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1. INTRODUCTION

The Birnbaum-Saunders (BS) distribution has been widelgistl and applied due to its interest-
ing properties. Some of its more relevant characteristiedtze following: (i) it is a transformation of
the normal distribution, inheriting several of its propest (ii) it has two parameters, modifying its shape
and scale; (iii) it has positive skewness, doing its prolitgtdensity function (PDF) to be asymmetrical
to the right, but due to its flexibility, symmetric data cas@be modeled by the BS distribution; (iv) its
PDF and failure rate (FR) are unimodal, but also other shiéts FR may be modeled; (v) it belongs
to the scale and closed under reciprocation families ofidigions; and (vi) its scale parameter is also
its median, so that the BS distribution can be seen as anguglout in an asymmetrical setting, of the
normal distribution, which has the mean as one of its pararaeFor more details of the BS distribution,
see Birnbaum and Saunders (1969b), Johnson et al. (19965p1663), or the recent book by Leiva
(2016). The BS distribution is a direct competitor of the gaan inverse Gaussian (IG), lognormal and
Weibull distributions; see details of these last distritws in Johnson et al. (1994).

The BS distribution has its genesis from fatigue of materidlhen, its natural applications have
been mainly focussed on engineering and reliability. Heveoday they range diverse fields including
business, environment and medicine. For some of its mosntepplications, see Villegas et al. (2011),
Marchant et al. (2013, 2016a,b), Saulo et al. (2013, 20140y et al. (2014a,d, 2015a, 2016c, 2015b,
2017), Rojas et al. (2015), Wanke and Leiva (2015), Desouah €017), Garcia-Papani et al. (2017),
Leao et al. (2017a,b), Lillo et al. (2016) and Mohammadi e{2017). These and other applications, as
well as several extensions and generalizations of the B8hdison, have been conducted by an inter-
national, transdisciplinary group of researchers. The éx$ension of the BS distribution is attributed
to Volodin and Dzhungurova (2000), which established thatBS distribution is the mixture equally
weighted of an IG distribution and its convolution with tHei-squared distribution with one degree of
freedom. The authors provided a physical interpretatioieims of fatigue-life models and introduced
a general family of distributions, with members such as tgerlormal and BS distributions, as well as
others used in reliability applications. Then, Diaz-Garafid Leiva (2005) introduced the generalized
BS (GBS) distribution; se also Azevedo et al. (2012). Owé&0E) proposed a three-parameter extension
of the BS distribution. Vilca and Leiva (2006) derived a BStdbution based on skew-normal models
(skew-BS). Gomez et al. (2009) extended the BS distribdtimm the slash-elliptic model. Guiraud et al.
(2009) deducted a non-central version of the BS distrilouti@iva et al. (2009) provided a length-biased
version of the BS distribution. Ahmed et al. (2010) analyadduncated version of the BS distribution.
Kotz et al. (2010) performed mixture models related to thelB&ibution. Vilca et al. (2010) and Castillo
et al. (2011) developed the epsilon-skew BS distributioalaBrishnan et al. (2011) considered mixture
BS distributions. Cordeiro and Lemonte (2011) defined tha-B&S distribution. Leiva et al. (2011)
modeled wind energy flux using a shifted BS distribution. attie et al. (2012) viewed the BS distri-
butions as part of the Johnson system, allowing locati@hesBS distributions to be obtained. Ferreira
et al. (2012) and Leiva et al. (2016a) proposed an extremewadrsion of the BS distribution and its
modeling. Santos-Neto et al. (2012, 2014, 2016) and Leigh €014c) reparameterized the BS distribu-
tion obtaining interesting properties and modeling. Satlal. (2012) presented the Kumaraswamy-BS
distribution. Fierro et al. (2013) generated the BS distidn from a non-homogeneous Poisson process.
Lemonte (2013) studied the Marshall-Olkin-BS (MOBS) dizition. Bourguignon et al. (2014) derived
the power-series BS class of distributions. Martinez €2114) introduced an alpha-power extension of
the BS distribution. Leiva et al. (2016c) derived a zerodatid BS distribution.
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The above mentioned review about extensions and gendiafizeof the BS distribution is in
agreement with the important growing that the distributioeory has had in the last decades. This is
because, although the Gaussian (or normal) distributisrdbaninated this theory during more than 100
years, many real-world applications cannot be well modblethis distribution. Then, non-normal dis-
tributions which must be flexible in skewness and kurtosesregeded. The interested reader can find
a good collection of non-normal distributions in Johnsoralet(1994, 1995). Several of these distri-
butions were constructed using methods early proposed érs&e (1895), Edgeworth (1917), Cornish
and Fisher (1937) and Johnson (1949), based on differesdizhtions, mathematical approximations
and translation techniques; see more details in Johnsdn(&B84, pp. 15-62). A more recent proposal
on non-normal distributions is attributed to Azzalini (B98 In the line of these works and motivated
from financial mathematics, where applications in the dat@n of value at risk and corrections to the
Black-Scholes options need flexibility in skewness anddagist Shaw and Buckley (2009) introduced
new parametric families of distributions based on the trautation method. This method modifies the
skewness and/or kurtosis into symmetric and asymmettidhlisions and generates a new distributional
family known as transmuted (or changed in its shape) digiohs. The transmutation method proposed
by Shaw and Buckley (2009) carries out a function compastigtween the cumulative distribution func-
tion (CDF) of a distribution and the quantile function (QF)amother. Aryal and Tsokos (2009) defined
the transmuted extreme value distribution. Aryal and TsqR011) and Khan and King (2013) presented
transmuted Weibull distributions. Aryal (2013) proposee transmuted log-logistic distribution. Ashour
and Eltehiwy (2013) analyzed the transmuted Lomax distidbu Mroz (2013a,b) studied the transmuted
Lindley and Rayleigh distributions, whereas Sharma et24l14) derived a transmuted inverse Rayleigh
distribution. Khan and King (2014) considered the trangduiverse Weibull distribution. Merovci and
Puka (2014) deduced the transmuted Pareto distributicemalét al. (2014) developed the transmuted
linear exponential distribution. Saboor et al. (2015) tzdaa transmuted exponential-Weibull distribu-
tion. Louzada and Granzotto (2016) introduced the transdlag-logistic regression model. To our best
knowledge, no transmuted versions of the BS distributiasteXherefore, the main objective of this pa-
per is to propose and derive the transmuted BS (TBS) disimibuas well as a comprehensive treatment
of its mathematical and statistical properties.

