, f(y) = dF (y)/dy denotes the proper density function
of the time V to the event in (2.6). Note that the function fpop(y) is a proper
function, whereas Spop(y) is not a proper survival function.

3. SPECIAL CASES OF THE DZIPS CURE MODEL

In this section, we present some specific models that arise from the ZIPS
model formulation. Here, we consider situations where N is a random variable
which follows the zero-inflated Poisson, zero-inflated binomial, zero-inflated neg-
ative binomial, and zero-inflated geometric distributions.

3.1. The destructive zero-inflated Poisson (DZIP) cure model

If we consider an =
1

n!
and g(θ) = exp(θ) in (2.1), the number of initiated

cells N follows an ZIP distribution with θ > 0 and π ∈ (0, 1) and pmf

PZIP [N = n] =


π + (1− π) e−θ for n = 0,

(1− π)
e−θ θn

n!
for n = 1, 2, 3, . . . .

(3.1)

The corresponding survival function of the DZIP cure model is

Spop(y) = π + (1− π) e−θ pF(y).(3.2)
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The cure rate is p0 = π + (1 − π) e−θ p, and the corresponding density function
takes the form

fpop(y) = (1− π) θ p f(y) e−θ pF(y).(3.3)

There are some important special cases in (3.2). For π = 0, it follows the
destructive Poisson cure model defined by Rodrigues et al. (2011). We introduce
the zero-inflated Poisson cure model for p = 1, whereas for π = 0 in addition
p = 1, if follows the promotion time cure model studied by [27] and [7].

3.2. The destructive zero-inflated binomial (DZIBin) cure model

If we have an =

(
m

n

)
and g(θ) = (1 + θ)m in (2.1), the number of initiated

cells N follows a ZIBin distribution with parameters θ
1+θ , π ∈ (0, 1) (m is a

positive integer) and pmf

PZIBin[N = n] =


π + (1− π)

(
1

1 + θ

)m
for n = 0,

(1− π)

(
m

n

)(
θ

1 + θ

)n( 1

1 + θ

)m−n
for n = 1, 2, 3, . . . .

The survival function of the DZIBin cure model has the form

Spop(y) = π + (1− π)

[
1− θpF (y)

1 + θ

]m
.(3.4)

Here, the cure fraction is given by p0 = π + (1− π)
[
1− θp

1+θ

]m
. So, the density

function of the DZIBin cure model can be expressed as

fpop(y) = (1− π)
mθpf(y)

1 + θ

[
1− θpF (y)

1 + θ

]m−1
.(3.5)

The DZIBin cure model in (3.4) with π = 0 in addition to p = m = 1
coincides with the mixture (Berkson-Gage) cure model pioneered by [2].

3.3. The destructive zero-inflated negative binomial (DZINB) cure
model

If we consider an =
Γ(φ−1 + n)

n! Γ(φ−1)
, g(θ) = (1 − θ)−1/φ and θ =

η φ

1 + η φ
in

(2.1), the number of initiated cells N follows a ZINB distribution with η > 0,
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φ ≥ −1, ηφ > 0 and π ∈ (0, 1), with pmf

PZINB[N = n] =


π + (1− π) (1 + ηφ)−1/φ for n = 0,

(1− π)
Γ(φ−1 + n)

n! Γ(φ−1)

(
ηφ

1 + ηφ

)n
(1 + ηφ)−1/φ for n = 1, 2, 3, . . . ,

where Γ(·) denotes the gamma function.

The survival function of the DZINB cure model has the form

Spop(y) = π + (1− π) [1 + η φ pF (y)]−1/φ ,(3.6)

the cure fraction is p0 = π + (1 − π) [1 + η φ p]−1/φ, and the associated density
function becomes

fpop(y) = (1− π) η p f(y) [1 + η φ pF (y)]−(1/φ)−1 .(3.7)

The DZINB cure model in (3.6) with π = 0 reduces to the destructive
negative binomial model [4], whereas the negative binomial cure rate model [5]
is a special case of (3.6) when π = 0 and p = 1.

