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Abstract:

• In this paper we present a solution to a second order differential–difference equation
that occurs in different contexts, specially in control engineering and finance. This
equation leads to an ordinary differential equation, whose homogeneous part is a
Cauchy–Euler equation. We derive a particular solution to this equation, presenting
explicitly all the coefficients.

The differential–difference equation is motivated by investment decisions addressed in
the context of real options. It appears when the underlying stochastic process follows
a jump-diffusion process, where the diffusion is a geometric Brownian motion and the
jumps are driven by a Poisson process. The solution that we present - which takes
into account the geometry of the problem - can be written backwards, and therefore
its analysis is easier to follow.
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1. MOTIVATION AND RELATED WORK

In this paper we present a solution to a second order differential-difference
equation. This equation may appear when one solves an optimal stopping prob-
lem in which the state process follows a jump-diffusion process, where the dif-
fusion is a geometric Brownian motion and the jumps are driven by a Poisson
process. The main difficulty of working with this type of equation is due to the
jump process, which makes the equation not local in one point – see, for instance,
Murto [25]. This characteristic is not universal, i.e., there are optimal stopping
problems involving jump–diffusions processes for which the differential–difference
equation does not exhibit this behavior. Thus, on these cases to find a closed
form solution to the differential–difference equation can be easier. However, as
we will see later, this is not the case when the jumps may lead directly to the
stopping region, across the boundary.

The seminal works in financial options – such as the classical work of Black
and Scholes [5], where for the first time a pricing formula was derived – and in
real options – as the seminal book of Dixit and Pindyck [12] – assume that the
sample path of the involved state process is continuous, with probability one.

In recent times investors often need to take decisions facing uncertainty
and there is higher likelihood of financial crashes, which are the climax of the
so–called log–periodic power law signatures associated with speculative bubbles
(see Johansen and Sornette [18]). One example of this occurred in February
2015, when due to a cyber–attack, a high–frequency trading company started
uncontrollably buying oil futures, causing a downward jump in the oil prices1.
Here, a crash is a significant drop in the total value of the market, creating a
situation wherein the majority of investors are trying to flee the market at the
same time and consequently incurring massive losses. Indeed, in the presence of
a crash investors likely take the decision to sell their assets. As the crash means
that there is a significant drop, we borrow the probabilistic terminology and we
call it a jump (in the above example, a downward jump).

The sudden changes in the state variable can also be found when one decides
about investments in projects, often addressed in the context of real options. In
this context, usually the temporal term is long, and therefore unexpected events
may occur, leading to a disruption of the market. One example of a disrupt
event is the introduction or the abolition of public subsidies. There are many
economical sectors where subsidies play an important role, such as agriculture.

Due to the interest of the equation that we solve in this paper in the
framework of real options, we mainly focus in problems and questions arising
in such context. The following are examples of decisions regarding investments
where investors face the likelihood of sudden events.

1https://www.businessinsider.com/investigation-into-hft-firm-for-using-an-algo-gone-wild-
that-caused-oil-trading-mayhem-in-just-5-seconds-2010-8
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It is well established that agricultural pricing policies (taxes, subsidies)
have a substantial influence on farmer production decisions2. For example, USA
has been supporting farming since early times. But after several decades, these
incentive policies have proved to be unsuccessful 3. In 2005 Bush administration
decided to change the farm incentive policy, cutting in agricultural subsidies4.
Evidently, this decision led to changes in private investment farming projects.

Another area where subsidies play an important role is the renewable en-
ergy (RE) sector. In an effort to reach the ambitious targets of the EU Strategic
Energy Technology Plan (SET–Plan), EU member states have implemented sup-
port mechanisms of various forms (e.g., price mechanisms, like carbon tax or
permit trading schemes) intended to incentive and accelerate adoption of RE
technologies. These climate change policies have introduced a new factor that
has to be included into the investment decision and have become a major source
of uncertainty in energy strategy. The problem is that policies designed to stim-
ulate the investment in green energies have frequently and unexpectedly been
changed for a number of reasons. For instance, change of governments, collapse
of the international cooperation for reducing GHG emissions, arrival of new in-
formation about climate sensitivity, and fiscal pressure. In the last decade we
have seen many studies on the impact of wrong investment decisions. We refer,
for instance, to Boomsma and Linnerud [6], Boosman et al. [7], and Hagspiel et
al. [14].