Section 2 presents the TBS distribution and derives somgs chiaracteristics including its PDF,
CDF and QF, as well as its FR, moments and a generator of randorhers. Section 3 provides the esti-
mation of the TBS parameters using the maximum likelihoodYMethod, including the corresponding
score vector and Hessian matrix for inferential and diagogsirposes. In this section, the performance
of the ML estimators is evaluated by means of Monte Carlo (Idi@)ulations. In addition, diagnostic
tools are derived to detect influential data in the ML estioratSection 4 illustrates the potential appli-
cations of the TBS distribution with three real-world dagssfrom different areas. Section 5 discusses
the conclusions of this work and future research about thie to

2. FORMULATION AND CHARACTERISTICS

In this section, we provide a background of the BS distrdoutformulate the new distribution and
obtain some of its more relevant characteristics.
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2.1. The BS distribution

Arandom variabld’ has a BS distribution with shage > 0) and scalés > 0) parameters if it
can be represented by
2
T =8 (aZ/2 + ((@Z/2)? + 1)1/2) ,
whereZ ~ N(0, 1). In this case, the notatidfiy, ~ BS(«, 3) is used. The CDF df7 is

Fes(t; o, B) = @((1/a)p(t/B)), t>0,
wherep(y) = y*/? — y~1/2, fory > 0, and® denotes the standard normal CDF. The PDFois

fes(t; ., B) = w(a, B)t=*/2(t + B)exp (—7(t/B)/(207)), t >0,

wherex(a, 8) = exp(1/a?)/(2av/27B) andr(y) = y + 1/y, for y > 0. Note that the inverse function
of the CDF of a random variable, also known as QF, is defined'by(y) = inf,cr{F(z) > y}, for
y € [0, 1]. Then, the QF of} is

t1(q; 0, B) = Fod (g, B) = B (az(q)/2 + ((az(q)/2)* + 1)1/2)2, 0<q<l,

wherez = ®~! is the inverse function of the standard normal CDF (or QF}| Egsl is the inverse
function of Fgs. As mentioned, the BS distribution holds the following scahd reciprocation properties:
(i) b1y ~BS(w,b3), forb > 0, and
(i) 1/Ty ~ BS(«, 1/5), respectively.
Therth moment of I} ~ BS(w, ) is E(T]) = " (K,41/2(1/0®) + K,_1/2(1/a?)) /2K )5(1/0?),
with K, (u) denoting the modified Bessel function of the third kind oferd and argument given by

2

o lun [ o .
K”(u)_§(§)/0 w exp( w 4w)dw,

see Gradshteyn and Randzhik (2000, p. 907).

2.2. The TBS distribution

The TBS distribution that we propose is motivated by the wafrEhaw and Buckley (2009). As
mentioned, they introduced a class of generalized digtobs based on the transmutation method, which
is described next. Lef; andF; be the CDFs of two distributions with a common sample spadd«':iml
andF{1 be their inverse functions (QFs), respectively. The gdmark transmutation as given in Shaw
and Buckley (2009) is defined b§2(u) = Fa(F; *(u)) andGyy (u) = Fi(Fy '(u)). The functions
G12 andG2; both map the unit intervd, 1] into itself. Under suitable assumptioris,» andG2; satisfy
Gi;(0) = 0andG,;(1) = 1, fori,j = 1,2, with ¢ # j. A quadratic rank transmutation map is defined
asGiz2(u) = u+ Au(l — u), for |A] < 1, from which follows that the CDF satisfies the relationship
Fy(x) = (1+A\)Fy(z) — A\(Fy (z))2. Then, by differentiation, it yieldg, () = f1(x)(1+A—2 X Fy(2)),
wheref; andf> are the corresponding PDFs associated with the CRFsd F;, respectively. For more
details about the quadratic rank transmutation map, see 8hd Buckley (2009). By using the BS CDF
and PDF, we have the TBS CDF and PDF, with parametgfsand\, given respectively by

Fres(t;a, B,0) = (1+N)&((1/a)p(t/B)) = M@((1/a)p(t/B)))?,
(2.1) fres(t;a, B, A) = (14X —2X0((1/a)p(t/B))) fes(t;a, B), ¢ >0,
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where|\| < 1 is a additional skewness parameter, whose role is to int®dkewness and to vary
tail weight. Hereafter, a random variabillewith CDF or PDF given as in (2.1) is denoted By ~
TBS(a, 8, A). Note that, at = 0, we have the BS distribution. It can also be shown that

}E}(l) fTBS(t; a, ﬁv )\) = t1i>120 fTBS(t; Q, ﬁv )\) =0.

Observe that the PDF df can be expressed as a finite linear combination ofaBS) and skew-
BS(a, 8,1) PDFs; see Vilca and Leiva (2006) for details on the skew-B&ibution and its features.
Thus,

fTBS(t; a, ﬁv )\) = (1 + )\)fBS(ta , B) - AfSk(—:‘W-Bit; «, 67 1)7

where fskew-84t; @, B,m) = 2®((n/a)p(t/B)) fes(t; o, B), forn € R. In addition, if A = —1, thenT ~
skew-BS«, 5,1). Figure 1 (first panel/row) displays several shapes of the Bien in (2.1) for some
parameter values. These shapes reveal that the TBS diitnilisi very versatile and that the additional
skewness paramet&ihas substantial effects on its skewness. Note that the slodifee TBS distribution
are much more flexible than those of the BS distribution.

2.3. Characteristics of the TBS distribution

Several of the mathematical properties of the TBS distidioutan be obtained directly from the
BS and skew-BS distributions. For example, the ordinary ermisiand moment generating function of
the TBS distribution follow immediately from the momentsi$ and skew-BS distributions. For more
details of the skew-BS distribution, see Vilca and Leiva0@0and Saulo et al. (2013). Some properties
of the TBS distribution are as follow. If ~ TBS(«, 3, \), then:
() bT ~TBS(a, b3, \), forb > 0, that is, the TBS distribution is closed under scale tramsétions;
(i) 1/T ~TBS(«, 1/8,—M), that is, the TBS distribution is closed under reciproaatio
(i) Y = («?/B)T ~ TBS(a, o, ), that is,Y follows a two-parameter TBS distribution.
The FR of T ~ TBS(av, 8, ) is

(1+A—-2X0((1/)p(t/B))) hes(t; @, B)
L= A®((1/a)p(t/P)) ’

wherehgs(t) = fas(t)/(1 — Fas(t)) is the FR of the BS distribution. Figure 1 (second panel/rsingws
the FR of the TBS distribution for some parameter values. &veverify that the TBS FR is upside-down.
From (2.2), note that:

(i) hres(t; o, B, \)/hes(t; o, B) is decreasing im for A > 0;

(i) hres(t; «, B8, ) /hes(t; «, B) is increasing irt for A < 0;

(i) hes(t; o, B) < htes(t; o, B, A) < (14 A)hres(t; a, 8, A) for A > 0;

(iv) (1 4+ MNhes(t; a, 8) < hres(t; o, B, A) < hes(t; o, 8) for A < 0; and

(V) limy 0 htes(t; a, B, A) = 0 andlimy_, » htes(t; o, 3, A) = 1/(2a23), that is, the limiting behaviors
of the FRs of the TBS and BS distributions are the same.

