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Abstract:
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mean estimators based on RSS and some of its modified methods such as Extreme
RSS (ERSS) and Percentile RSS (PRSS) for different distribution, set and cycle size
in infinite population. Monte Carlo simulation study is conducted for this purpose.
Additionally, the study is supported by real life data. It is observed that, RSS and
some of its modified methods shows better results than Simple Random Sampling
(SRS).
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1. INTRODUCTION

RSS is developed as an alternative to SRS in order to estimate population
parameters more efficiently where the measurement of sampling units is difficult
or costly but the units are easier to rank. McIntyre [12] was the first to propose
the use of RSS in the pasture research to estimate the mean amount of crops.
Afterwards, Halls and Dell [11] used this method to estimate the mean weights
of trees and plant leaves in pine forests located in the east of Texas. In order to
compare the variances of the means obtained from RSS and SRS methods Evans
[7] carried out a study on long leaf pine trees. The first mathematical theory of
RSS in infinite population was developed by Takahasi and Wakimoto [24]. They
also demonstrated that the estimator of the population mean obtained by RSS is
unbiased and its variance is smaller than SRS when the errors in the ranking are
ignored. Dell and Clutter [6] examined errors of ranking in RSS. They showed
that the mean estimator of RSS is an unbiased estimator of population mean when
ranking is imperfect. David and Levine [5] conducted a study to determine the
effects of the errors in the ranking in RSS. The concept of concomitant variable for
RSS which is an effective way to increase the accuracy of ranking was proposed by
Stokes [22]. This variable should be highly correlated with the variable of interest.
Also, Stokes [23] suggested RSS based variance estimator which is asmptotically
unbiased and more efficient compared to SRS based variance estimator. In order
to review other results and examples for RSS see these studies, Patil et al. [20]
and Al-Omari and Bouza [1]. Also detailed information regarding theoretical and
applicational studies based on RSS can be found in Chen et al. [4].

Ranking of the units in a set is made on the basis of the visual judgement of
the researcher or a concomitant variable which has a strong correlation with the
variable of interest. These ranking methods are defined as ranking error models.
There are many studies in the literature that are focused on the modelling of
ranking errors. Primarily, Dell and Clutter [6] developed a model including a
term of random error for the observations. Later, Bohn and Wolfe [3] proposed
a ranking error model based on the expected value of the difference between
two order statistics. Fligner and MacEachern [9] used the principle of monotone
likelihood ratio to model the ranking information in RSS. New class of models is
presented for imperfect rankings, in a study carried out by Frey [10]. A calibration
model is developed by Ozturk [17] to reduce the errors in the ranking for RSS.
Besides, Ozturk [18] suggested inference techniques for ranked set sample data in
the presence of judgement ranking errors. Alexandridis and Ozturk [2] developed
robust statistical inference against imperfect ranking in a ranked set sample data
obtained from a family of discrete distributions. By taking the ranking errors
in RSS into account, Ozturk [19] obtained non-parametric maximum likelihood
estimators.

The motivation of this study is to see the effects of ranking error models
on the mean estimators of RSS and some of its modified methods and compare
them with the mean estimator of SRS. For this purpose, a simulation study is
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conducted. In addition, an abalone data set is used to support the results of the
simulation study.

This study consists of six sections. The first section includes the aim of the
study and literarure review on RSS. The second section contains methodologi-
cal background and detailed information about RSS, extreme RSS (ERSS) and
percentile RSS (PRSS). Ranking error models in RSS literature such as visual
ranked set sampling (VRSS) and concomitant ranked set sampling (CRSS) are
defined in section 3. In addition, a Monte Carlo simulation study is conducted to
determine the effects of ranking error models on the MSE of the mean estimators
based on RSS and some of its modified methods. Besides, abalone data set is
used for comparing the results obtained from the simulation study in section 5.
The final section contains the conclusions.

2. RANKED SET SAMPLING AND SOME OF ITS MODIFIED
METHODS

2.1. Ranked Set Sampling

In recent years, RSS is a commonly used sampling method in literature.
RSS was introduced by McIntyre [12] as an alternative sampling method to SRS
in order to estimate the population parameters more efficiently. It is useful and
preferable method due to several important factors. Set size and the relative
costs of various operations such as sampling, ranking and measurement are the
most important ones among these factors. Also RSS provides advantages due to
its features such as the ability to work with finite or infinite populations and it
does not require to measure all units in the selected sample in RSS.

There are two important parameters in RSS. These are the set size and the
number of cycles which are denoted by n and m, respectively. The set size in
RSS usually ranges from 2 to 5. Also, there are many studies available in the
literature in which more sets are used. On the other hand, there is no limit for
the number of cycles. RSS procedure is applied in 5 steps which are described as
below.

1. Select a sample of size n2 from the population of interest using SRS.

2. Divide this randomly chosen sample of size n2 into n sets with size n.

3. Rank the units within each set via cost effective and straightforward mea-
surement. This ranking can be made by using visual ranking method, a
concomitant variable or other methods.

4. Select the smallest ranked unit from the first set, the second smallest ranked
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unit from the second set and the nth smallest ranked unit from the nth set
for actual measurement of units.

5. This process is repeated m times, until maintaining the required sample
size.

The following expression represents the RSS procedure for one cycle:
X1[1:n] ≤ X1[2:n] ≤ X1[3:n] ≤ . . . ≤ X1[n:n]

X2[1:n] ≤X2[2:n] ≤ X2[3:n] ≤ . . . ≤ X2[n:n]

X3[1:n] ≤ X3[2:n] ≤X3[3:n] ≤ . . . ≤ X3[n:n]
...

Xn[1:n] ≤ Xn[2:n] ≤ Xn[3:n] ≤ . . . ≤Xn[n:n]



Here, X(i[k:n]j) represents the unit which has the rank of k in the ith set
and jth cycle where i = 1, 2, ..., n and j = 1, 2, ...,m. The obtained ranked set
sample for n set and m cylcle can be shown as

X[1]1 X[2]1 X[3]1 . . . X[i]1

X[1]2 X[2]2 X[3]2 . . . X[i]2

X[1]3 X[2]3 X[3]3 . . . X[i]3
...

...
...

X[1]j X[2]j X[3]j . . . X[i]j


where, X[i]j denotes the ith ranked observation in the jth cycle for i and j
changing from 1 to n and m, respectively. The sets in RSS are random samples
that are elements of the ith set X[i]1, X[i]2, . . . , X[i]j and each set has the same
distribution function F (x; θ) and same probability density function f(x; θ), where
i = 1, 2, 3 . . . , n and j = 1, 2, 3 . . . ,m.

The sample mean estimator of the population mean for RSS can be shown
as

(2.1) X̄RSS =
1

mn

m∑
j=1

n∑
i=1

X[i]j .

Also the variance of the mean estimator for RSS can be shown as

(2.2) V ar(X̄RSS) =
σ2x
mn

[
1−

n∑
i=1

(E(X[i]j)− µx)2

nσ2x

]
.

where, µx and σ2x are the mean and the variance of the population of interest,
respectively.
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2.2. Extreme Ranked Set Sampling

ERSS is developed by Samawi et al. [21] to estimate the population pa-
rameters more efficiently than SRS with the same number of units by only using
the minimum and maximum ranked units for n when it is even and, the median
ranked unit when it is odd.