These examples show that when taking decisions regarding investments in
new projects, the investor needs to take into account these sudden changes. The
area of real options soon realized the importance of such events, and therefore the
interest of real options literature in problems involving jump–diffusion processes is
not new. We refer to Kou [21] for a survey on jump-diffusion models for finance
engineering. In the area of real options, there has been an increasing interest
about jump–diffusion processes in the context of technology adoption (see, for
instance, Hagspiel et al. [16]).

Furthermore, Kown [22] and Hagspiel et al. [15] consider a combination of
a continuous process with a jump–process, but they do not consider a sequence
of innovations arriving over time. Instead, they assume a one–single innovation
opportunity, with other involved options (like the option to exit the market).
Kwon [22] work is generalized in Hagspiel et al. [15], by considering capacity
optimization, and by Matomäki [23], considering different stochastic processes
representing the profit uncertainty.

In another context, Couto et al. [11] and Nunes and Pimentel [26] consider
the investment problem in a high–speed railway service, assuming that both
the demand and the investment cost are modeled by jump–diffusion processes.
Although these papers start by assuming two sources of uncertainty, they end

2http://www.pbl.nl/en/publications/the-impact-of-taxes-and-subsidies-on-crop-yields
3https://grist.org/article/farm bill2/
4https://www.agpolicy.org/weekpdf/258.pdf
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up with the study of a one-dimensional problem. This happens because they
assume that the value of the firm is homogeneous, and therefore it is possible
to consider a change of variables that will turn the two–dimensional problem
in a one–dimensional one. Murto [25] also consider two stochastic processes, in
order to model technological and revenue uncertainties, motivated by wind power
investment. He assumes that the investment cost depends on the technological
progress, driven by a pure Poisson process, whereas the price of the output is
a geometric Brownian motion. As the value of the project is homogeneous, the
same type of approach as in Nunes and Pimentel [26] is proposed.

In all the above examples, it is of the most crucial importance to assess
the impact of the jumps in the decision, and, in particular, in case the jumps
anticipate the optimal decision. Moreover, the impact of such jumps has to be
reflected in the value of the project, which is a quantitative measure of the value
that the firm has as a result of its option to invest. Under an optimal strategy
in terms of the investment timing, such value is, before the investment, solution
of a differential equation (that we will present in section 2). Mathematically, the
possibility of occurrence of jumps leads to this value being solution of particular
types of differential equations.

Our contribution to the state of the art is two-fold: on one side, we provide
an analytical solution to a non-homogeneous differential equation. As it turns
out, some optimal stopping problems found in real options lead to a differential–
difference equations that are exactly as the form of such differential equation, for
a subset of the state space. Therefore, one may use this analytical solution to
provide a characterization of the value of a firm, which is given by a piecewise
function.

The paper is organized as follows: in Section 2 we motivate the differential–
difference equation that we address in this paper, presenting also the basic as-
sumptions. In Section 3 we show how we can find a general solution for such
equation, using a backwards procedure. This procedure presents the solution
as a piecewise function. For each branch, the function is the solution of a non-
homogeneous differential equation. Therefore, in Section 4 we provide the par-
ticular solution to it. Finally, in Section 5 we conclude.

2. DIFFERENTIAL–DIFFERENCE EQUATION

In order to motivate the meaningfulness of the differential–difference equa-
tion solved in this paper, we consider that we want to derive the value of a firm
that has the option to undertake an investment. As we briefly explain in this
section, these type of problems leads to a variational inequality known as the
Hamilton–Jacobi–Bellman (HJB, for short) equation, where one of the members
is a differential–difference equation. To solve such equation, we also need to be
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able to find the solution of a differential equation of the following type:

(2.1) x2y′′(x) + axy′(x) + by(x) = Axα(lnx)n,

with x > 0, a, b ∈ R, α,A ∈ R \ {0} and n ∈ N0.

We note that the corresponding homogeneous equation to (2.1) is an Euler-
Cauchy equation and its solution is known. The difficulty lays in the particular
solution, consequence of the non-homogeneous term, Axα(lnx)n.

The result that we provide in this paper is per se interesting, as it provides
a contribution to the area of ordinary differential equations (ODE). Besides this
contribution, being able to compute the solution of such equation is also rele-
vant for the applications. Next we motivate the mathematical problem by an
investment problem, using the terminology and notation of real options.

Real options is a theory on how to make decisions under uncertainty about
future returns. These decisions share the following two characteristics: they are
irreversible and can be postponed.