3.4. The destructive zero-inflated geometric (DZIG) cure model

Moreover, the destructive zero-inflated geometric (DZIG) cure rate model
with parameter θ = η/(1 + η) is one more important special case of (3.6) when
φ = 1 leading to

Spop(y) = π + (1− π) [1 + η pF (y)]−1 ,(3.8)

the cure fraction is p0 = π + (1− π) [1 + η p]−1 and the density function reduces
to

fpop(y) = (1− π) η p f(y) [1 + η pF (y)]−2 .(3.9)

4. INFERENCE AND ESTIMATION

Here, we consider the situation when the time to event of interest is not
completely observed and is subject to right censoring. Let Ci denote the censor-
ing time. We observe ti = min{Yi, Ci} and δi = 1 if Yi is the observed time to
the event defined before and δi = 0 if it is right censored, for i = 1, . . . , n. Let γ
represent the parameter vector of the distribution for the unobserved lifetime in
(2.5). Here, we note that the DZIPS cure rate models in Section 3 are uniden-
tifiable according to [18]. So, to overcome this problem, we propose to relate
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the model parameters p and θ (or η) to covariates xi1 = (xi11, xi12, · · · , xi1p1)T

and xi2 = (xi21, xi22, · · · , xi2p2)T , respectively, without common elements and xi2
without a column of intercepts. Here, the systematic components are

log

(
pi

1− pi

)
= xTi1β1 and log (θi) = xTi2β2,(4.1)

where β1 = (β11, β12, · · · , β1p1)T and β2 = (β21, β22, · · · , β2p2)T represent the
associated parameter vectors. A critical issue is the selection of covariates to be
included in the link functions in (4.1). More precisely, given a link function and
a set potential covariates, the problem is to find and fit the “best” model under a
“selected” subset of covariates [3]. In fact, to choose which explanatory variables
will be connected to the parameters pi and θi is not an easy task because it
depends on several factors such as the type of cancer, the covariates available in
the study, patient history, etc. It is always important to work together with the
medical team to take any kind of decision. Moreover, for readers interested in
this discussion, we suggest [12] and [9].

From n pairs of times and censoring indicators (y1, δ1), · · · , (yn, δn), the ob-
served full likelihood function under non-informative censoring can be expressed
as

L(ν,D) ∝
n∏
i=1

{fpop(ti;ν)}δi{Spop(ti;ν)}1−δi ,(4.2)

where ν = (βT1 ,β
T
2 ,γ

T )T , D = (t, δ,x1,x2), t = (t1, · · · , tn), x1 = (x11, · · · ,xn1),
x2 = (x21, · · · ,xn2), and fpop(·;ν) and Spop(·;ν) are defined in equations (2.7)
and (2.6), respectively.

Next, we assume a Weibull distribution for the observed lifetime in (2.5)
with cdf and pdf (for z > 0)

F (z;γ) = 1− exp(−zγ1 eγ2) and f(z;γ) = γ1 zγ1−1 exp(γ2 − zγ1 eγ2),

respectively, γT = (γ1, γ2)
T , γ1 > 0 and γ2 > 0. The choice of the Weibull

distribution is due to the fact that this lifetime distribution is a very popular
model and it has been extensively used over the past decades for modeling data
in reliability, engineering and biological studies. Also, the pdf and cdf of the
Weibull distribution have closed-forms which provide simple expressions for its
survival and hazard functions.

The ML estimation of the parameter vector ν can be implemented by nu-
merical maximization of the log-likelihood function `(ν,D) = logL(ν,D) using R

software. Further, confidence intervals and hypothesis tests can be based on the
large sample normal distribution of the maximum likelihood estimator (MLE)
with the variance-covariance matrix given by the inverse of the Fisher informa-
tion. More specifically, under conditions that are fulfilled for the parameter vector
ν in the interior of the parameter space but not on the boundary, the asymptotic
distribution of

√
n(ν̂ − ν) is multivariate normal Np1+p2+2(0,K(ν)−1), where
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K(ν) is the information matrix. The asymptotic covariance matrix K(ν)−1 of ν̂
can be approximated by the inverse of the (p1 + p2 + 2)× (p1 + p2 + 2) observed
information matrix −L̈(ν,D). The elements of the observed information ma-
trix −L̈(ν,D) are calculated numerically. The approximate multivariate normal
distribution Np1+p2+2(0,−L̈(ν,D)−1) for ν̂ can be used in the classical way to
construct approximate confidence regions for some parameters in ν. Also, we can
use the likelihood ratio (LR) statistic for comparing some special models with the
DZIPS regression model.