For example, when n = 6, extreme ranked set sample is given below:



X1[1:6] ≤ X1[2:6] ≤ X1[3:6] ≤ X1[4:6] ≤ X1[5:6] ≤ X1[6:6]

X2[1:6] ≤ X2[2:6] ≤ X2[3:6] ≤ X2[4:6] ≤ X2[5:6] ≤ X2[6:6]

X3[1:6] ≤ X3[2:6] ≤ X3[3:6] ≤ X3[4:6] ≤ X3[5:6] ≤ X3[6:6]

X4[1:6] ≤ X4[2:6] ≤ X4[3:6] ≤ X4[4:6] ≤ X4[5:6] ≤X4[6:6]

X5[1:6] ≤ X5[2:6] ≤ X5[3:6] ≤ X5[4:6] ≤ X5[5:6] ≤X5[6:6]

X6[1:6] ≤ X6[2:6] ≤ X6[3:6] ≤ X6[4:6] ≤ X6[5:6] ≤X6[6:6]


Since the set size n = 6 is even, the actual measurement of units is made

over the smallest ranked units (X1[1:6], X2[1:6],X3[1:6]) from the first three sets and
the largest ranked units (X4[6:6], X5[6:6],X6[6:6]) from the last three sets, where
Xi[m:n] represents the mth ranked unit in the ith set for i = 1, 2, . . . , n, m =
1, 2, . . . , n. On the other hand, an example for odd set size, n = 7, is given below:

X1[1:7] ≤ X1[2:7] ≤ X1[3:7] ≤ X1[4:7] ≤ X1[5:7] ≤ X1[6:7] ≤ X1[7:7]

X2[1:7] ≤ X2[2:7] ≤ X2[3:7] ≤ X2[4:7] ≤ X2[5:7] ≤ X2[6:7] ≤ X2[7:7]

X3[1:7] ≤ X3[2:7] ≤ X3[3:7] ≤ X3[4:7] ≤ X3[5:7] ≤ X3[6:7] ≤ X3[7:7]

X4[1:7] ≤ X4[2:7] ≤ X4[3:7] ≤ X4[4:7] ≤ X4[5:7] ≤ X4[6:7] ≤X4[7:7]

X5[1:7] ≤ X5[2:7] ≤ X5[3:7] ≤ X5[4:7] ≤ X5[5:7] ≤ X5[6:7] ≤X5[7:7]

X6[1:7] ≤ X6[2:7] ≤ X6[3:7] ≤ X6[4:7] ≤ X6[5:7] ≤ X6[6:7] ≤X6[7:7]

X7[1:7] ≤ X7[2:7] ≤ X7[3:7] ≤X7[4:7] ≤ X7[5:7] ≤ X7[6:7] ≤ X7[7:7]



In this case, the actual measurement of units is made over the smallest
ranked units (X1[1:7], X2[1:7], X3[1:7]) from the first three sets and the largest
ranked units (X4[7:7], X5[7:7],X6[7:7]) from the following three sets. In addition, the
fourth ranked unit (X7[4:7]) is selected from the remaining set for the measurement
where Xi[m:n] represents the mth ranked unit in the ith set for i = 1, 2, . . . , n,
m = 1, 2, . . . , n. For this case, the last unit corresponds to the median value of
the last set in the sample.

For even set size, the mean estimator of ERSS is given by

(2.3) X̄ERSS =
1

n

[
n/2∑
i=1

X2i−1[1:n] +

n/2∑
i=1

X2i[n:n]

]
.
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Also, the variance of the mean estimator based on ERSS is given by

(2.4) V ar(X̄ERSS) =
1

n2

[
n/2∑
i=1

V ar(X2i−1[1:n]) +

n/2∑
i=1

V ar(X2i[n:n])

]
.

For odd set size, the mean estimator of ERSS is given by

(2.5) X̄ERSS =
1

n

[
(n−1)/2∑
i=1

X2i−1[1:n] +

(n−1)/2∑
i=1

X2i[n:n] +Xn[(n−1/2):n]

]
.

Also, the variance of the mean estimator based on ERSS is given by

V ar(X̄ERSS) =
1

n2

[
(n−1)/2∑
i=1

V ar(X2i−1[1:n]) +

(n−1)/2∑
i=1

V ar(X2i[n:n])

+ V ar(Xn[((n+1)/2):n])

]
.

(2.6)

2.3. Percentile Ranked Set Sampling

PRSS is suggested by Muttlak [13] to estimate the population parameters
more efficiently than SRS with the same number of units by only using the [p(n+
1)]th and [q(n+ 1)]th ranked units for n when it is even and, the median ranked
unit when it is odd.

In this sampling method, p is denoted as the percentile value and takes
value between 0 and 1, (0 < p < 1). On the other hand, q = 1− p and [p(n+ 1)]
and [q(n+1)] are rounded to the nearest integer. PRSS procedures are presented
in the following examples

X1[1:6] ≤X1[2:6] ≤ X1[3:6] ≤ X1[4:6] ≤ X1[5:6] ≤ X1[6:6]

X2[1:6] ≤X2[2:6] ≤ X2[3:6] ≤ X2[4:6] ≤ X2[5:6] ≤ X2[6:6]

X3[1:6] ≤X3[2:6] ≤ X3[3:6] ≤ X3[4:6] ≤ X3[5:6] ≤ X3[6:6]

X4[1:6] ≤ X4[2:6] ≤ X4[3:6] ≤ X4[4:6] ≤X4[5:6] ≤ X4[6:6]

X5[1:6] ≤ X5[2:6] ≤ X5[3:6] ≤ X5[4:6] ≤X5[5:6] ≤ X5[6:6]

X6[1:6] ≤ X6[2:6] ≤ X6[3:6] ≤ X6[4:6] ≤X6[5:6] ≤ X6[6:6]



Let the set size be n = 6, p = 0.35 and q = 0.65. Following the ranking
process of units, the second ranked units from the first half of the sets (X1[2:6],
X2[2:6], X3[2:6]) and the fifth ranked units from the following three sets (X4[5:6],
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X5[5:6],X6[5:6]) are selected.

X1[1:7] ≤ X1[2:7] ≤X1[3:7] ≤ X1[4:7] ≤ X1[5:7] ≤ X1[6:7] ≤ X1[7:7]

X2[1:7] ≤ X2[2:7] ≤X2[3:7] ≤ X2[4:7] ≤ X2[5:7] ≤ X2[6:7] ≤ X2[7:7]

X3[1:7] ≤ X3[2:7] ≤X3[3:7] ≤ X3[4:7] ≤ X3[5:7] ≤ X3[6:7] ≤ X3[7:7]

X4[1:7] ≤ X4[2:7] ≤ X4[3:7] ≤ X4[4:7] ≤X4[5:7] ≤ X4[6:7] ≤ X4[7:7]

X5[1:7] ≤ X5[2:7] ≤ X5[3:7] ≤ X5[4:7] ≤X5[5:7] ≤ X5[6:7] ≤ X5[7:7]

X6[1:7] ≤ X6[2:7] ≤ X6[3:7] ≤ X6[4:7] ≤X6[5:7] ≤ X6[6:7] ≤ X6[7:7]

X7[1:7] ≤ X7[2:7] ≤ X7[3:7] ≤X7[4:7] ≤ X7[5:7] ≤ X7[6:7] ≤ X7[7:7]


This time, let n = 7, p = 0.4 and q = 0.6. Following the ranking process of units,
the third ranked units from the first three sets (X1[3:7], X2[3:7],X3[3:7]), the fifth
ranked units from the following three sets (X4[5:7], X5[5:7],X6[5:7]) and the median
unit (X7[4:7]) of the last set are selected.