One of the most relevant problems in real options regards the character-
ization of the optimal time to undertake some investment decision. This leads
to an optimal stopping problem, which is formally defined as follows: given a
stochastic process X = {X(t), t > 0}, find V (x) and τ? ∈ T such that

(2.2) V (x) = sup
τ∈T

Ex
[
e−rτg(X(τ))χ{τ<+∞}

]
, x ∈ R+,

with T being the set of all stopping times adapted to the filtration generated
by the process X, r > 0 states for the discount factor and χ{A} represents the
indicator function on set A. The function g is usually called running function,
which accounts for the return of the investment.

The class of stochastic processes that lead to the type of equations that
we study in this paper - equation (2.1) - is an one–dimensional jump–diffusion,
which is the strong solution of the following stochastic differential equation

dX(t)

X(t−)
= µdt+ σdW (t) + κdN(t),

with initial value X(0) = x > 0, where {W (t), t > 0} is a standard one–
dimensional Brownian motion, and {N(t), t > 0} is a centered time–homogeneous
Poisson process, with intensity λ > 0. Moreover, µ is the drift of the process X,
σ > 0 is its volatility and κ is the multiplicative factor, in case a jump occurs.
The notation X(t−) means that whenever there is a jump, the value of the process
before the jump is considered. Motivated by the references mentioned in Section
1, we assume that the jumps are multiplicative and with constant magnitude.

One way to solve the optimal stopping problem defined in (2.2) is to solve
the variational inequality HJB (we do not provide further details, referring instead
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to Peskir and Shiryaev [28]). In this case, the corresponding HJB equation is the
following

(2.3) min {rV (x)− LV (x), V (x)− g(x)} = 0,

where L is the infinitesimal generator of the process X. As X is a jump–diffusion
process, it follows that

(2.4) Lv(x) =
σ2

2
x2v′′(x) + (µ− λκ)xv′(x) + λ (v(x(1 + κ))− v(x)) ,

for v ∈ C1 and x ∈ R+ (see Oksendal and Sulem [27] for more details).

In general, the use of these inequalities leads to a differential equation,
which in some cases may be solved analytically. Besides the possible difficulty
to find the analytical solution to the differential equation, one faces also the
problem to find the boundary conditions, as the set of values where the differential
equation holds is also unknown. For this reason the problem presented in (2.2)
when solved by the use of variational inequalities is known in the literature as a
free boundary problem.

Considering an investment problem, the differential equation holds in the
region where it is not optimal to stop (in our case to invest). For that reason, this
region is usually called continuation region, and in opposition its complementary
is called stopping region. In some cases, one can provide a guess for the shape
of the continuation set. For example, if g is a non-decreasing function, the firm
takes the decision to invest for large values of x, whereas for small values of x the
firm postpones its investment decision. Thus, the stopping region is of the form
S = [x∗,+∞) and the continuation region is C = (0, x∗), where x∗ is the exercise
threshold.

When X is a jump-diffusion process with positive jumps, the stopping re-
gion can be reached in two different ways:

(i) Either due to a continuous change, caused by the diffusion. In this case the
state process hits the boundary threshold x∗.

(ii) Or due to the occurrence of a jump. In this case the state process crosses
the boundary threshold.

In the literature, the majority of the authors address the case that either
there is just the jump process (for which it is possible to solve the corresponding
difference equation, as there is no differential part) – this is the case of Huis-
man [17] – or the process is a jump–diffusion but the jumps always lead to the
continuation region – which is the case of Nunes and Pimentel [26].

Our work is related with Merton [24], who considers a model to price
American call options. He assumes multiplicative independent and identically
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distributed jumps and g(x) = max(x − K, 0) (the payoff of an American call
option). For this case, he provides in Equation (16) a semi–analytical result,
as it involves a series with infinite number of terms that depend, each one, on
the cumulative distribution of a normal random variable. More recently, Murto
[25] considers a problem with a similar setting as ours. However, in view of the
impossibility to derive an analytical solution, he provides solutions only for some
particular cases (namely, if the volatility parameter of the diffusion is zero, or
when the jump process is in fact deterministic, with an exponential decay).