Observe that the expression given in (2.2) may also be wrétte

hres(t; a, B, A) = p(t)hes(t; a, B) + (1 — p(t))hskew-sdt; @, 8, 1),

wherep(t) = (1 + A\)(1 — @((1/a)p(t/B)))/(1 = (1 + NO((L/a)p(t/B)) + N@((1/a)p(t/B)))?),

whereashgs andhskew-ssare the FRs of the BS and skew-BS distributions, respegtivel

(2.2) hres(t; o, B, \) = t>0,
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Figure 1: Plots of the TBS PDF (first panel/row) and FR (second pamas)/ffor the

indicated value of its parameters.

Many important features of a distribution can be obtainedubh its moments. Léf; ~ BS(a, §) and
T, ~ skew-BSq, 3,1). Then, thein'th moments are

I

k=0 t=0
T k
(2.4) BTy =63 (;) (’f) 2 (%)k+1 Wity T=1,2,..,
k=0 1=0

wherew, , = E(Z%(v/a2Z2 + 4)*) andZ ~ skew-norma, 1, 1); see Azzalini (1985). Theth mo-
ment ofT" ~ TBS(«, 8, A) can be written as @) = (1 + A\) E(T7) — AE(TY). Then, using the results
presented in (2.3) and (2.4), we obtain

E\ o2(r—k+35) - i Nkt
oy (e |
kZOJZO ( e < > <J> 23(r—k+j)—1 A(k) <j>2 (2) wk+1;kj>
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Therefore, the first four moments 6f~ TBS(«, 8, A) are

) - B(H;)(m—x(uérfzz)))’

I 3 2aw11+a3w31
E(T?) = £2(1+2a%+ 1 A ; ,
=7 ( “ 2a A 24+4a2+3at ’
9 15 3awi 1 +4a’wsq + aPws
E(T3) = 83 (14 Za? +9a*+ =af 1+A=-X(1+ . ; ,
) v ( 2 for 2 & + 24+9a2+18at+15a8 ’
™ — 105
BT gt <1 8a? "30a4+600¢6+7a8)

wl(1ex—a(1+ dawr; +10a3ws 1 +6a’ws 1 + a’wr .
2+ 1602 +60a*+ 12008 + 10508

Thus, therth moment ofl" ~ TBS(«, 3, A) about its mean is

T

(T ) =1+ 3 (1) 0 - 7 BT - AZ ( )2 = (T )

=0

wherep; = B (14 a?/2) andus = B (14 awr,; + o?/2). Hence, the corresponding second, third
and fourth moments about the mean are

E(T — w)?) = Var(T) = (1+ A\) (1 — p)* + 07) = M(u2 — p)* + 03),
E(T = 1)*) = (14X (0 = ) + 30+ ) = A (2 = 1) + 303 + ”),

E(T - ") = (1+2) (G — )"+ 6(m — )07 + 601 — p)u” + )
-\ ((uz — 1)t + 62 — )02 + 6(u1 — )Y + u§4)) :

whereo? = Var(T1) = o?B%(1 + (5/4)a?), 05 = Var(Ty) = (%/4)(40* — o® wi, + 203ws; —
203wy 1 + 5at), ug?’) = Ba* (3+ (11/2)a?), ,u§4) = B*a* (3+ (45/2)a® + (633/16)a?), ,uéB) =
u§3)+( 333 /4) (20 ws 1 +2ws3 1 =30 w3 1 —3aw 1ws 1 +w? | +3aw? | —6aPw 1 —6wr 1), andu(4)
u§4)—|—( 454/16)(24a w1,1 Wo, 1—|—12w1 1w3 1 —16a? w1 1 Ws, 1+18a w1 1—96aw; 1 +16 cws 1 —

12 aw171+8 ad wr1—3 w171—|—24 w1,1 16 o® ws,1+12 ad ws,1—180 ad w11 +16 aws1—16w; 1 ws1).
Figure 2 presents graphical plots of the mean (first parnve)/and variance (second panel/row) of the TBS
distribution for different values of, 5 and\. Note that the mean and variance decreaseiasreases,
but the mean and variance, generally, increasesasd 5 increase. The QF df ~ TBS(«, 5, \) is

) 1/2\ 2
p(so@)+ 1+ 50 @) )L Az
tTBS(q;a7ﬂ7)\): , 1/2 2
p(so@+ (150 @?) ) L Ao

whereg* = (1+ X — /(1 +X)2 —4Xq)/2 ), forq € [0, 1]. Random numbers for the TBS distribution
can be generated from the TBS QF, which is detailed by Algorit.
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Figure 2: Plots of the mean (first panel/row) and variance (seconelfraw) of the

TBS distribution for the indicated value of its parameters.

Algorithm 1 Random number generator from the TBS distribution

1: Generate a random numbeiffrom U ~ U(0, 1);
2: Setvalues fory, 8 and\ of T ~ TBS(a, 8, A);
3: If X # 0, then compute a random number

t=8 <%¢>_l(u*) + (1 + O‘;qfl(u*)Q)m)

fromT ~ TBS(¢, 8, A), with u* = (1 +A-V/Q+ N2 - 4)\u) /(2 X); otherwise

2

2

t=p (%@‘1@) + (1 + O%D_I(U)Q) 1/2> ;

4: Repeat steps 1 to 3 until the required amount of random nisribdre completed.

From Figure 3, note that the generator of random numbersogempin Algorithm 1 seems to be
appropriate for simulating data from a TBS distribution. M#plement this algorithm in thR statistical
software (R-Team, 2016) and generate 10000 random nundmersidering the following values of the
parametersoe = 0.1, 8 = 1.0 and\ € {-0.9,0.9}. The empirical PDF (EPDF), the empirical CDF
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(ECDF) and the kernel density estimate (KDE) are obtainéauhiese random numbers. Figure 3 (a)
shows that the midpoints are consistent with the valuesirsddathrough the TBS PDF. Figure 3 (b)
allows us to compare the empirical and theoretical CDF, Wwhre detected to be similar.

2
=

e r—

CDF
0.6 0.8
L L

0.4
L

0.2
!

0.0
.

T T T T T T T T T
0.8 1.0 1.2 14 0.6 0.8 1.0 1.2 14
data data

@ (b)

Figure 3: Empirical and theoretical PDF with its KDE in solid and deghines (a) and
empirical and theoretical CDF (b) for simulated data.

3. PARAMETER ESTIMATION, ITS PERFORMANCE AND DIAGNOSTICS

In this section, we use the ML method to estimate the TBSiligion parameters. In addition,
by means of MC simulations, we study the performance of thedslimators. Furthermore, we provide
diagnostic tools to detect influential data.