For even set size, the mean estimator of PRSS is obtained as

(2.7) X̄PRSS =
1

n

[
(

n/2∑
i=1

Xi[a:n] +

n∑
i=(n/2)+1

Xi[b:n]

]
.

Also, the variance of the mean estimator based on PRSS is obtained as

(2.8) V ar(X̄PRSS) =
1

n2

[
n/2∑
i=1

V ar(Xi[a:n]) +

n∑
i=(n/2)+1

V ar(Xi[b:n])

]
.

For odd set size, the mean estimator of PRSS is obtained as

(2.9) X̄PRSS =
1

n

[
(n−1/2)∑
i=1

Xi[a:n] +
n−1∑

i=((n−1)/2)+1

Xi[b:n] +Xi[((n−1)/2):n])

]
.

Also, the variance of the mean estimator based on PRSS is obtained as

V ar(X̄PRSS) =
1

n2

[
(n−1)/2∑
i=1

V ar(Xi[a:n])
n−1∑

i=((n−1)/2)+1

V ar(Xi[b:n])

+ V ar(Xi[(n+1/2):n])

]
.

(2.10)

where, a = [p(n+ 1)] and b = [q(n+ 1)].

3. RANKING ERROR MODELS

3.1. Visual Ranked Set Sampling

Visual judgement ranking is firstly noted by McIntyre [12] to estimate the
mean amount of products. This ranking method is a subjective ranking method
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since the ranking of units in the set is based on the personal judgement of the
researcher. The reliability of visual ranking depends on the knowledge and expe-
rience of the researcher based on the subject of study and also on the materials
used to rank the units.

Modelling the ith visual score Vi was suggested by Dell and Clutter [6].
This model is given as follows

(3.1) Vi = Xi + τi .

where,
Vi : ith visual judgement order statistic
Xi : ith true order statistic
τi : ith random error term where τi ∼ iid(0, σ2τ ) and Xi ’s are mutually indepen-
dent of τi ’s.

In RSS, visual ranking process can be defined as follows:

1. Generate Vi = Xi + τi with τi ∼ iid(0, σ2τ ) where Xi’s and τi’s are mutually
independent.

2. Rank the visual scores ( V1, V2, ..., Vn) from the lowest to the highest.

3. In the last step select the sampling unit corresponding to the rth visual
score (Vr) and measure the X[r] value for this unit.

This method is called Visual Ranked Set Sampling (VRSS). The correlation be-
tween visual judgement order statistic (V ) and true order statistic (X) is com-
puted by the following equation proposed by Nahhas et al. [14, 15].

(3.2) ρxv =
σx√
σ2x + σ2τ

3.2. Concomitant Ranked Set Sampling

In RSS, another method used to rank the units in the set is concomitant
variable (Y ) based ranking which is suggested by Stokes [22]. The concomitant
variable (Y ) is a variable that has a high correlation with the variable of interest
(X). The accuracy of the ranking is increased by using this variable. As an
example, to estimate the mean weight of a certain number of fish belonging to a
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population, a researcher may use a concomitant variable, such as fish size, which
has a high correlation with the fish weight.

David and Levine [5] were the first to study concomitant variable (Y ).
Detailed information and some limiting assumptions for concomitant variable
(Y ) were developed by Stokes [22] in order to determine its effects on RSS. These
assumptions are given as follows:

� There is a linear relationship between concomitant variable (Y ) and the
variable of interest(X).

� Standardized concomitant variable (Y ) and the standardized variable of
interest (X) have identical distribution.

Concomitant based ranking can be modelled as

(3.3) Xi = µx +
ρxyσx
σy

(Yi − µy) + τi .

where,
µx : The mean of the variable of interest (X)
σx : The standard deviation of the variable of interest (X)
µy : The mean of the concomitant variable (Y )
σy : The standard deviation of the concomitant variable (Y )
ρxy : The correlation between the variable of interest (X) and concomitant vari-
able (Y )
Xi : The ith observation on the variable of interest (X)
Yi : The ith observation on the concomitant variable (Y )
τi : ith random error term.

The random error term is independent identically distributed (iid) with
mean 0 and varaince σ2τ and τi’s and Yi’s are mutually independent. The stepwise
period of ranking the units in the set with respect to the concomitant variable is
given below:

1. Generate Equation (3.3) where τi’s and Yi’s are mutually independent.

2. The Yi’s are ranked from the lowest to the highest to obtain the Yi order
statictics Y1 ≤ . . .≤ Yn.

3. Select the rth correctly ranked order statistic Yr and measure the rth true
order statistic X = Xr from the sampling unit.

This method is defined as Concomitant Ranked Set Sampling (CRSS) method.
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4. A MONTE CARLO SIMULATION STUDY

Our basic goal in this simulation study is to investigate the effects of rank-
ing error models on the mean estimators based on RSS, ERSS and PRSS. For this
reason, bias and MSE of the mean estimators are computed and compared with
MSE of mean estimator based on SRS for different set and cycle sizes, distribu-
tions and ranking error models such as VRSS and CRSS in infinite population.
The simulation study is performed via R Project with 10000 repetitions. In the
simulation study;

� The population of the variable of interest (X) and concomitant variable
(Y ) are generated from N(0, 1) (symmetric), Uniform(0, 1) (symmetric),
Exp(1) (right skewed) and Gamma(4, 2) (right skewed) distributions with
size (N) 10000.

� Set sizes (n) are determined to be 2, 3, 4 and 5. Also cycle sizes (m) are
determined to be 5 and 10.

� Four sampling methods are used. These sampling methods are SRS, RSS,
ERSS and PRSS (In this study, p and q value for PRSS is determined as 0.4
and 0.6 respectively. p = 0.4 and q = 0.6 values were used in the simulation
study since they offer the best results for PRSS.).

� For CRSS, the correlation values between the variable of interest (X) and
concomitant variable (Y ) ρxy are determined as 0.95, 0.75, 0.50 and 0.25.
( The same values for ρxv and ρxy were used in the simulation study.)

� For VRSS, the random error term τi ∼ N(0, σ2τ ). For the distributions used
in the simulation study, the ρxv values corresponding to σ2τ were calculated
by Equation (3.2). These values are given in the table below.

σ2τ

ρxv N(0, 1) Uniform(0, 1) Exp(1) Gamma(4, 2)

0.95 0.108 0.009 0.108 1.7285
0.75 0.778 0.0649 0.778 12.4444
0.50 3 0.25 3 48
0.25 15 1.25 15 240

Table 1: The values of σ2τ corresponding to ρxv for N(0, 1),
Uniform(0, 1), Exp(1) and Gamma(4, 2).

The bias and mean squared error (MSE) of an estimator θ̂ of a parameter
θ formulas given below are used in the simulation study.

(4.1) Bias(θ̂) = θ̂ − θ

(4.2) MSE(θ̂) = E(θ̂ − θ)2 .
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Note that, θ represents the population mean (µ) and θ̂ represents the mean esti-
mators of population mean based on SRS (X̄SRS), RSS (X̄RSS) , ERSS (X̄ERSS)
and PRSS (X̄PRSS) respectively. The performance of the mean estimators of
RSS, ERSS and PRSS is compared with respect to SRS in terms of relative
efficiency criteria. The relative efficiency formula given below are used.

(4.3) RE1(X̄RSS , X̄SRS) =
MSE(X̄SRS)

MSE(X̄RSS)
.