In the current paper, we assume a non-decreasing g function. Then it
follows that on the one hand, in the stopping region V is equal to g, i.e. V (x) =
g(x) for x ≥ x?. On the other hand, in the continuation region the value function
V must be the solution of the left–hand side of the HJB Equation (2.3), which
combined with Equation (2.4), leads to the following equation:

(2.5) x2V ′′(x) + a xV ′(x) + b V (x)− c V (x(1 + k)) = 0,

where a = 2(µ−λk)
σ2 , b = −2(r+λ)

σ2 and c = −2λ
σ2 . This is called in the literature

mixed partial differential–difference equation, and it is known to be difficult to
solve (see Merton [24]).

3. BACKWARDS ANALYSIS

In this section we provide a backwards procedure that can be used to solve
the Equation (2.5). This procedure is motivated by the geometry of the stop-
ping/continuation regions previously presented, when g is non–decreasing.

Firstly, we note that the homogeneous part of Equation (2.5) has an ana-
lytical solution, hereby denoted by Vh, which is given by

Vh(x) = δ1x
β1 + δ2x

β2 ,

where β1 and β2 are the roots of the characteristic polynomial

Q(β) = β (β − 1) + aβ + b.

In our case, given that b < 0, there are two distinct real roots:

β1 =
1

2

[
1− a+

√
(1− a)2 − 4b

]
> 0;(3.1)

β2 =
1

2

[
1− a−

√
(1− a)2 − 4b

]
< 0.(3.2)

As presented before, V (x) = g(x) for x ∈ [x?,+∞). Therefore, one needs
to solve the problem for 0 < x < x?. For that, we start by considering x ∈[
x?

1+κ , x
?
)

, meaning that x(1 + κ) ≥ x?. So, the interval
[
x?

1+κ , x
?
)

is the set of
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values of x where stopping will surely happen if a jump occurs. Thus V (x(1 +
κ)) = g(x(1 + κ)). In this case Equation (2.5) can be re-written as

x2V ′′(x) + a xV ′(x) + b V (x) = c g(x(1 + κ)).

and therefore its solution, hereby denoted by V1, is given by

(3.3) V (x) := V1(x) = Vh(x) + V 1
p (x) = δ1x

β1 + δ2x
β2 + f1g (x),

Note that the superscript in V 1
p and f1g represents how many jumps we are away

from the stopping region5 (see Figure 1 for an illustration). Moreover, the bottom
index in f1g emphasizes that this function depends explicitly on g.

x

SC

x?

1+κ
x?

g(x)g(x)V1(x)

Figure 1: Representation of V in the last interval before stopping.

Next we derive the value of V when we are two jumps away from the
stopping region. Following the same notation, we denote this function by V2,

defined for x ∈
[

x?

(1+κ)2
, x?

1+κ

)
. In this case x(1+κ) ∈

[
x?

1+κ , x
?
)

, so V (x(1+κ)) =

V1(x(1 + κ)). This means that (2.5) can be re–written as follows

x2V ′′(x) + a xV ′(x) + b V (x) = c V1(x(1 + κ)).

The homogeneous part of the previous equation is the same as before, and thus
the solution is provided in (3). We just need to take into account the particular
solution, which we denote by V 2

p . This particular solution depends on V 1
p (and

thus depends on g) but also depends on Vh (then also depends on the roots of
Q, β1 and β2), as V1 is given by (3.3). Therefore, both the homogeneous and the
particular solution for this case share the powers β1 and β2. Using Theorem 3.5
of Sabuwala and De Leon [29], we end up with the following particular solution

V 2
p (x) = η21 lnx xβ1 + η22 lnx xβ2 + f2g (x).

We write f2g to denote the part of the solution that depends strictly on g (following
the same reasoning as for f1g ), whereas η21 and η22 depend on the parameters

from the homogeneous solution. So, for x ∈
[

x?

(1+κ)2
, x?

1+κ

)
(see Figure 2 for an

illustration), we have

(3.4) V (x) := V2(x) = δ1x
β1 + δ2x

β2 + η21 lnx xβ1 + η22 lnx xβ2 + f2g (x).
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x

SC

x?

(1+κ)2
x?

1+κ
x?

g(x)V1(x)V2(x)

Figure 2: Representation of V in the last two intervals before stopping.

Proceeding one step back, we determine the value of V when we are three

jumps away from the stopping region, which we call V3. When x ∈
[

x?

(1+κ)3
, x?

(1+κ)2

)
,

then x(1 + κ) ∈
[

x?

(1+κ)2
, x?

1+κ

)
and V (x(1 + κ)) = V2(x(1 + κ)). Then, Equation

(2.5) is re-written as

(3.5) x2V ′′(x) + a xV ′(x) + b V (x) = c V2(x(1 + κ)).