5. SIMULATION STUDY

In this section, we conduct a simulation study in order to evaluate some
properties of the MLEs. For each individual i (i = 1, . . . , n), the number of
competing risks of the event of interest N is generated from the ZIP and ZINB
distributions given in (3.1) and (3.6), respectively. We assume covariates xi11 and
xi21 generated from a Bernoulli distribution with parameter 0.5 and exponential
distribution with parameter one, respectively. Also, we consider the systematic
components

log

(
pi

1− pi

)
= β10 + β11xi11 and log (ψi) = β21xi21,(5.1)

where ψi is the parameter θi and ηi in the DZIP and DZINB cure rate models,
respectively.

We simulate from the DZIP cure fraction distribution with parameters
π = 0.25, γ1 = 2, γ2 = −0.5, β10 = −1, β11 = 0.5 and β21 = 1.25; and from
the DZINB distribution under two setups: the first assuming π = 0.25, γ1 =
2, γ2 = −0.5, φ = 1, β10 = −1.5, β11 = 0.75 and β21 = 1.5 (DZIG distribution)
and the second with π = 0.25, γ1 = 2, γ2 = −0.5, φ = 1.5, β10 = −0.5, β11 = 1.5
and β21 = 1.25 (DZINB distribution). The censoring times are sampled from the
uniform distribution in the (0, τ) interval, where τ controls the censoring propor-
tion of the uncured population. Here, the proportions of censored observations
are approximately 62%, 68% and 70%, respectively. The results are obtained
from 1, 000 Monte Carlo simulations where, in each replication, a random sample
of size n = 50, 100, 250, 500 and 750 is drawn.

Tables 1, 2 and 3 display the averages of the MLEs (mean), bias, mean
square errors (MSE) and coverage probabilities (CP) for nominal 95% of the
DZIP, DZIG and DZINB cure models, respectively. We conclude from these
results that (for all parameters) the MSEs of the MLEs decay toward zero when
the sample size increases, as expected under standard asymptotic theory. In fact,
the estimates tend to be closer to the true parameter values and the CPs converge
to the nominal level when the sample size n increases.
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Table 1:
Summaries of the performance of the DZIP cure model.

Sample Parameter Summaries of parameters
size (n) Mean Bias MSE CP

π 0.2161 -0.0339 0.0265 0.930
γ1 2.2849 0.2849 0.2951 0.933
γ2 -0.5761 -0.0761 0.2439 0.930

50 β10 -0.8371 0.1629 5.7489 0.960
β11 1.3094 0.8094 19.3054 0.973
β21 1.4400 0.1900 0.1870 0.924

π 0.2302 -0.0198 0.0124 0.952
γ1 2.1194 0.1194 0.0970 0.931
γ2 -0.5096 -0.0096 0.0885 0.946

100 β10 -0.9897 0.0103 1.4746 0.957
β11 0.6473 0.1473 3.4111 0.966
β21 1.3148 0.0648 0.0516 0.954

π 0.2424 -0.0076 0.0053 0.924
γ1 2.0399 0.0399 0.0277 0.950
γ2 -0.5099 -0.0099 0.0325 0.960

250 β10 -1.0200 -0.0200 0.1691 0.947
β11 0.5799 0.0799 0.5453 0.953
β21 1.2507 0.0007 0.0165 0.959

π 0.2473 -0.0027 0.0023 0.947
γ1 2.0165 0.0165 0.0144 0.927
γ2 -0.4921 0.0079 0.0168 0.938

500 β10 -1.0035 -0.0035 0.0734 0.949
β11 0.5008 0.0008 0.0616 0.962
β21 1.2326 -0.0174 0.0074 0.956

π 0.2494 -0.0006 0.0015 0.939
γ1 2.0127 0.0127 0.0082 0.951
γ2 -0.4945 0.0055 0.0106 0.950

750 β10 -1.0048 -0.0048 0.0489 0.940
β11 0.5068 0.0068 0.0407 0.958
β21 1.2329 -0.0171 0.0049 0.958

6. APPLICATION: CUTANEOUS MELANOMA DATA

In this section, we illustrate the usefulness of the DZIPS cure rate regression
with an application to a real data set on cancer recurrence. The data are part
of a study on cutaneous melanoma (a type of malignant cancer) extracted from
[25] on 205 patients observed for the evaluation of postoperative in the period
from 1962 to 1977. The cutaneous melanoma data contain information about
the survival times of patients after surgery for malignant melanoma which were
collected at Odense University Hospital [13].
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Table 2:
Summaries of the performance of the DZIG cure model.