(4.4) RE2(X̄ERSS , X̄SRS) =
MSE(X̄SRS)

MSE(X̄ERSS)
.

(4.5) RE3(X̄PRSS , X̄SRS) =
MSE(X̄SRS)

MSE(X̄PRSS)
.

The comparisons of the mean estimators are constructed in terms of bias,
mean squared error and relative efficiency for different correlation levels, variances
of the random error term, set and cycle sizes. The results of the simulation study
with 10000 repetitions are presented in tables.
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ρxv=0.95 ρxv=0.75 ρxv=0.50 ρxv=0.25

Dist. m n RSS ERSS PRSS RSS ERSS PRSS RSS ERSS PRSS RSS ERSS PRSS

N(0, 1) 5 2 -0.001 -0.001 0.003 -0.001 0.000 -0.006 -0.003 0.002 0.000 0.002 -0.003 0.000
3 0.003 -0.001 0.002 0.000 -0.003 -0.004 0.000 0.000 0.001 -0.003 0.000 0.000
4 0.001 0.003 -0.001 0.001 -0.001 0.002 -0.001 -0.001 -0.001 0.002 0.002 -0.004
5 0.000 0.000 0.001 0.000 0.001 -0.001 -0.004 -0.001 -0.001 -0.004 -0.002 0.002

10 2 -0.003 0.000 0.003 -0.003 0.002 -0.001 0.004 0.001 -0.004 -0.002 0.001 0.001
3 -0.002 -0.002 0.000 0.001 -0.001 0.001 0.000 -0.003 0.000 0.000 0.001 0.001
4 0.000 0.000 0.002 0.000 -0.001 0.000 0.002 0.001 0.000 0.002 -0.002 0.000
5 0.000 0.001 0.001 0.000 0.001 -0.001 0.000 -0.002 -0.001 0.001 0.001 0.000

Uniform(0, 1) 5 2 -0.002 0.000 -0.001 -0.001 0.000 0.001 0.000 0.000 0.001 0.000 0.000 -0.001
3 0.000 0.000 0.000 -0.001 0.000 0.001 0.000 0.000 0.000 0.001 0.001 0.001
4 0.000 0.000 -0.001 0.000 -0.001 -0.001 0.001 0.000 0.000 0.001 0.001 -0.001
5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001

10 2 0.000 0.000 0.000 -0.002 0.000 -0.001 0.001 0.000 0.001 0.000 0.000 -0.001
3 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.001
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 0.000
5 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 -0.001 0.000 0.000 0.000 0.000

Exp(1) 5 2 -0.004 0.006 0.005 -0.002 -0.002 0.006 0.005 0.004 -0.001 -0.001 -0.003 0.004
3 0.000 0.002 -0.178 -0.003 0.001 -0.149 -0.002 -0.003 -0.094 -0.002 -0.001 -0.033
4 -0.002 0.179 -0.177 -0.001 0.150 -0.154 0.001 0.092 -0.092 -0.001 0.032 -0.028
5 -0.004 0.159 -0.160 -0.001 0.136 -0.139 0.001 0.082 -0.087 0.002 0.029 -0.024

10 2 0.003 0.001 -0.001 0.000 -0.002 0.003 0.001 0.002 0.002 0.000 -0.001 -0.001
3 -0.001 -0.001 -0.176 0.000 -0.002 -0.152 -0.001 0.000 -0.091 0.001 0.000 -0.028
4 -0.001 0.177 -0.178 0.000 0.150 -0.153 0.000 0.092 -0.091 0.000 0.032 -0.027
5 0.000 0.158 -0.159 0.000 0.137 -0.137 0.000 0.084 -0.082 0.000 0.027 -0.026

Gamma(4, 2) 5 2 0.001 0.005 -0.032 0.000 -0.025 0.004 -0.016 -0.010 0.013 -0.018 -0.012 0.005
3 0.005 -0.003 -0.399 0.000 -0.002 -0.371 0.006 -0.005 -0.239 0.014 0.009 -0.064
4 0.006 0.401 -0.392 0.005 0.359 -0.375 0.014 0.230 -0.205 0.001 0.062 -0.061
5 -0.003 0.347 -0.350 0.005 0.320 -0.319 -0.012 0.205 -0.201 -0.003 0.055 -0.064

10 2 0.009 -0.008 0.011 -0.009 -0.003 -0.002 0.002 -0.006 0.011 0.016 -0.008 -0.005
3 0.009 0.002 -0.380 0.007 -0.001 -0.365 0.005 -0.002 -0.222 -0.008 -0.005 -0.060
4 0.002 0.387 -0.390 0.005 0.354 -0.371 -0.006 0.227 -0.221 0.003 0.060 -0.064
5 -0.003 0.350 -0.349 -0.001 0.329 -0.325 -0.002 0.186 -0.194 0.001 0.062 -0.053

Table 2: Bias values for N(0, 1), Uniform(0, 1), Exp(1) and
Gamma(4, 2) in VRSS based on RSS, ERSS and PRSS.



The Effects of Ranking Error Models on Mean Estimators Based on RSS 13

ρxy=0.95 ρxy=0.75 ρxy=0.50 ρxy=0.25

Dist. m n RSS ERSS PRSS RSS ERSS PRSS RSS ERSS PRSS RSS ERSS PRSS

N(0, 1) 5 2 0.001 0.003 0.001 0.004 -0.004 0.000 -0.006 -0.005 0.003 -0.001 0.001 0.002
3 0.000 0.001 -0.006 0.001 -0.001 0.005 -0.004 -0.003 -0.002 -0.002 0.002 -0.002
4 0.002 -0.003 -0.003 0.002 -0.001 0.000 0.000 0.001 0.005 0.001 0.001 0.004
5 0.001 0.005 -0.002 -0.002 0.004 0.000 -0.001 0.000 -0.004 -0.002 0.005 -0.001

10 2 0.000 -0.002 0.000 0.003 0.001 -0.001 -0.003 -0.002 0.001 0.000 0.002 -0.007
3 0.001 0.001 0.003 0.003 0.001 -0.001 0.000 0.001 -0.005 -0.003 0.000 -0.004
4 0.000 0.001 0.002 0.003 -0.001 -0.002 0.001 0.003 0.001 0.000 0.000 0.001
5 0.001 0.003 0.005 0.000 0.003 0.004 0.000 0.008 -0.002 0.000 0.005 0.003

Uniform(0, 1) 5 2 -0.002 0.000 0.000 0.001 0.000 0.000 -0.001 0.001 0.000 0.000 0.000 -0.001
3 0.000 -0.001 0.001 -0.001 -0.001 0.001 0.001 0.000 0.000 0.000 0.000 -0.001
4 0.000 0.001 -0.001 -0.001 -0.001 -0.001 0.000 -0.001 0.001 -0.001 0.000 0.000
5 0.000 0.000 0.000 0.000 0.001 -0.001 0.001 0.000 -0.001 0.000 0.000 0.002

10 2 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 0.000 -0.002 -0.001
3 0.000 0.001 -0.001 0.000 0.000 0.001 0.000 0.000 0.000 -0.001 0.000 -0.002
4 0.000 -0.001 0.000 0.000 0.000 0.002 0.000 -0.001 0.000 0.000 0.001 -0.001
5 0.000 0.000 0.000 -0.001 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000