As before, the homogeneous equation is the same and therefore Vh is part of the
solution of this equation. Once more, the problem is reduced to the derivation of
a particular solution, which is not trivial, as the function V2 involves polynomials
of power β1 and β2 multiplied by a logarithm (see Equation (3.4)). After some
calculations, one may find that the particular solution of (3.5) is of the following
form

V 3
p (x) = η31 lnx xβ1 + η32 lnx xβ2 + η33 (lnx)2 xβ1 + η34 (lnx)2 xβ2 + f3g (x).

Also here f3g stands for the part of the solution that depends strictly on g whereas
η31, η

3
2, η

3
3 and η34 depend on the parameters from the homogeneous solution. As

previously, for x ∈
[

x?

(1+κ)3
, x?

(1+κ)2

)
, we have

V (x) := V3(x) = δ1x
β1 + δ2x

β2 + η31 lnx xβ1 + η32 lnx xβ2

+η33 (lnx)2 xβ1 + η34 (lnx)2 xβ2 + f3g (x).

A similar reasoning applies for other intervals of x. When we are i (with
i ∈ N) jumps away from the stopping region, we have x?

(1+κ)i
≤ x < x?

(1+κ)i−1 and

V is represented by Vi, which may be obtained using a similar procedure as the
one used for V1, V2 and V3. Indeed, V is a piecewise function, given by

V (x) =

{
Vi(x) if x?

(1+κ)i
≤ x < x?

(1+κ)i−1

g(x) if x ≥ x?
,

where
Vi(x) = δ1x

β1 + δ2x
β2 + V i

p (x)

5We use this type of notation for all particular solutions.
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with

V 1
p (x) = f1g (x) and

V i
p (x) =

i−1∑
j=1

[
ηi2j−1 x

β1 + ηi2j x
β2
]

(lnx)j + f ig(x), for i ∈ N \ {1} .(3.6)

Clearly, one needs to find functions that are solutions of certain differential
equations, that depend intrinsically on the function g, considered in the definition
of the problem.

For example, for

(3.7) g(x) = ρxθ − I

we obtain the following particular solutions V i
p , for i = 1, 2, 3,

V 1
p (x) =ξ11x

θ + ξ12 , with ξ11 =
cρ(1 + κ)θ

Q(θ)
, ξ12 = −cI

b
.

V 2
p (x) =η21 lnx xβ1 + η22 lnx xβ2 + ξ21x

θ + ξ22 with

η21 = δ1
c(1 + κ)β1

Q′(β1)
, η22 = δ2

c(1 + κ)β2

Q′(β2)
,

ξ21 = ρ

[
c(1 + κ)θ

Q(θ)

]2
, ξ22 = −

(c
b

)2
I.

V 3
p (x) =η31 lnx xβ1 + η32 lnx xβ2 + η33 (lnx)2 xβ1 + η34 (lnx)2 xβ2 + ξ31x

θ + ξ32 ,

with

η31 = δ1
c(1 + κ)β1

Q′(β1)

[
1 +

c(1 + κ)β1

Q′(β1)

(
ln(1 + κ)− 1

Q′(β1)

)]
η32 = δ2

c(1 + κ)β2

Q′(β2)

[
1 +

c(1 + κ)β2

Q′(β2)

(
ln(1 + κ)− 1

Q′(β2)

)]
η33 =

δ1
2

[
c(1 + κ)β1

Q′(β1)

]2
, η34 =

δ2
2

[
c(1 + κ)β2

Q′(β2)

]2
ξ31 = ρ

[
c(1 + κ)θ

Q(θ)

]3
, ξ32 = −

(c
b

)3
I.

For simplicity, in the above calculations we assume that θ is not a root
of the characteristic polynomial Q. This example is motivated by the relevance
of this analysis in real options context. In fact, functions such that the one
presented in (3.7) are frequently used in this context and describe the profit of a
firm. This function is called in the literature an iso–elastic demand function (see,
for instance, Nunes and Pimentel [26]).

This example also shows that a more systematic way to find the solution to
the non–homogeneous differential Equation (2.1) is quite valuable. We address
this issue in the next section.
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4. MAIN RESULTS

We want to find a particular solution to the Equation (2.1). The type of
solution is understandable from the special case solved at the end of the previous
section. However, a systematic way to obtain all the coefficients is not so easy to
develop.

We start deriving a recursive expression for the particular solution of (2.1).
Later, using this result, we will be able to present explicit expressions for the
involved coefficients.