Sample Parameter Summaries of parameters
size (n) Mean Bias MSE CP

π 0.2222 -0.0278 0.0353 0.939
γ1 2.3558 0.3558 0.4846 0.946
γ2 -0.5849 -0.0849 0.4056 0.914

50 β10 -1.3522 0.1478 7.4278 0.968
β11 1.9488 1.1988 27.0050 0.976
β21 1.7590 0.2590 0.5628 0.906

π 0.2467 -0.0033 0.0214 0.943
γ1 2.1990 0.1990 0.1914 0.929
γ2 -0.5569 -0.0569 0.1624 0.933

100 β10 -1.4941 0.0059 1.4062 0.962
β11 1.4290 0.6790 9.6464 0.977
β21 1.6210 0.1210 0.1626 0.937

π 0.2491 -0.0009 0.0086 0.940
γ1 2.0800 0.0800 0.0503 0.943
γ2 -0.5223 -0.0223 0.0568 0.945

250 β10 -1.4777 0.0223 0.2496 0.965
β11 0.8922 0.1422 1.0476 0.959
β21 1.5239 0.0239 0.0490 0.945

π 0.2540 0.0040 0.0042 0.933
γ1 2.0324 0.0324 0.0210 0.951
γ2 -0.5020 -0.0020 0.0230 0.959

500 β10 -1.4628 0.0372 0.1143 0.963
β11 0.7960 0.0460 0.1245 0.962
β21 1.4891 -0.0109 0.0223 0.939

π 0.2556 0.0056 0.0033 0.921
γ1 2.0276 0.0276 0.0144 0.938
γ2 -0.5092 -0.0092 0.0183 0.932

750 β10 -1.4529 0.0471 0.0842 0.944
β11 0.7859 0.0359 0.0848 0.958
β21 1.4873 -0.0127 0.0153 0.938

In general, the standard treatment of cutaneous melanoma consists of broad
excision of primary tumor or cicatrices at a distance of at least 5 cm down to
the fascia, though not including this. On the face the tumor was removed at
a distance of only 2 cm. Lymphonodectomy was only undertaken when lymph
nodes were clinically suspected. The clinical data and follow-up were based on
information from the case histories of the patients. More details, see [13].

The observed survival time range, approximately from 0 to 15 years (with
mean equal to 5.9 years), refers to the time until the patient’s death or the
censoring time. There are 72% of censoring, corresponding to the patients which
had died from other causes or were still alive at the end of the study. The
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Table 3:
Summaries of the performance of the DZINB cure model.

Sample Parameter Summaries of parameters
size (n) Mean Bias MSE CP

π 0.0976 -0.1524 0.0436 0.995
γ1 2.9864 0.9864 2.1222 0.969
γ2 -0.8296 -0.3296 0.8123 0.931

50 φ 2.9119 2.4119 14.9794 0.999
β10 0.1421 1.1421 23.6676 0.983
β11 3.3878 2.6378 67.0179 0.992
β21 2.1163 0.8663 2.0872 0.966

π 0.1392 -0.1108 0.0331 0.984
γ1 2.4785 0.4785 0.6232 0.970
γ2 -0.6812 -0.1812 0.3434 0.942

100 φ 1.9185 1.4185 6.3233 1.000
β10 -0.7544 0.2456 6.3957 0.966
β11 2.4230 1.6730 26.6289 0.984
β21 1.6889 0.4389 0.5671 0.976

π 0.2005 -0.0495 0.0155 0.975
γ1 2.1611 0.1611 0.1189 0.977
γ2 -0.5978 -0.0978 0.1137 0.969