Exp(1) 5 2 -0.002 0.001 0.001 0.001 0.001 0.004 -0.001 -0.001 -0.002 -0.002 0.000 -0.001
3 0.002 0.003 -0.152 0.002 0.002 -0.094 0.001 0.002 -0.046 -0.003 0.002 0.001
4 0.002 0.152 -0.149 -0.003 0.094 -0.099 0.001 0.045 -0.039 -0.004 0.006 0.001
5 0.000 0.134 -0.135 0.000 0.086 -0.081 -0.001 0.029 -0.032 -0.001 0.012 0.002

10 2 -0.003 -0.002 0.001 0.000 -0.001 0.003 -0.001 0.000 0.001 -0.002 0.003 0.000
3 0.001 0.000 -0.148 -0.002 0.002 -0.096 0.000 0.002 -0.045 0.001 0.002 -0.002
4 0.000 0.151 -0.153 0.002 0.045 -0.088 -0.001 0.040 -0.047 0.001 0.007 -0.002
5 0.000 0.143 -0.133 0.000 0.029 -0.079 0.002 0.034 -0.038 -0.001 0.009 0.000

Gamma(4, 2) 5 2 0.005 -0.004 -0.001 0.010 0.010 0.011 0.003 0.003 0.005 -0.018 0.002 0.016
3 0.010 0.003 -0.324 0.003 0.008 -0.193 0.001 0.002 -0.110 0.007 0.005 -0.054
4 0.004 0.320 -0.330 0.008 0.203 -0.235 0.007 0.104 -0.043 -0.003 -0.004 -0.023
5 0.002 0.278 -0.285 0.006 0.180 -0.182 0.003 0.064 -0.068 0.015 0.010 -0.013

10 2 -0.005 0.009 -0.003 -0.014 -0.007 0.005 -0.013 0.006 0.001 -0.004 0.009 -0.006
3 0.002 -0.001 -0.346 -0.007 0.006 -0.205 0.008 -0.015 -0.095 -0.009 0.011 -0.014
4 -0.004 0.335 -0.334 0.003 0.209 -0.199 -0.007 0.079 -0.098 0.005 0.014 -0.030
5 0.004 0.275 -0.301 -0.005 0.195 -0.185 -0.006 0.086 -0.081 -0.004 0.022 -0.014

Table 3: Bias values for N(0, 1), Uniform(0, 1), Exp(1) and
Gamma(4, 2) in CRSS based on RSS, ERSS and PRSS.

Table 2 and Table 3 show bias values of mean estimators in VRSS and
CRSS. The results indicate that

� For symmetric distributions, the bias values obtained from mean estimators
of RSS, ERSS and PRSS are close to 0. This means the mean estimators
of RSS, ERSS and PRSS are unbiased estimators of population mean for
symmetric distributions.

� For right skewed distributions, the bias values obtained from the mean esti-
mator of RSS are close to symmetric distributions. On the other hand, for
right skewed distributions, the bias values obtained from mean estimators
of ERSS and PRSS are far from 0 when the set size increases. This means
the mean estimators of ERSS and PRSS are biased estimators of population
mean when the set size increases.
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ρxv=0.95 ρxv=0.95 ρxv=0.95 ρxv=0.95

Distr. m n RSS ERSS PRSS RSS ERSS PRSS RSS ERSS PRSS RSS ERSS PRSS

N(0, 1) 5 2 0.072 0.072 0.071 0.085 0.082 0.082 0.092 0.092 0.091 0.096 0.099 0.099
3 0.038 0.038 0.033 0.048 0.049 0.046 0.058 0.059 0.057 0.065 0.064 0.066
4 0.025 0.028 0.021 0.034 0.036 0.033 0.044 0.044 0.041 0.048 0.049 0.049
5 0.017 0.019 0.015 0.026 0.027 0.024 0.033 0.034 0.033 0.039 0.039 0.039

10 2 0.035 0.036 0.036 0.041 0.041 0.041 0.045 0.046 0.046 0.048 0.048 0.048
3 0.019 0.019 0.017 0.024 0.024 0.023 0.029 0.030 0.028 0.032 0.033 0.032
4 0.012 0.014 0.011 0.017 0.018 0.016 0.021 0.021 0.021 0.024 0.024 0.024
5 0.008 0.010 0.007 0.013 0.013 0.012 0.017 0.017 0.016 0.019 0.019 0.019

Uniform(0, 1) 5 2 0.006 0.006 0.006 0.007 0.007 0.007 0.008 0.008 0.008 0.008 0.008 0.008
3 0.003 0.003 0.004 0.004 0.004 0.005 0.005 0.005 0.005 0.005 0.005 0.005
4 0.002 0.001 0.002 0.003 0.002 0.003 0.004 0.003 0.004 0.004 0.004 0.004
5 0.001 0.001 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.003

10 2 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.004 0.004 0.004 0.004 0.004
3 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.003
4 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002
5 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002

Exp(1) 5 2 0.077 0.077 0.079 0.084 0.085 0.087 0.095 0.095 0.092 0.096 0.096 0.100
3 0.045 0.044 0.058 0.052 0.052 0.057 0.061 0.058 0.054 0.063 0.065 0.060
4 0.029 0.071 0.049 0.037 0.072 0.048 0.044 0.063 0.042 0.048 0.055 0.045
5 0.020 0.053 0.039 0.028 0.054 0.038 0.034 0.047 0.034 0.038 0.043 0.036

10 2 0.040 0.039 0.039 0.043 0.043 0.044 0.046 0.047 0.046 0.049 0.050 0.048
3 0.021 0.022 0.045 0.026 0.026 0.041 0.030 0.030 0.031 0.033 0.033 0.030
4 0.014 0.052 0.041 0.018 0.047 0.036 0.022 0.035 0.025 0.024 0.027 0.023
5 0.010 0.039 0.032 0.014 0.037 0.029 0.017 0.028 0.020 0.019 0.021 0.019

Gamma(4, 2) 5 2 1.166 1.181 1.161 1.348 1.360 1.370 1.494 1.456 1.480 1.576 1.572 1.578
3 0.629 0.622 0.661 0.802 0.803 0.834 0.942 0.952 0.911 1.066 1.035 1.010
4 0.412 0.672 0.480 0.556 0.750 0.634 0.692 0.801 0.672 0.758 0.784 0.742
5 0.291 0.460 0.350 0.416 0.579 0.463 0.544 0.618 0.536 0.606 0.624 0.605

10 2 0.599 0.583 0.590 0.659 0.670 0.664 0.737 0.738 0.761 0.786 0.778 0.770
3 0.321 0.319 0.403 0.401 0.402 0.481 0.479 0.475 0.477 0.511 0.515 0.503
4 0.207 0.390 0.315 0.274 0.448 0.372 0.347 0.438 0.360 0.385 0.402 0.372
5 0.145 0.299 0.238 0.213 0.344 0.291 0.269 0.324 0.279 0.308 0.326 0.302

Table 4: MSE values for N(0, 1), Uniform(0, 1), Exp(1) and
Gamma(4, 2) in VRSS based on RSS, ERSS and PRSS.
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ρxy=0.95 ρxy=0.75 ρxy=0.50 ρxy=0.25

Dist. m n RSS ERSS PRSS RSS ERSS PRSS RSS ERSS PRSS RSS ERSS PRSS

N(0, 1) 5 2 0.073 0.071 0.072 0.081 0.082 0.081 0.091 0.090 0.091 0.101 0.096 0.097
3 0.038 0.039 0.032 0.047 0.050 0.045 0.059 0.059 0.056 0.064 0.064 0.063
4 0.024 0.026 0.021 0.034 0.036 0.032 0.043 0.042 0.041 0.050 0.048 0.047
5 0.016 0.020 0.014 0.026 0.026 0.024 0.033 0.033 0.032 0.038 0.037 0.037