3.1. ML estimation

LetTy,...,T, be a random sample from the TBS distribution with vector afapzetersd =

(o, 3,\)T andty, ..., t, be their observations (data). The log-likelihood functiond is
1 n n
(3.1) £(8) = nlog(k Zlog +Zlog ti+B) —Q—Z:: t/5)+;1og(1+x(1—2q>(vi))),

wherewv; = (1/a)p(t;/B). The ML estimated = (a@,3,\)7 is obtained by solving the likelihood
equationd/,, = Uz = U, = 0 simultaneously, wher&,, Uz andU, are the components of the score
vectorU (8) = (U,,Ugs, Uy) " given by

_n 2) , LNn(ti B 22\~ widblv)
Ua——a<1+@>+52<5+5)+EZHA——MW

- n n 1 1 n t; ﬁ (b()
Uﬂ——%+;m+ﬂg<g+5) Z<1+/\—M)(U)>
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e 1—2®(v;)
U= ; 1+ A1 = 28(v;))’

with ¢ being the standard normal PDF. The equatidps= Ug = U, = 0 cannot be solved analytically,

so that iterative techniques, such as bisection, Newtghi&an and secant methods, may be used; see
Lange (2001) and McNamee and Pa (2013). To obtain the ML astsof the model parameters, we
employ the subroutinébax BFGS of the Ox software; see Doornik (2006). This subroutine uses the
analytical derivatives to maximiz&8); see Nocedal and Wright (1999) and Press et al. (2007). As
starting values for the numerical procedure, we suggesinsider

a= (s/g—i— 5/7‘ —2)1/2, B = (sr)1/2, A=0,
wheres = (1/n) Y. t; andr = 1/((1/n) Y., (1/t;)); see Birnbaum and Saunders (1969a) and
Leiva (2016, pp. 40-42).

To construct approximate confidence intervals and hypathests for the parameters, we use the
normal approximation of the distribution of the ML estimats 8 = (a, ,\) ". Specifically, assume
that regularity conditions are fulfilled in the interior dfet parameter space but not on the boundary; see
Cox and Hinkley (1974). Then, the asymptotic distributicﬁn@(@— 0) is N3(0, Xy), whereXy is the
asymptotic variance-covariance matrixéfwhich can be approximated from the observed information
matrix K (6) = —J(6), whereJ (6) is the Hessian matrid (8) = 9%£(0)/0000 T, whose elements are

n 6n 4\ — vip(v;) 9 vip(v;) 3=/t f
aa — 5 D) T N aas N i —_— 2| — = - - |
Joo TE tGd T @2 LT - k() (“Z T 20 Z T

- P(v;) 200 (v;) 1 ([t B
Jap Z1+A1—2<1>(vl)) (1+)\(1—2<I>(w)) + () _1>_QT;(5_E)’
_ vi) Vti/B)p(vi)
___Z(1+)\ 200 (v )))’ aﬂz<l+/\—2/\®(vl))>’
T(ts /5 22¢(v;)
Jop = 52214—)\—2)@ (v3) ( \/7 \/> <vl 1—|—/\—2/\<I>(vi))>

1 & 1—20(v;) 2
+2—52_Z(t + B)2 _a253zt“ A*__;<1+A(1—2<I>(vi))>'

Thus, this trivariate normal distribution can be used tostarct approximate confidence intervals and
regions for the model parameters. Note that asymptoti¢1 — +/2)% confidence intervals fax, 5 and
A are, respectively, established as

—

at 2177/2(\75“62))1/23 B\:I: Zlfv/2(\75r(g))l/2a 3\\ + 2177/2(Var(:\\))1/2a

WhereVar(G ) is the diagonal element ok —'(8) related to each parametéy, for j = 1,2, 3, with

0 = a, 02 = 3,03 = A, andz, ) is the100(1 — ~v/2)th quantile of the standard normal distribution.
Note that the estimated asymptotic standard errors (SERpafach estimator can be obtained from the
root of the diagonal element d€ —*(6).
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3.2.  Simulation study

We present a numerical experiment to evaluate the perfarenafithe ML estimator&, B and\.
The simulation was performed using tBg software. A number of 10000 MC replications were con-
sidered, sample sizes € {25, 50, 75,100, 200,400, 800}, the combination of the parametéts, 5) €
{(0.10,1.00), (0.50, 1.00), (1.50, 1.00), (2.00,1.00)} and X € {—0.80, —0.50, —0.20, 0.20, 0.50, 0.80}.
Without loss of generality, we fi} at 1.00 in all experiments, because this is a scale parameter. Ta-
ble 1 presents the empirical bias and root of mean squaredadithe estimators of the TBS distribution
parameters. From this table, note that, generally, thedBaseases as increases, evidencing that the
ML estimatorsa andﬁ are asymptotically unbiased. Observe that, when varyiegvttiues of), the
distributions of the estimators af andﬁ show, in general, symmetrical behawors In addition, when
the parametet increases, the bias of increases. Note also that the estimatds more biased than
a andﬂ, considering all scenarios. Also in all of the cases, thé¢ obthe mean square error decreases
asn increases, proving that the ML estimators of the TBS distidm parameters have good precision,
as known. It is important to mention that some iterationsritl converge during the simulations, due
possibly to the complexity of the function to be maximizedecause of the difficulty to provide a good
initial value from\.

3.3. Influence diagnostics

Local influence is based on the curvature of the plane of tgdikelihood function; see Leiva
et al. (2014b, 2016b). In the case of the TBS model given ih)(2td = (a, 3, \) " and/(8|w) be the
parameter vector and the log-likelihood function relatethis model perturbed by, respectively. The
perturbation vectow belongs to a subsét € R™ andwy is ann x 1 non-perturbation vector, such that
£(B|wo) = £(0), for all 8. The corresponding likelihood distance (LD) is

(3.2) LD(w) = 2(£() — £(8..)),

where8,, denotes the ML estimate upon the perturbed TBS model used to assess the influence
of the perturbation on the ML estimate, wher&%ﬁ) is the usual likelihood function given in (3.1).
Cook (1987) showed that the normal curvaturedan the direction of the vectod, with ||d|| = 1, is
expressed a€;(0) = 2|d"ATJ(0)"'Ad|, whereA is a3 x n perturbation matrix with elements
A = 9*0(0|w)/00,;0w; evaluated ad = 6 andw = wy, forj = 1,2,3,i = 1,...,n, andJ(8) is the
corresponding Hessian matrix.