Theorem 4.1 (recursive). Consider the second order ODE presented in
(2.1), with the corresponding characteristic polynomial Q given by (3). Then the
following cases occur:

• If α is not a root of Q, the particular solution of (2.1) is

yp(x) = xα
n∑
i=0

ci (lnx)i ,

where cn = A
Q(α) , cn−1 = −nAQ′(α)

Q(α)2
and ci = − i+1

Q(α) [Q′(α)ci+1 + (i+ 2)ci+2]

for i = 0, 1, 2, ..., n− 2.

• If α is a simple root of Q, the particular solution of (2.1) is

yp(x) = xα
n∑
i=0

ci (lnx)i+1 ,

where cn = A
(n+1)Q′(α) and ci = − i+2

Q′(α)ci+1, for i = 0, 1, 2, ..., n− 1.

• If α is a root of Q with multiplicity two, the particular solution of (2.1) is

yp(x) = xαcn (lnx)n+2 ,

where cn = A
(n+1)(n+2) .

Proof: We start by proposing that the particular solution of Equation
(2.1) is of the form yp(x) = xαP (x). Calculating first and second derivatives, we
obtain

y′p(x) = xα−1
[
xP ′(x) + αP (x)

]
y′′p(x) = xα−2

[
x2P ′′(x) + 2αxP ′(x) + α(α− 1)P (x)

]
,

from where

x2y′′p(x) + axy′p(x) + byp(x) = xα
[
x2P ′′(x) +

(
Q′(α) + 1

)
xP ′(x) +Q(α)P (x)

]
.
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Thus P (x) is such that

(4.1) x2P ′′(x) +
(
Q′(α) + 1

)
xP ′(x) +Q(α)P (x) = A(lnx)n.

Taking into account whether Q(α) is null or not, we end up with different cases,
described hereafter.

1. If α is not a root of Q, then P (x) =
∑n

i=0 ci (lnx)i, as we prove next. For
that, we compute the first and second derivatives:

P ′(x) =
1

x

n∑
i=1

ici (lnx)i−1

P ′′(x) =
1

x2

[
n∑
i=2

i(i− 1)ci(lnx)i−2 −
n∑
i=1

ici(lnx)i−1

]
.

Thus, x2P ′′(x) + (Q′(α) + 1)xP ′(x) +Q(α)P (x) is given by

n−2∑
i=0

[
(i+ 2)(i+ 1)ci+2 +Q′(α)(i+ 1)ci+1 +Q(α)ci

]
(lnx)i

+
[
Q′(α)ncn +Q(α)cn−1

]
(lnx)n−1 +Q(α)cn(lnx)n.

Therefore, (4.1) holds if Q(α)cn = A, Q′(α)ncn + Q(α)cn−1 = 0 and (i +
2)(i + 1)ci+2 + Q′(α)(i + 1)ci+1 + Q(α)ci = 0, for i = 0, 1, ..., n − 2, which
leads to the result.

2. If α is a root of Q with multiplicity one, then P (x) =
∑n

i=0 ci (lnx)i+1. In
fact, calculating first and second derivatives, we obtain

P ′(x) =
1

x

n∑
i=0

(i+ 1)ci (lnx)i

P ′′(x) =
1

x2

[
n∑
i=1

(i+ 1)ici(lnx)i−1 −
n∑
i=0

(i+ 1)ci(lnx)i

]
.

Given that Q(α) = 0, then x2P ′′(x) + (Q′(α) + 1) tP ′(x) + Q(α)P (x) is
given by

∑n−1
i=0 [(i+ 2)ci+1 +Q′(α)ci] (lnx)i +Q′(α)(n+ 1)cn(lnx)n.

Assuming that α has multiplicity one we have Q′(α) 6= 0. Thus, in order to
have (4.1), we need to set that Q′(α)(n+1)cn = A and (i+2)ci+1+Q′(α)ci =
0, for i = 0, 1, ..., n− 1, and the result follows.

3. If α is a root of Q with multiplicity two, then P (x) = cn (lnx)n+2 as

P ′(x) =
1

x
cn(n+ 2) (lnx)n+1

P ′′(x) =
1

x2
cn(n+ 2)

[
(n+ 1)(lnx)n − (lnx)n+1

]
.