10 2 0.035 0.036 0.032 0.040 0.039 0.040 0.045 0.046 0.045 0.050 0.048 0.049
3 0.018 0.018 0.016 0.024 0.023 0.022 0.029 0.028 0.028 0.032 0.032 0.030
4 0.011 0.013 0.010 0.016 0.018 0.015 0.021 0.022 0.020 0.024 0.024 0.023
5 0.008 0.009 0.007 0.013 0.013 0.011 0.016 0.017 0.016 0.018 0.018 0.018

Uniform(0, 1) 5 2 0.006 0.006 0.006 0.007 0.007 0.007 0.008 0.007 0.008 0.008 0.008 0.008
3 0.003 0.003 0.004 0.004 0.004 0.004 0.005 0.005 0.005 0.006 0.005 0.005
4 0.002 0.002 0.002 0.003 0.003 0.003 0.004 0.003 0.004 0.004 0.004 0.004
5 0.001 0.001 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.003

10 2 0.003 0.003 0.003 0.003 0.003 0.004 0.004 0.004 0.004 0.004 0.004 0.004
3 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.003
4 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002
5 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002

Exp(1) 5 2 0.074 0.076 0.075 0.088 0.085 0.089 0.092 0.087 0.088 0.091 0.101 0.007
3 0.044 0.041 0.049 0.052 0.052 0.051 0.065 0.061 0.054 0.065 0.066 0.005
4 0.028 0.061 0.040 0.035 0.054 0.038 0.044 0.051 0.042 0.004 0.004 0.003
5 0.019 0.045 0.031 0.027 0.041 0.029 0.034 0.036 0.033 0.003 0.003 0.003

10 2 0.037 0.038 0.039 0.042 0.041 0.042 0.045 0.048 0.047 0.004 0.004 0.004
3 0.021 0.021 0.035 0.024 0.025 0.030 0.030 0.030 0.028 0.002 0.002 0.002
4 0.013 0.042 0.032 0.018 0.030 0.021 0.022 0.024 0.021 0.002 0.002 0.002
5 0.010 0.035 0.024 0.013 0.025 0.017 0.018 0.021 0.017 0.001 0.001 0.001

Gamma(4, 2) 5 2 1.173 1.138 1.165 1.363 1.317 1.313 1.453 1.490 1.415 1.579 1.564 1.624
3 0.638 0.630 0.618 0.804 0.775 0.768 0.940 0.950 0.901 1.037 1.062 1.054
4 0.413 0.587 0.418 0.555 0.660 0.549 0.700 0.709 0.677 0.776 0.742 0.737
5 0.290 0.408 0.312 0.423 0.483 0.425 0.525 0.562 0.543 0.589 0.586 0.617

10 2 0.590 0.571 0.605 0.681 0.633 0.667 0.719 0.724 0.751 0.788 0.782 0.796
3 0.304 0.308 0.375 0.396 0.399 0.400 0.468 0.478 0.465 0.508 0.510 0.498
4 0.203 0.363 0.277 0.277 0.343 0.292 0.343 0.365 0.330 0.391 0.395 0.363
5 0.145 0.246 0.210 0.209 0.270 0.226 0.276 0.287 0.277 0.302 0.316 0.308

Table 5: MSE values for N(0, 1), Uniform(0, 1), Exp(1) and
Gamma(4, 2) in CRSS based on RSS, ERSS and PRSS.

Table 4 and Table 5 show MSE values of the mean estimators in VRSS
and CRSS. The results indicate that

� Based on Table 4 and Table 5, the smallest and the highest MSE values
were obtained from Uniform(0, 1) and Gamma(4, 2) respectively.

� MSE values obtained from N(0, 1) are less than Exp(1).



16 Sami Akdeniz and Tugba Ozkal Yildiz

ρxv=0.95 ρxv=0.75 ρxv=0.25 ρxv=0.25

Dist. m n RE1 RE2 RE3 RE1 RE2 RE3 RE1 RE2 RE3 RE1 RE2 RE3

N(0, 1) 5 2 1.422 1.387 1.412 1.146 1.223 1.236 1.077 1.101 1.119 1.044 1.010 1.020
3 1.746 1.754 1.975 1.356 1.398 1.464 1.165 1.146 1.178 1.036 1.026 1.006
4 1.989 1.819 2.381 1.453 1.401 1.484 1.118 1.131 1.194 1.027 1.036 1.011
5 2.323 2.028 2.646 1.587 1.461 1.626 1.214 1.195 1.197 1.006 1.020 1.009

10 2 1.417 1.386 1.389 1.212 1.185 1.225 1.153 1.079 1.076 1.057 1.033 1.012
3 1.750 1.764 1.940 1.377 1.385 1.453 1.137 1.109 1.228 1.024 1.005 1.020
4 2.086 1.881 2.361 1.448 1.407 1.622 1.162 1.191 1.173 1.062 1.052 1.038
5 2.379 2.111 2.673 1.509 1.471 1.589 1.184 1.152 1.218 1.064 1.028 1.011

Uniform(0, 1) 5 2 1.417 1.394 1.455 1.257 1.228 1.232 1.099 1.104 1.101 1.009 1.027 1.032
3 1.830 1.879 1.521 1.458 1.429 1.193 1.140 1.160 1.081 1.050 1.044 1.029
4 2.181 2.928 1.852 1.524 1.876 1.314 1.164 1.303 1.105 1.055 1.052 0.990
5 2.511 3.119 2.112 1.636 1.922 1.419 1.246 1.325 1.134 1.067 1.036 1.037

10 2 1.477 1.447 1.411 1.242 1.224 1.240 1.081 1.060 1.062 1.016 0.992 1.031
3 1.857 1.785 1.492 1.426 1.442 1.157 1.128 1.176 1.072 1.072 1.015 1.013
4 2.218 2.801 1.755 1.530 1.879 1.318 1.162 1.257 1.045 1.046 1.085 1.050
5 2.474 3.067 2.052 1.670 2.000 1.417 1.187 1.275 1.152 1.044 1.007 1.009

Exp(1) 5 2 1.296 1.229 1.278 1.188 1.190 1.168 1.031 1.074 1.121 1.071 1.017 1.005
3 1.539 1.550 1.140 1.267 1.306 1.203 1.111 1.136 1.298 1.066 1.008 1.126
4 1.692 0.701 1.022 1.384 0.696 1.044 1.134 0.793 1.193 1.060 0.910 1.159
5 1.953 0.778 1.066 1.422 0.757 1.068 1.158 0.839 1.193 1.036 0.946 1.114

10 2 1.266 1.272 1.270 1.174 1.135 1.188 1.068 1.076 1.101 1.022 1.028 1.058
3 1.596 1.594 0.737 1.221 1.279 0.811 1.119 1.106 1.081 1.019 1.001 1.088
4 1.780 0.479 0.621 1.370 0.537 0.688 1.142 0.735 0.994 1.010 0.917 1.078
5 1.968 0.515 0.625 1.430 0.548 0.694 1.228 0.724 0.994 1.027 0.962 1.088

Gamma(4, 2) 5 2 1.391 1.344 1.371 1.186 1.179 1.152 1.073 1.107 1.067 1.046 1.038 1.006
3 1.718 1.718 1.595 1.307 1.342 1.306 1.141 1.098 1.198 0.984 1.016 1.066
4 1.953 1.188 1.624 1.469 1.075 1.255 1.154 1.004 1.208 1.036 1.036 1.091
5 2.211 1.420 1.840 1.555 1.094 1.365 1.179 1.035 1.194 1.048 1.039 1.096

10 2 1.344 1.384 1.355 1.191 1.186 1.222 1.119 1.065 1.043 1.046 1.020 1.076
3 1.630 1.666 1.339 1.352 1.342 1.084 1.126 1.110 1.102 1.041 1.013 1.057
4 1.923 1.019 1.273 1.456 0.884 1.078 1.137 0.930 1.105 1.004 0.999 1.067
5 2.221 1.071 1.328 1.486 0.942 1.097 1.207 1.012 1.129 1.026 0.991 1.044

Table 6: RE values for N(0, 1), Uniform(0, 1), Exp(1) and
Gamma(4, 2) in VRSS based on RSS, ERSS and PRSS.