A local influence diagnostic is generally based on indexspl&tor example, the index graph of
the eigenvectod,,,. related to the maximum eigenvalue Bf(0) = —ATJ(0) A, Cy,...(0) say,
evaluated a® = 6, can detect those cases that, under small perturbatioes;ig a high influence on
LD(w) givenin (3.2). In addition to the direction vector of maximmormal curvatured,,,. say, another
direction of interest igl; = e;,,, which corresponds to the direction of the caseheree,,, is ann x 1
vector of zeros with a value equal to one at itteposition, that is{e;,,1 < i < n} is the canonical
basis ofR™. Thus, the normal curvature@( ) = 2|b;;|, whereb;; is theith diagonal eIementcB(H),
fori =1,...,n, evaluated af = . The casé is considered as potentially influentialif (6 ) > 26(5),
where@( ) =y, Ci(0 )/n. This procedure is called total local influence of the casee Liu et al.
(2016).
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Consider the log-likelihood function given in (3.1). We aiotthe respective perturbation matrix
A, which is already evaluated at the non-perturbation veetorunder the scheme of case-weight per-
turbation. Then, we want to evaluate whether cases witkrdifft weights in the log-likelihood function
affect the ML estimate 0. This scheme is the most used to assess local influence in al.mdde
log-likelihood function of the TBS model perturbed by theeaveight scheme is

((0|lw) = Zei(owi) = Zwia—(e).

Then, taking its derivative with respect @', we obtainA = (Ag, A,, A,)T. After evaluating at
6 = 0 andw = wy, the elements oA ,, Az andA , are

. 1 2 1 ti 6 2)\’()1(;5(1}1) .
AD — (142 — (24 = =1,...

o ( * >+a3<B+ti)+a(1+)\—2)@(vi))’ PT e

A _ _1720@) o _ 1 1 1 <ti g) 2 (T(\/ti/ﬂ)qﬁ(vi) )

N T T 20(0)) " T 28 H 1B 208 \B " 6)  aB \ T+ A-2xd(0y)

4. APPLICATIONS TO REAL-WORLD DATA

In this section, we apply the obtained results for the newehtmthree data sets, illustrating its
potential applications. The results are compared to otbempeting BS distributions. All the computa-
tions were done using th@x software. For each data set, we estimate the unknown pagesradtthe
associated distribution by the ML method and evaluate italgess of fit with suitable methods.

4.1. Exploratory analysis

The first data set (S1) corresponds to the number of suceefsiures for the air conditioning
system of each member in a fleet of 13 Boeing 720 jet airplgnes 188); S1 can be obtained from
Proschan (1963). The second data set (S2) is related toahifydide concentration (in mg/L) obtained
from clean upgradient monitoring wel{s = 34); S2 can be obtained from Bhaumik et al. (2009). The
third data set (S3) corresponds to protein amount (in g)andistricted diet for adult patients in a Chilean
hospital (¢ = 61); S3 and more details about these data can be obtained frivanéteal. (2014a). Table 2
provides some descriptive measures for the three datand@td) include central tendency statistics, the
standard deviation (SD) and the coefficients of variation)(Gkewness (CS) and kurtosis (CK), among
others. From these exploratory analyses, we detect asymaletistributions with positive skewness
in all of the cases and different kurtosis levels. Figure st(fbanel/row) shows the histograms of S1,
S2 and S3, from which it is possible to observe these featligsire 4 displays the usual and adjusted
box-plots, where the latter is useful in cases when the ddliawf a skew distribution; see Rousseeuw
et al. (2016). From Figure 4, note that potential outlienssidered by the usual box-plot are not outliers
in the adjusted box-plot. This is an indication that no @ufliare present at the right tail in all of the
studied data sets. Figure 5 (second panel/row) confirme fhets by means of the influence index plots,
which do not detect atypical cases. Therefore, the TBSilligion can be a good candidate for modeling
these data sets. We compare the TBS distribution to otheargkrations of the BS distribution, such
as the three-parameter MOBS, exponentiated BS (EBS) anghénameter BS distributions with the
EBS and MOBS PDFs beingfegs(z; a, 3,a) = afss(z; , 8) Fes(z; a, 8)¢7 L, forz > 0,a > 0, and
fMOBS(I; m, avﬁ) = T]fBS(I; Q, B)/(l - (1 - 77)(1 - FBS(x; avﬁ)))zi forz > Oa n> 0.



Table 1: Empirical bias and root of mean squared error (in parenff)exfdhe param-
eter estimator for the indicated value®f 3, A, n.
n N a = 0.10, 8 = 1.00 a = 0.50,3 = 1.00 a = 1.50,3 = 1.00 a = 2.00, 3 = 1.00
a B A a B A a B A a B A