250 φ 1.0213 0.5213 1.1649 1.000
β10 -0.9418 0.0582 0.6769 0.961
β11 1.2954 0.5454 5.1548 0.982
β21 1.3871 0.1371 0.0895 0.986

π 0.2362 -0.0138 0.0066 0.956
γ1 2.0704 0.0704 0.0408 0.970
γ2 -0.5519 -0.0519 0.0576 0.960

500 φ 0.6995 0.1995 0.4031 0.996
β10 -0.9677 0.0323 0.1758 0.962
β11 0.9161 0.1661 1.0521 0.975
β21 1.3053 0.0553 0.0342 0.977

π 0.2468 -0.0032 0.0037 0.953
γ1 2.0480 0.0480 0.0261 0.964
γ2 -0.5188 -0.0188 0.0346 0.960

750 φ 0.5932 0.0932 0.1934 0.978
β10 -0.9744 0.0256 0.1111 0.957
β11 0.8271 0.0771 0.2584 0.975
β21 1.2754 0.0254 0.0199 0.971

following variables involved in the study for each patient are: yi : observed time
(in years), xi11 : tumor thickness (in mm, mean = 2.92 and standard deviation
= 2.96) and xi21 : ulceration status (absent, n = 115; present, n = 90). As we
mentioned earlier, the identifiability issue is avoided if the parameter p is linked
only to tumor thickness, while the parameter θ (or η) is linked to the ulceration
status in the DZIP, DZINB and DZIG regressions. The survival function for these
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cure rate regressions are:

� DZIP survival function

S(yi|xi) = π + (1− π) exp {−θi pi [1− exp(−yγ1i eγ2)]} ,

where

pi =
exp (β10 + β11xi11)

1 + exp (β10 + β11xi11)
and θi = exp (β20 + β21xi21) .

� DZINB survival function

S(yi|xi) = π + (1− π) {1 + ηi φ pi [1− exp(−yγ1i eγ2)]}−1/φ ,

where

pi =
exp (β10 + β11xi11)

1 + exp (β10 + β11xi11)
and ηi = exp (β20 + β21xi21) .

� DZIG survival function

S(yi|xi) = π + (1− π) {1 + ηi pi [1− exp(−yγ1i eγ2)]}−1 ,

where

pi =
exp (β10 + β11xi11)

1 + exp (β10 + β11xi11)
and ηi = exp (β20 + β21xi21) .

Figure 2a shows that the Kaplan-Meier survival function estimate confirms
a plateau around 0.64 and this fact indicates the presence of a proportion of
patients for whom the malignant melanoma will never occur again, and then,
those patients can be considered as cured. Also, the empirical Kaplan-Meier
curves stratified by ulceration status (upper: absent, lower: present) are displayed
in Figure 2b and they reveal that the ulceration affects the lifetime of the patients
with malignant melanoma.

For model comparison, we fit the DZIP, DZINB and DZIG cure models
described in Section 3 to the cutaneous melanoma data. The special cases of
these models were also fitted to these data, i.e., the Poisson (π = 0 and p =
1), the negative binomial (π = 0 and p = 1) and the geometric (π = 0, p =
1 and φ = 1) models. We note that these special models belong to the PS cure
models proposed by [4]. For these models, the destructive process is absent
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Figure 2:
(a) Kaplan-Meier curve for the cutaneous melanoma data.
(b) Kaplan-Meier curves stratified by ulceration status (upper:
present, lower: absent).

and consequently, the parameter θ (or η) is linked to both variables (ulceration
status and tumor thickness). In order to compare the models, we use the Akaike
information criterion (AIC) and the Bayesian information criterion (BIC). The
results of the DZIPS cure models and its sub-models are reported in Table 4.

According to the criteria in Table 4, the DZIG cure rate regression is the
best model and so, it is selected as our working model. For this regression,
we estimate the unknown parameters via ML method. All computations are
performed using the R software. The survival function for the DZIG cure rate
regression is
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Table 4:
The values of max log L(·), the AIC and BIC statistics for
the Destructive Zero-Inflated Poisson (DZIP), Destructive Zero-
Inflated Negative Binomial (DZINB), Destructive Zero-Inflated
Geometric (DZIG), Poisson, negative binomial and geometric
cure models.