The Effects of Ranking Error Models on Mean Estimators Based on RSS 17

ρxy=0.95 ρxy=0.75 ρxy=0.50 ρxy=0.25

Dist. m n RE1 RE2 RE3 RE1 RE2 RE3 RE1 RE2 RE3 RE1 RE2 RE3

N(0, 1) 5 2 1.351 1.398 1.361 1.188 1.236 1.180 1.115 1.060 1.072 1.024 1.020 0.993
3 1.739 1.728 2.028 1.401 1.360 1.449 1.118 1.147 1.144 1.061 0.998 1.044
4 2.050 1.890 2.302 1.452 1.388 1.511 1.166 1.185 1.220 1.048 1.043 1.041
5 2.395 2.074 2.676 1.509 1.562 1.620 1.194 1.154 1.206 1.040 1.033 1.064

10 2 1.405 1.402 1.511 1.213 1.222 1.224 1.082 1.062 1.107 0.999 1.043 1.038
3 1.740 1.726 1.962 1.345 1.382 1.430 1.147 1.149 1.152 1.043 1.019 1.061
4 2.127 1.882 2.372 1.558 1.317 1.588 1.188 1.138 1.223 1.029 0.995 1.041
5 2.349 2.062 2.735 1.559 1.529 1.686 1.182 1.137 1.216 1.065 1.068 1.041

Uniform(0, 1) 5 2 1.474 1.408 1.442 1.193 1.251 1.208 1.079 1.106 1.093 1.022 1.000 1.047
3 1.804 1.789 1.509 1.388 1.386 1.233 1.116 1.163 1.085 0.994 1.035 1.022
4 2.202 2.670 1.844 1.497 1.648 1.340 1.186 1.206 1.101 1.043 1.025 1.029
5 2.470 2.921 2.153 1.559 1.698 1.374 1.168 1.254 1.120 1.053 1.056 1.015

10 2 1.447 1.414 1.416 1.214 1.197 1.225 1.097 1.094 1.102 1.008 1.022 1.022
3 1.752 1.866 1.545 1.393 1.369 1.275 1.108 1.092 1.104 1.055 1.021 0.992
4 2.177 2.755 1.802 1.417 1.601 1.308 1.132 1.214 1.117 1.031 1.044 1.067
5 2.513 2.923 2.182 1.569 1.693 1.415 1.208 1.199 1.158 1.041 1.022 0.995

Exp(1) 5 2 1.323 1.284 1.297 1.167 1.186 1.182 1.099 1.077 1.102 1.017 1.010 1.040
3 1.526 1.501 1.347 1.288 1.293 1.387 1.018 1.110 1.221 1.034 1.027 1.009
4 1.705 0.802 1.286 1.362 0.944 1.312 1.101 1.009 1.197 1.028 1.011 1.017
5 1.912 0.882 1.271 1.381 0.986 1.324 1.112 1.079 1.182 1.021 0.991 1.050

10 2 1.384 1.281 1.232 1.165 1.177 1.145 1.097 1.064 1.040 1.023 0.998 0.998
3 1.539 1.551 0.912 1.321 1.224 1.077 1.097 1.102 1.138 0.997 1.070 1.042
4 1.801 0.586 0.754 1.313 0.810 1.150 1.166 0.970 1.087 1.039 1.028 0.996
5 1.939 0.614 0.818 1.480 0.826 1.077 1.143 0.979 1.162 1.054 0.961 1.023

Gamma(4, 2) 5 2 1.370 1.364 1.374 1.180 1.198 1.231 1.121 1.063 1.053 1.022 0.999 0.967
3 1.681 1.688 1.773 1.300 1.357 1.371 1.122 1.120 1.147 1.024 1.007 1.053
4 1.926 1.373 1.907 1.427 1.259 1.471 1.180 1.097 1.116 1.018 1.075 1.052
5 2.201 1.530 2.040 1.481 1.284 1.505 1.204 1.138 1.175 1.043 1.062 1.068

10 2 1.336 1.366 1.338 1.190 1.227 1.198 1.086 1.089 1.066 1.041 1.017 0.988
3 1.741 1.729 1.442 1.358 1.371 1.330 1.103 1.145 1.146 1.067 1.047 1.032
4 1.989 1.081 1.510 1.443 1.171 1.356 1.143 1.097 1.220 1.001 1.020 1.087
5 2.165 1.260 1.573 1.532 1.204 1.380 1.111 1.104 1.199 1.047 1.000 1.016

Table 7: RE values for N(0, 1), Uniform(0, 1), Exp(1) and
Gamma(4, 2) in CRSS based on RSS, ERSS and PRSS.

Table 6 and Table 7 show RE values of mean estimators in VRSS and
CRSS. RE values obtained from the simulation study which are greater than 1
mean that RSS, ERSS or PRSS are more efficient than SRS.

� RE values obtained from symmetric distributions give better results than
right skewed distributions.

According to the results obtained from the simulation study

For VRSS;

� When the number of set size increases, relative efficiency increases.
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� When the variance of random error term (σ2τ ) increases, the relative effi-
ciency decreases. On the other hand, when the correlation between visual
judgement order statistic (V ) and true order statistic (X) decreases, the
relative efficiency decreases.

For CRSS;

� When the number of set size increases, relative efficiency increases.

� When the correlation between the variable of interest (X) and the concomi-
tant variable (Y ) increases, relative efficiency increases.

For VRSS and CRSS;

� The number of cycles didn’t cause a regular increase or decrease in relative
efficiency for VRSS and CRSS. For this reason, exact comment can not be
made about the effect of number of cycles on relative efficiency.

� In both visual and concomitant based ranking methods MSE decreases when
set size and number of cycles increase.

� MSE increases as the variance of the error term increases in visual rank-
ing and as the correlation between the concomitant variable (Y ) and the
variable of interest (X) variable decreases in concomitant based ranking.

� In both visual and concomitant based ranking methods MSE values ob-
tained from right skewed distributions are greater than the MSE values
obtained from symmetric distributions.

� In both visual and concomitant based ranking methods, the bias, MSE
and RE values from mean estimators based on RSS, ERSS and PRSS for
symmetric distributions and right skewed distributions are similar.