25 —0.80| —0.0096(0.0172)  0.0209 (0.0305)  0.3329 (0.3892) —0.0509 (0.0871)  0.1198 (0.1722 0.3472 (0.4095) —0.1741 (0.2818) 0.3332 (0.5057, 0.3022 (0.3853) —0.2717 (0.4122 0.4616 (0.6787 0.3296 (0.4115)
—0.50 | —0.0038 (0.0152)| 0.0064 (0.0243) 0.0926 (0.2381) —0.0177 (0.0763)| 0.0331 (0.1222) 0.0760 (0.2328) —0.0670 (0.2359, 0.0970 (0.3309; 0.0502 (0.2467) —0.1000 (0.3250, 0.1457 (0.4034) 0.0898 (0.2494)
—0.20| —0.0013(0.0147) —0.0087 (0.0248) —0.1734(0.2738) —0.0048 (0.0745) —0.0430(0.1179) —0.2053(0.3139) —0.0221(0.2232) —0.0581(0.2662) —0.1827(0.2988)f —0.0306 (0.3040) —0.0315 (0.3069) —0.1447 (0.2613)
0.20| —0.0012(0.0145) 0.0093 (0.0253) 0.1731(0.2738) —0.0064 (0.0738)| 0.0500 (0.1292) 0.1952 (0.3005) —0.0138 (0.2236; 0.1562 (0.3613; 0.1920(0.3042) —0.0247 (0.3055; 0.1369 (0.3875 0.1453 (0.2637)
0.50 | —0.0042(0.0152) —0.0061(0.0236) —0.1010 (0.2436) —0.0196 (0.0765) —0.0181(0.1128) —0.0736 (0.2416) —0.0673(0.2380) —0.0104(0.2817) —0.0511(0.2469) —0.1038(0.3267) —0.0357 (0.3175) —0.0896 (0.2508)
0.80| —0.0099(0.0175)] —0.0198(0.0292) —0.3239(0.3822) —0.0484 (0.0869) —0.0897 (0.1338f —0.3350(0.3960f —0.1726(0.2788) —0.1858(0.2976) —0.3058(0.3889) —0.2662 (0.4045) —0.2336 (0.3510f —0.3278 (0.4107)
50 —0.80| —0.0070(0.0129)  0.0165(0.0251)  0.2627 (0.3466) —0.0386 (0.0667)  0.0962 (0.1406 0.2907 (0.3771) —0.1295 (0.2199) 0.2662 (0.4066, 0.2680 (0.3640) —0.1916 (0.3083)  0.3345 (0.5025)  0.2754 (0.3675)
—050| —0.0015(0.0110)  0.0030 (0.0200)  0.0506 (0.2407) —0.0062 (0.0560)  0.0160 (0.0988; 0.0420 (0.2400f —0.0244 (0.1733 0.0541 (0.2515) 0.0360 (0.2483) —0.0395 (0.2321)  0.0862 (0.2943 0.0650 (0.2415)
—0.20 0.0008 (0.0106) —0.0108 (0.0220) —0.1897 (0.2940)  0.0067 (0.0549) —0.0527 (0.1037§ —0.2051 (0.3136 0.0179 (0.1645) —0.0743(0.2149) —0.1669 (0.2879 0.0055 (0.2139) —0.0476 (0.2298) —0.1282 (0.2489)
0.20 0.0008 (0.0106) 0.0108 (0.0223) 0.1893 (0.2928) 0.0059 (0.0544) 0.0596 (0.1177, 0.1942 (0.3017, 0.0173(0.1646; 0.1312 (0.2860; 0.1668 (0.2870; 0.0104 (0.2168 0.1156 (0.2930 0.1283 (0.2492)
0.50 | —0.0018(0.0108) —0.0033(0.0195) —0.0618(0.2423) —0.0066 (0.0550) —0.0070 (0.0960) —0.0432(0.2405) —0.0203(0.1732 0.0066 (0.2374) —0.0315(0.2462) —0.0427 (0.2356) —0.0235(0.2572) —0.0696 (0.2437)
0.80| —0.0068(0.0128) —0.0159(0.0244) —0.2663(0.3514) —0.0374(0.0652) —0.0777(0.1149) —0.2848(0.3678) —0.1275(0.2167) —0.1605(0.2584) —0.2659(0.3639) —0.1932(0.3104) —0.1912(0.2992) —0.2727 (0.3694)
75 —0.80| —0.0057(0.0110)| 0.0144 (0.0230) 0.2320 (0.3297) —0.0293 (0.0560)| 0.0764 (0.1202, 0.2270 (0.3430y —0.1118(0.1889, 0.2359 (0.3620; 0.2490 (0.3488) —0.1584 (0.2681, 0.2803 (0.4342 0.2371 (0.3370)
—0.50| —0.0005(0.0095)  0.0018 (0.0185)  0.0342 (0.2449) —0.0023 (0.0469)  0.0107 (0.0909; 0.0250 (0.2409) —0.0075 (0.1480, 0.0419 (0.2244 0.0307 (0.2446) —0.0213 (0.1989)  0.0661 (0.2504 0.0566 (0.2322)
—0.20 0.0017 (0.0093) —0.0114 (0.0211) —0.1991 (0.3046)  0.0101 (0.0473) —0.0504 (0.0999] —0.2012 (0.3082 0.0200 (0.1370§ —0.0656 (0.1905§ —0.1422 (0.2664 0.0134 (0.1761) —0.0500 (0.1988) —0.1083 (0.2278)
0.20 0.0014 (0.0091)  0.0112(0.0213)  0.1909 (0.2965)  0.0089 (0.0467)  0.0603 (0.1115 0.1785 (0.3028 0.0221 (0.1384 0.1120 (0.2508) 0.1414 (0.2652)  0.0164 (0.1781, 0.0940 (0.2485 0.1104 (0.2307)
0.50 | —0.0009(0.0093) —0.0024(0.0181) —0.0471(0.2400) —0.0027 (0.0469) —0.0046 (0.0872) —0.0318(0.2384) —0.0084 (0.1491 0.0038 (0.2200§ —0.0311(0.2458) —0.0207 (0.1960)f —0.0140(0.2333) —0.0570 (0.2332)
0.80| —0.0059(0.0112) —0.0144(0.0226) —0.2426(0.3408) —0.0307 (0.0570)) —0.0681(0.1063) —0.2469 (0.3442) —0.1069 (0.1887) —0.1469(0.2402) —0.2408(0.3450) —0.1571(0.2657) —0.1661(0.2691) —0.2337 (0.3359)
100 —0.80| —0.0048 (0.0099)| 0.0130 (0.0217) 0.2072 (0.3183) —0.0286 (0.0528)| 0.0758 (0.1195, 0.2349 (0.3233y —0.1012 (0.1730, 0.2152 (0.3348; 0.2272(0.3296) —0.1346 (0.2385, 0.2401 (0.3852 0.2091 (0.3107)
—0.50 0.0000 (0.0084) 0.0008 (0.0180) 0.0204 (0.2489) 0.0005 (0.0430) 0.0072 (0.0869 0.0176 (0.2447) —0.0053 (0.1353 0.0418 (0.2114; 0.0369 (0.2440) —0.0147 (0.1790, 0.0539 (0.2296 0.0490 (0.2259)
—0.20 0.0020 (0.0082) —0.0111 (0.0203) —0.1950 (0.3011)  0.0120 (0.0430) —0.0527 (0.0967§ —0.1909 (0.2905 0.0217 (0.1219) —0.0596 (0.1740§ —0.1236 (0.2492 0.0157 (0.1562) —0.0396 (0.1763) —0.0885 (0.2105)
0.20 0.0022(0.0081)  0.0116 (0.0208)  0.1910 (0.2955)  0.0116 (0.0424)  0.0598 (0.1087 0.1895 (0.2931, 0.0218 (0.1231) 0.1005 (0.2302) 0.1266 (0.2516)  0.0131 (0.1557, 0.0750 (0.2141 0.0883 (0.2091)