Survival Cure Rate Model max log L(·) AIC BIC

Destructive Zero-Inflated Poisson -201.18 416.3 439.6
Destructive Zero-Inflated Negative Binomial -198.95 413.9 440.5

Destructive Zero-Inflated Geometric -199.93 413.8 437.1
Poisson -207.83 425.6 442.2

Negative Binomial -201.52 423.0 439.7
Geometric -205.42 420.8 437.4

S
(
yi; π̂, γ̂1, γ̂2, β̂1, β̂2

)
= π̂ + (1− π̂)

{
1 + η̂i p̂i

[
1− exp(−yγ̂1i eγ̂2)

]}−1
,

where

p̂i =
exp

(
β̂10 + β̂11xi11

)
1 + exp

(
β̂10 + β̂11xi11

) and η̂i = exp
(
β̂20 + β̂21xi21

)
.

Here, for the cutaneous melanoma data set, the vectors β̂1 and β̂2 are

β̂1 = (β10, β11)
T and β̂2 = (β20, β21)

T .

Table 5 gives the MLEs of the parameters, their standard errors and p-
values from the fitted regression. We note from the fitted DZIG cure rate re-
gression that ulceration status and tumor thickness are significant sloppy 1% and
there is a significant difference for the presence or absent of ulceration status
and also a difference related to the thickness of the tumor. Thus, those vari-
ables have influenced on the survival times of the patients. The estimate of the
parameter π is 0.3895, and as mentioned earlier in Section 1, this indicates a pro-
portion of those cells which never experience alterations/lesions. Consequently,
the proportion of cells that were repaired by a repair system of the organism is
(1− π) = 0.6105 (or 61.05%).

Figure 3 displays the estimated survival function of the DZIG cure rate
regression for patients with 0.320 mm, 1.940 mm and 4.254 mm tumor thickness,
which correspond to the 5%, 50% and 80% tumor thickness quantiles. The sur-
vival rate decreases more rapidly for patients with thicker tumors in presence of
ulceration. On the other hand, for patients with less thick tumor in presence of
ulceration, the survival rate does not fall bellow 75% as shown in Figure 3a.

Finally, we turn our attention to the role of the ulceration status and thick-
ness tumor covariates on the estimation of the surviving fraction (p0). To esti-
mate the proportion of cured individuals, we use equation (4.1) and the MLEs



18 R.R. Pescim, A.K. Suzuki, G.M. Cordeiro and E.M.M. Ortega

Table 5:
Results from the fitted DZIG cure rate regression.

Parameter Estimate Standard Error p-value
γ1 2.41 0.28 (-)
γ2 -5.00 0.61 (-)
π 0.38 0.24 (-)
β10 -4.41 0.93 < 0.001
β11 0.86 0.26 0.001
β20 2.59 0.88 0.003
β21 3.76 0.74 < 0.001

of the parameters. So, for the DZIG cure regression, the estimated cure fraction
p̂0 = π̂+(1− π̂) [1 + η̂ p̂]−1 is 0.6450. This result is confirmed in Figure 2a. Also,
we note that the cure rate decreases when tumor thickness size increases and it
is smaller for patients with presence of ulceration.

7. CONCLUDING REMARKS

In this paper, we propose the destructive zero-inflated power series (DZIPS)
family of cure rate models by extending the works of [23] and [4]. The DZIPS
models are very flexible and contain special models such as the zero-inflated bino-
mial (ZIBin), zero-inflated Poisson (ZIP), zero-inflated negative binomial (ZINB),
zero-inflated geometric (ZIG) models, among others. The proposed model al-
lows estimation of the cure fraction by incorporating a systematic component to
estimate the proportion of not initiated cells (those one that have never been
altered/lesioned and those one that have been repaired). Hence, this extended
family of models is very flexible in many practical situations. An application to
a real cutaneous melanoma data set demonstrates that it can be used quite effec-
tively to provide better interpretation for the underlying biological mechanism, in
addition to offering a better fit than the other commonly used cure rate models.
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Figure 3:
Estimated survival function from the DZIG cure rate regression
stratified by ulceration status (upper: absent, lower: present)
for patients with tumor thickness equal to (a) 0.320 mm, (b)
1.940 mm, and (c) 4.254 mm.
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