5. REAL DATA APPLICATION

Abalone is a common name given to a group of small to very large sea snails,
marine gastropod molluscs which are the member of Haliotidae family [8]. Age
of an abalone can be determined by making some physical measurements which,
in advance, include cutting and staining of the shell. After the staining process,
the rings become clear and they are counted under a microscope to obtain age
information. Estimating the age of abalone includes difficult, costly and time-
consuming physical measurements. Therefore, it forces us to use alternative mea-
surement techniques. A new physical measurement method which is easier than
the others in estiamating the age of abalone is proposed by Nash et al. [16]. This
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data set is taken from https://archive.ics.uci.edu/ml/datasets/abalone

[25]. Abalone dataset includes 4177 samples with 9 variables. Information about
these variables are given in the table below:

Variable Data Type Measurament Unit of Data Description

Length Continuous mm Longest shell measurement
Diameter Continuous mm Perpendicular to length
Height Continuous mm With meat in shell
Whole weight Continuous gr Whole abalone
Shucked weight Continuous gr Weight of meat
Viscera weight Continuous gr Gut weight (after bleeding)
Shell weight Continuous gr After being died
Rings Integer - +1.5 gives the age in years
Sex Nominal - Male,Female and Infant

Table 8: Descriptions of abalone dataset.

Rings variable is selected as the variable of interest (X). For concomitant
based ranking, Shell weight (Y1) and Shucked weight (Y2) are determined as con-
comitant variables. The correlations between variable of interest and concomitant
variables are given in table below.

Variable of Interest (X) Concomitant Variable (Y ) Correlations

Shell Weight 0.627
Rings

Shucked Weight 0.420

Table 9: Correlations between variable of Interest (X) and concomi-
tant variables (Y ′s) in abalone dataset for CRSS.

The results obtained from abalone dataset using CRSS are given Table 10
and Table 11 respectively.

https://archive.ics.uci.edu/ml/datasets/abalone
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ρxy m n RSS ERSS PRSS

0.627 5 2 0.891(-0.029) 0.887(-0.023) 0.909(-0.013)
3 0.558(-0.019) 0.554(-0.000) 0.543(-0.113)
4 0.395(-0.004) 0.433(0.127) 0.383(-0.119)
5 0.306(-0.009) 0.329(-0.103) 0.295(0.099)

10 2 0.443(-0.002) 0.449(0.003) 0.453(-0.015)
3 0.279(0.001) 0.278(-0.001) 0.273(0.120)
4 0.201(0.001) 0.219(0.119) 0.202(0.116)
5 0.152(-0.002) 0.173(-0.107) 0.152(0.093)

0.420 5 2 0.979(0.064) 0.951(0.009) 0.981(-0.006)
3 0.610(-0.008) 0.624(-0.010) 0.751(0.320)
4 0.440(-0.001) 0.518(-0.314) 0.571(0.309)
5 0.346(-0.004) 0.403(-0.271) 0.450(0.269)

10 2 0.485(-0.000) 0.467(-0.013) 0.479(0.003)
3 0.305(-0.008) 0.306(-0.004) 0.429(0.329)
4 0.236(0.003) 0.313(0.324) 0.342(0.319)
5 0.176(-0.040) 0.242(-0.276) 0.258(0.270)

Table 10: MSE(bias) values for CRSS based on RSS, ERSS and
PRSS.

ρxy m n RE1 RE2 RE3

0.627 5 2 1.181 1.153 1.180
3 1.215 1.266 1.280
4 1.298 1.192 1.384
5 1.358 1.268 1.425

10 2 1.203 1.150 1.118
3 1.245 1.242 1.278
4 1.269 1.163 1.268
5 1.334 1.178 1.320

0.420 5 2 1.062 1.081 1.058
3 1.135 1.086 0.900
4 1.158 1.006 0.889
5 1.193 1.020 0.885

10 2 1.050 1.119 1.063
3 1.104 1.133 0.800
4 1.095 0.810 0.756
5 1.138 0.855 0.822

Table 11: RE values for CRSS based on RSS, ERSS and PRSS.

Suppose that the ρxv values are 0.627 and 0.420 respectively. For VRSS, we
need to find the value of standard deviation of the Rings variable (X). This value
is

√
σ2x= σx =

√
10.395 = 3.224. Then, we need to find the values of σ2τ corre-

sponding to ρxv. We use Equation (3.2) to obtain the values of σ2τ corresponding
to ρxv. These values are given in the table below.
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ρxv σ2τ

0.627 16.048
0.420 48.536

Table 12: The values of σ2τ corresponding to ρxv for Rings variable
in abalone dataset.

ρxv m n RSS ERSS PRSS

0.627 5 2 0.921(-0.008) 0.939(0.001) 0.934(-0.004)
3 0.567(0.011) 0.573(-0.021) 0.537(-0.256)
4 0.415(0.002) 0.560(0.247) 0.398(-0.247)
5 0.321(0.005) 0.421(0.219) 0.318(-0.231)

10 2 0.463(-0.009) 0.456(-0.001) 0.450(-0.001)
3 0.287(0.002) 0.291(-0.004) 0.299(0.250)
4 0.205(-0.001) 0.305(0.247) 0.224(-0.251)
5 0.156(-0.004) 0.235(0.224) 0.188(-0.231)

0.420 5 2 0.973(-0.002) 0.986(-0.005) 0.986(-0.016)
3 0.635(-0.003) 0.639(0.004) 0.583(-0.152)
4 0.480(0.010) 0.536(0.142) 0.441(-0.143)
5 0.375(0.005) 0.423(0.131) 0.350(-0.122)

10 2 0.511(0.005) 0.496(-0.017) 0.481(0.007)
3 0.328(0.006) 0.325(0.002) 0.310(-0.140)
4 0.234(0.003) 0.279(0.145) 0.231(-0.138)
5 0.179(-0.002) 0.216(0.127) 0.181(-0.124)

Table 13: MSE(bias) values for VRSS based on RSS, ERSS and
PRSS.

ρxv m n RE1 RE2 RE3

0.627 5 2 1.128 1.093 1.093
3 1.247 1.293 1.293
4 1.286 0.954 1.312
5 1.293 0.994 1.277

10 2 1.108 1.144 1.178
3 1.176 1.204 1.119
4 1.259 0.842 1.128
5 1.291 0.865 1.095

0.420 5 2 1.067 1.044 1.056
3 1.067 1.088 1.201
4 1.059 0.952 1.183
5 1.104 0.968 1.224

10 2 0.994 1.010 1.106
3 1.036 1.074 1.114
4 1.098 0.914 1.122
5 1.152 0.971 1.145

Table 14: RE values for VRSS based on RSS, ERSS and PRSS.
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6. CONCLUSION

In this study, we aimed to use ranking error models (VRSS and CRSS) to
compare the bias and MSE of the mean estimators based on RSS and some of its
modified methods such as ERSS and PRSS.

For this reason the effects of ranking errors in RSS and in some of its
modified methods are examined in the simulation study. In this study, it is
deduced that ranking errors may occur depending on the ranking method used.
In VRSS, σ2τ and ρxv change depending on the researcher’s knowledge, experience
and materials used in the study. The greater knowledge of researcher involved
in the study and the use of more appropriate materials would yield a higher
accuracy in the ranking. On the other hand, for CRSS, the accuracy of the
ranking depends on the correlation between the variable of interest (X) and the
concomitant variable (Y ) and the distribution of (X,Y ). Generally, when ρxy ≥
0.5, the error in the ranking decreases and the accuracy of the ranking increases.
Thus, better results can be achieved by minimizing the error in the ranking. The
application is performed using abalone data set in order to support the simulation
study performed in the section 5. It is seen that similar results were obtained in
real data application and simulation study. It is observed that, RSS and some of
its modified methods such as ERSS and PRSS methods show better results than
SRS.
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