0.50| —0.0004(0.0084) —0.0015(0.0176) —0.0330(0.2399) —0.0010 (0.0418) —0.0020(0.0853) —0.0257 (0.2366) —0.0026 (0.1342 0.0052 (0.2048) —0.0308 (0.2406) —0.0140(0.1788) —0.0028 (0.2171) —0.0481 (0.2262)
0.80| —0.0049(0.0098) —0.0126(0.0212) —0.2129 (0.3250) —0.0285(0.0510) —0.0659 (0.1025f —0.2401(0.3448f —0.0965(0.1712) —0.1363(0.2235)] —0.2255(0.3300f —0.1342(0.2384) —0.1455(0.2500f —0.2093 (0.3116)
200 —0.80| —0.0031 (0.0079)| 0.0091 (0.0187) 0.1530 (0.2852) —0.0209 (0.0434)| 0.0591 (0.1046 0.1863 (0.3146) —0.0744 (0.1414) 0.1624 (0.2709; 0.1780(0.2829) —0.0935 (0.1885; 0.1619 (0.2863 0.1455 (0.2440)
—0.50 0.0009 (0.0071) —0.0007 (0.0168)] —0.0011 (0.2470) 0.0040 (0.0357) 0.0011 (0.0810 0.0035 (0.2458 0.0070(0.1115; 0.0187 (0.1767; 0.0160(0.2201) —0.0003 (0.1376; 0.0301 (0.1785 0.0300 (0.1906)
—0.20 0.0024 (0.0067) —0.0107 (0.0192) —0.1820 (0.2963) 0.0121 (0.0352) —0.0463 (0.0884) —0.1712 (0.2969; 0.0138(0.0870§) —0.0353(0.1346) —0.0717(0.1941 0.0106 (0.1097) —0.0261 (0.1331) —0.0525 (0.1657)
0.20 0.0022 (0.0066) 0.0108 (0.0193) 0.1767 (0.2896) 0.0119 (0.0344) 0.0544 (0.1005, 0.1704 (0.2758 0.0157 (0.0887; 0.0578 (0.1692; 0.0739(0.1976; 0.0092 (0.1081, 0.0427 (0.1522 0.0503 (0.1638)
0.50 0.0003 (0.0068) —0.0005 (0.0165) —0.0202 (0.2386)  0.0024 (0.0345)  0.0005 (0.0802§ —0.0187 (0.2351 0.0057 (0.1102) 0.0121(0.1813) —0.0167 (0.2213) —0.0002 (0.1395)  0.0027 (0.1812) —0.0276 (0.1928)
0.80| —0.0033(0.0080) —0.0096(0.0189) —0.1635(0.2992) —0.0229 (0.0424) —0.0565 (0.0943f —0.2092 (0.3319f —0.0729(0.1410f —0.1092(0.1947) —0.1794(0.2867) —0.0871(0.1857) —0.0977(0.2032) —0.1414 (0.2419)
400 —0.80| —0.0019(0.0066)  0.0061(0.0164)  0.1043(0.2538) —0.0139 (0.0369)  0.0436 (0.0923; 0.1391 (0.2816) —0.0518 (0.1143 0.1117 (0.2098)  0.1254 (0.2238) —0.0547 (0.1498 0.0962 (0.2075 0.0886 (0.1817)
—0.50 0.0011 (0.0060) —0.0009 (0.0160) —0.0048 (0.2436)  0.0053 (0.0308) —0.0006 (0.0759 0.0005 (0.2387 0.0106 (0.0902 0.0048 (0.1430, 0.0047 (0.1874 0.0061 (0.1072 0.0097 (0.1365)  0.0068 (0.1525)
—0.20 0.0022 (0.0055) —0.0097 (0.0176)) —0.1595 (0.2790) 0.0116 (0.2770) —0.0387 (0.0813) —0.1410 (0.0298; 0.0072(0.0592) —0.0142(0.0994) —0.0323(0.1424; 0.0040 (0.0760) —0.0064 (0.0980f —0.0165 (0.1215)
0.20 0.0019 (0.0054) 0.0097 (0.0178) 0.1567 (0.2751) 0.0109 (0.0287) 0.0439 (0.0902, 0.1348 (0.2673 0.0070 (0.0593; 0.0269 (0.1108; 0.0317(0.1415 0.0043 (0.0764) 0.0178 (0.1041, 0.0188 (0.1220)
0.50 0.0006 (0.0057) —0.0002 (0.0153) —0.0164 (0.2352) 0.0042 (0.0298) 0.0028 (0.0757) —0.0135 (0.2301; 0.0098 (0.0905; 0.0177(0.1572) —0.0041 (0.1877, 0.0056 (0.1061 0.0068 (0.1431) —0.0108 (0.1529)
0.80| —0.0021(0.0066) —0.0066(0.0166) —0.1165(0.2671) —0.0186 (0.0371)) —0.0497 (0.0903f —0.1870(0.3240f —0.0502(0.1138) —0.0739(0.1588) —0.1213(0.2242) —0.0503 (0.1477) —0.0577 (0.1659) —0.0854 (0.1807)
800 —0.80| —0.0011(0.0055)  0.0041(0.0141)  0.0728 (0.2216) —0.0095 (0.0320)  0.0322 (0.0808 0.1045 (0.2482) —0.0348 (0.0951) 0.0733(0.1612)  0.0821(0.1731) —0.0244 (0.1233)  0.0498 (0.1568)  0.0474 (0.1400)
—0.50 0.0010 (0.0051) —0.0006 (0.0147)  0.0010 (0.2286)  0.0050 (0.0266) —0.0001 (0.0707 0.0043 (0.2266 0.0091 (0.0713) —0.0015 (0.1112) —0.0037 (0.1466; 0.0061 (0.0765 0.0008 (0.0969) —0.0012 (0.1116)
—0.20 0.0018 (0.0045) —0.0074 (0.0155) —0.1224 (0.2494)  0.0086 (0.0239) —0.0266 (0.0681§ —0.0960 (0.2350 0.0030 (0.0407) —0.0037 (0.0730) —0.0079 (0.1063)  0.0017 (0.0523)  0.0007 (0.0723) —0.0028 (0.0918)
0.20 0.0018 (0.0045) 0.0076 (0.0160) 0.1218 (0.2506) 0.0079 (0.0233) 0.0307 (0.0769 0.0925 (0.2305, 0.0027 (0.0410; 0.0093 (0.0760; 0.0097 (0.1069; 0.0005 (0.0525 0.0040 (0.0736 0.0012 (0.0910)
0.50 0.0004 (0.0047) —0.0011 (0.0141) —0.0290 (0.2227) 0.0040 (0.0261) 0.0028 (0.0708y —0.0108 (0.2230] 0.0078 (0.0707; 0.0124 (0.1238) —0.0005 (0.1465; 0.0033 (0.0749 0.0057 (0.1015) —0.0036 (0.1113)
0.80| —0.0013(0.0055) —0.0043(0.0141) —0.0777(0.2273) —0.0157 (0.0331)) —0.0424 (0.0827) —0.1607 (0.2990) —0.0293(0.0925) —0.0437(0.1311) —0.0743(0.1723) —0.0229(0.1234) —0.0258(0.1416) —0.0449 (0.1384)
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Table 2 Descriptives statistics for the indicated data set.
L Data set
Statistic ST <> 53
n 188 34 61
Minimum 1.0 010 178
Median 540 1.15 68.2
Mean 92.7 1.88 80.4
Maximum 603.0 800 210.3
SD 1079 195 423
cs 21 153 1.2
CK 49 172 4.0