Since Q(α) = 0 and Q′(α) = 0, then x2P ′′(x) + (Q′(α) + 1) tP ′(x) +
Q(α)P (x) is given by cn(n + 2)(n + 1)(lnx)n. Finally, in order to have
(4.1) we conclude that cn = A

(n+1)(n+2) .
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This theorem is useful in two ways: first it provides a way to compute
(recursively) the particular solution of the differential equation (2.1). Second, it
provides the tool to derive explicit expressions for the involved coefficients. In
the following theorem we present such result.

Theorem 4.2 (non-recursive). Consider the second order ODE presented
in (2.1), with the corresponding characteristic polynomial Q given by (3).

• If α is not a root of Q, the particular solution of (2.1) is given by yp(x) =
xα
∑n

i=0 ci (lnx)i, with

ci = (−1)n−i
n!

i!

A

Q(α)n−i+1
×(4.2)

n−i
2∑
j=0
j∈N0

(−1)j
(
n− i− j

j

)
Q′(α)n−i−2j Q(α)j ,

for i = 0, 1, 2, .., n, where
(
k
r

)
= k!

r!(k−r)! , with k ≥ r ≥ 0.

• If α is a simple root of Q, the particular solution of (2.1) is yp(x) =
xα
∑n

i=0 ci (lnx)i+1, with

(4.3) ci = (−1)n−i
n!

(i+ 1)!

A

Q′(α)n−i+1
, for i = 0, 1, 2, .., n.

• If α is a root of Q with multiplicity two, the particular solution of (2.1) is
yp(x) = xαcn (lnx)n+2, with cn = A

(n+1)(n+2) .

Proof: The last case coincides with the one presented in Theorem 4.1.
For the other two cases, we use backwards mathematical induction to prove it,
taking advantage of the recursive solutions presented in Theorem 4.1.

1. If α is not a root of Q, we already know that, the particular solution is

of the form yp(x) = xα
∑n

i=0 ci (lnx)i, where cn = A
Q(α) , cn−1 = −nAQ′(α)

Q(α)2

and ci = − i+1
Q(α) [Q′(α)ci+1 + (i+ 2)ci+2] for i = 0, 1, 2, ..., n − 2. We want

to prove that, for i = 0, 1, 2, .., n, the coefficients ci can be written in the
general form presented in (4.2).

Using backwards mathematical induction we have two base cases to be
verified, cn and cn−1, which we know from Theorem 4.1 that are A

Q(α) and

−nAQ′(α)
Q(α)2

, respectively. Taking into account (4.2), we have

cn = (−1)0
n!

n!

A

Q(α)
(−1)0

(
0

0

)
Q′(α)0 Q(α)0 =

A

Q(α)
,

cn−1 = (−1)
n!

(n− 1)!

A

Q(α)2
(−1)0

(
1

0

)
Q′(α)1 Q(α)0 = −nAQ

′(α)

Q(α)2
,
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which means that the base cases are verified. For the inductive step, we
assume that, for i = 0, 1, 2, ..., n − 2, ci+1 and ci+2 are given by (4.2), and
we want to prove that ci is also given by (4.2).

From Theorem 4.1, we know that ci = − i+1
Q(α) [Q′(α)ci+1 + (i+ 2)ci+2] for

i = 0, 1, 2, ..., n − 2. Plugging the expressions of ci+1 and ci+2, which are
defined by (4.2), in the expression of ci we obtain

− i+ 1

Q(α)

[
Q′(α)(−1)n−i−1

n!

(i+ 1)!

A

Q(α)n−i
×

n−i
2
− 1

2∑
j=0
j∈N0

(−1)j
(
n− i− j − 1

j

)
Q′(α)n−i−2j−1Q(α)j

+(i+ 2)(−1)n−i−2
n!

(i+ 2)!

A

Q(α)n−i−1
×

n−i
2
−1∑

j=0
j∈N0

(−1)j
(
n− i− j − 2

j

)
Q′(α)n−i−2j−2Q(α)j

 .
Rearranging the terms and changing the variable in the second sum, we get

(−1)n−i
n!

i!

A

Q(α)n−i+1


n−i
2
− 1

2∑
j=0
j∈N0

(−1)j
(
n− i− j − 1

j

)
Q′(α)n−i−2j Q(α)j

+

n−i
2∑
j=1
j∈N0

(−1)j
(
n− i− j − 1

j − 1

)
Q′(α)n−i−2j Q(α)j

 .
Joining the two sums and taking into account some permutation’s proper-
ties, we end up with the following expression

(−1)n−i
n!

i!

A

Q(α)n−i+1


n−i
2
− 1

2∑
j=1
j∈N0

(−1)j
(
n− i− j

j

)
Q′(α)n−i−2j Q(α)j

+ Q′(α)n−i + (−1)
n−i
2 Q(α)

n−i
2 χ{n−i is even}

]
.

Finally, we conclude that

ci = (−1)n−i
n!

i!

A

Q(α)n−i+1

n−i
2∑
j=0
j∈N0

(−1)j
(
n− i− j

j

)
Q′(α)n−i−2j Q(α)j ,

which coincides with the expression given by (4.2). Thus the proof for the
first case is finished.
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2. If α is a root of Q with multiplicity one, as we proved before, the particular
solution is of the form yp(x) = xα

∑n
i=0 ci (lnx)i+1, where cn = A

(n+1)Q′(α)

and ci = − i+2
Q′(α)ci+1, for i = 0, 1, 2, ..., n− 1. We want to prove that we can

write the coefficients ci in the general way presented in (4.3).

As before, we use backwards mathematical induction. Starting with the
base case and taking into account (4.3), we have

cn = (−1)0
n!

(n+ 1)!

A

Q′(α)
=

A

(n+ 1)Q′(α)
,

which coincides with the expression given by Theorem 4.1. Thus, the base
case is verified. To prove the induction step, for i = 0, 1, 2, .., n − 1, we
assume that ci+1 is given by (4.3) and we want to prove that ci is also given
by (4.3).

From Theorem 4.1, we know that ci = − i+2
Q′(α)ci+1, for i = 0, 1, 2, ..., n − 1.

Plugging in ci the expression of ci+1, which is given by (4.3), we obtain

ci = − i+ 2

Q′(α)
(−1)n−i−1

n!

(i+ 2)!

A

Q′(α)n−i
= (−1)n−i

n!

(i+ 1)!

A

Q′(α)n−i+1
,

and therefore the induction step is proved. With this we conclude the proof.

A special case of the previous theorem is when n = 0. In this case the
Equation (2.1) is simply

x2y′′(x) + axy′(x) + by(x) = Axα.

Using the results proved before, the corresponding particular solution is given by

yp(x) = ϕ xα (lnx)r ,

where ϕ = A
Q(r)(α)

6, with r7 being the multiplicity of α as a root of Q.

In the following corollary, we use the results presented in Theorem 4.2 for
the case that the non-homogeneous part of the differential equation is a sum of
power and log functions (as it is the case, for example, of (3.6)).

Corollary 4.1. Consider the following second order differential equa-
tion:

(4.4) x2y′′(x) + axy′(x) + by(x) =
m∑
k=1

Akx
αk (lnx)nk ,

6Q(r)(α) is the derivative of order r of Q w.r.t. α. In particular, if r = 0 we consider that
Q(r)(α) is exactly Q(α).

7r can take the values 0, 1 or 2. We consider r = 0 when α is not a root of Q.
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with x > 0, a, b ∈ R, αk, Ak ∈ R\{0} and nk ∈ N0, for k = 1, 2, ...,m, with m ∈ N.
Then the particular solution of (4.4) is of the form yp(x) =

∑m
k=1 ypk(x)8, where

ypk(x) is the solution of the equation

x2y′′k(x) + axy′k(x) + byk(x) = Akx
αk (lnx)nk ,

which is presented in Theorem 4.2.

Proof: The result follows from the superposition principle.

5. CONCLUSIONS

In this paper we provide a solution to a differential–difference equation
that can be found, for instance, when one studies an investment problem with
the underlying following a jump–diffusion process. This problem is particularly
important from the point of view of the application, as nowadays the prices and
demand are often subject to external shocks that cause a disruptive behavior on
the state variables. Analytical solutions or quasi-analytical solutions are scarce
or even non-existent. Our results contribute to the state of the art in this area.

As our results show, the solution to the differential–difference equation is
a piecewise function, where each branch depends on the next one. Therefore, to
find the expression for each branch a non–homogeneous ODE needs to be solved.
In this paper we also provide the expression for each coefficient involved in the
particular solution of this family of ODEs.

As future work, we want to apply these results to solve the original optimal
stopping problem. We highlight that this is a challenging question, as in order
to find the optimal value function, we need to use enough conditions to define all
the unknown parameters of the solution. Indeed, the expressions that we provide
in this paper define classes of solutions, and only considering the boundary and
initial conditions we are able to derive the solution.
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