o usual box-plot adjusted box-plot  usual box-plot  adjusted box-plot ° usual box-plot oad'usted box-plot
=8 ° =8 - oo ° — — o —
2 g : S 7§
3 8 3] -
° O+ O+ o o
3 . - a ar
=3 | 8 3] | | , ™
1< S < et D O B -+ E g E
S A 1 1
o : o ; N+ N+
=R — T[T
o — o — o ) o . i s
(a) S1 (b) S2 (c) S3
Figure 4: Box-plots for the indicated data set.

4.2. Confirmatory analysis

Table 3 lists the ML estimates of the parameters and the awidrasymptotic SEs in parentheses
of the corresponding estimators for the four distributifitted to S1, S2 and S3. From this table and
using the asymptotic distributions of the ML estimatorsvaa by the simulation study of Section 3.2,
we evaluate whether the additional parameters of the EBSR®@nd TBS distributions are significa-
tively different from zero or not for each data set. Note tiiat S1, the additional parameter is always
significatively different from zero at 5% for all EBS, MOBSdMBS distributions, indicating that the BS
distribution should model S1 poorly. This is not the casef8d S3, where only the MOBS parameter
is significatively different from zero at 5% in both cases.cémfirm these facts, we apply goodness-of-fit
tests detecting what distribution adjusts better each skttaWe consider the Anderson-Darling (AD),
Cramér-von Mises (CM) and Kolmogorov-Smirnov (KS) statistsee Barros et al. (2014). Table 4 pro-
vides thep-values of the corresponding tests for S1, S2 and S3. Thasrdiag to these tests, the TBS
distribution fits the three data sets better than the ottstrildlitions, that is, such-values indicate that
all of the null hypotheses are strongly not rejected for tB&Sdistribution. Also, we compare the four
distributions using the Akaike (AIC) and Bayesian (BIC)drhation criteria, as well as the Bayes factor
(BF) to evaluate the magnitude of the difference betweenBi@values; see Kass and Raftery (1995).
Note that the BF coincides with the likelihood ratio testii@sted models. We compute the AIC and BIC
for the four distributions, whereas the BF is obtained to para the distribution having a smaller BIC
to the others. Decision about the best fit is made accorditigetanterpretation of the BF presented in
Table 6 of Leiva et al. (2015b). Table 5 provides the valueal@f, BIC and BF, indicating that the TBS
distribution provides the best fit for S1 and a very competiperformance for S2 and S3. These good
results of the TBS distribution can be supported graphidalFigure 5, which displays the histograms
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with the estimated TBS PDFs (first panel/row) and the quartksus quantile (QQ) plot with envelope
(third panel/row). The QQ plot allows us to compare the eio@ilCDF and the estimated TBS CDF. All
of these results of goodness of fit allow us to conclude thesoiity of the TBS distribution in relation
to the BS, EBS and MOBS distribution to model S1, S2 and S3s $hows the potential of the TBS
distribution and the importance of the additional paramelie addition, because the TBS distribution
presents the best fit to the studied data sets, we analyzaftherice of small perturbations in the ML
estimates of its parameters. We use the scheme of casetweigrbation. Figure 5 (second panel/row)
sketches the influence index plot based on the TBS distobditir each data set. An inspection of these
plots reveals that, as mentioned, none case appears witaonding influence on the ML estimates of the
TBS distribution parameters.
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Table 3. ML estimates (with estimated SE in parenthesis) for thécateéd parameter,
distribution and data set.
Distribution — fl — — ASZ — — ASS —
01 02 03 01 02 03 01 02 03
TBS(, B, V) 1.7432  23.407 —0.8649 13435  0.7/525 —0.5496 0.5207  73.138 _ 0.1133
(0.1347)  (3.4801)  (0.1179) (0.2526)  (0.3250)  (0.5869) 0405) (17.662)  (0.8308)
MOBS(, o, 8)  2.1975 15556  26.2253 1.8193 07451  1.2899 0.9127 05197  72.6927
(0.5016)  (0.0923)  (4.3453) (1.0968)  (0.1691)  (0.2793) 7385) (0.0471)  (17.025)
EBS(, 3, a) 2.1790 13.5871  2.5381 1.6597  0.4705  2.0973 0.4290  92.414  0.5295
(0.2755)  (4.4206)  (0.5224) (0.5221)  (0.3889)  (1.3836) 7882)  (209.16)  (3.1384)
BS(, B) 15147  41.3240 = 1.2745  1.0203 - 0.5199  70.857 =
(0.0783)  (3.4959) - (0.1546)  (0.1826) - (0.0471)  (4.5565) -
Table 4: p-value of the indicated statistic, model and data set.
T S1 S2 S3
Distribution —p M AD RS M AD RS M AD
TBS 0.7919 0.5819 0.4715 0.9820 0.9332 0.9215 0.9996 0.9459 0.9202
MOBS 0.4789  0.1337  0.0903 0.9765 0.9167 0.9126 0.9995  0.94(.9160
EBS 0.7369 0.2015 0.1568 0.9828 0.9257 0.9212 0.9967 0.8925 0.8810
BS 0.1064 0.0501 0.0166 0.8441 0.8253 0.7129 0.9985  0.9409900D
Table 5: Value of the information criteria and BF for indicated mbded data set.
Distribution SL 52 S3
AlC BIC BF AlC BIC BF AIC BIC BF
TBS 1467.1000 1476.8000 - 5.0275 9.6065 2.5891 418.7600 425.1000 4.0939
MOBS 1471.6000  1481.3000  4.4000 4.9694 9.5485 2.5311 706.7 425.1000 4.1100
EBS 1469.0000 1478.7000  1.8000 50111 9.5902 2.5728 418.7800 425.1100 4.1000
BS 1481.5000  1488.0000  11.2000 3.9647 7.0174 - 416.7800 .0@@1 -

5. CONCLUSIONS AND FUTURE RESEARCH

We have used the transmutation method to define a new distrilthat generalizes the Birnbaum-
Saunders model, named the transmuted Birnbaum-Saundaibution. Some relevant characteristics
of the new distribution have been derived, such as the pilitabfunctions, as well moments and a
generator of random numbers. We have estimated the modehpsers with the maximum likelihood
method and its good performance has been evaluated by migdlosite Carlo simulations. Score vector
and Hessian matrix were derived to infer about the modelmaters. Diagnostic tools have been ob-
tained to detect locally influential data in the maximumlitkeod estimates. Potential applications of the
new distribution have been considered by using three realdvdata sets. Goodness-of-fit methods have
demonstrated the suitable performance of the transmutedb®im-Saunders distribution to these data
in comparison to other versions of the Birnbaum-Saundetsildition. We hope that the new proposed
distribution may attract wider applications in statistitd4odeling based on fixed, random and mixed ef-
fects, including semi-parametric formulations and norap@etric estimation of kernel, can be conducted
with this new distribution. Multivariate versions, as wa#l copula methods, could also be addressed by
the new transmuted Birnbaum-Saunders distribution.
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