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1. INTRODUCTION

Detection of structural changes in a time series is an important issue and is
actively tackled in the current literature. The objective is to detect the change as
soon as possible after it has occurred. The change is an indication that something
important has happened and the characteristics of the process have drifted from
the original values. This type of questions is of particular relevance in engineer-
ing, public health, finance, environmental sciences (see, e.g., Montgomery ([18]),
Lawson and Kleinman ([15]), Frisén ([7])).

The most frequently applied surveillance technique is a control chart (e.g.,
Montgomery ([18])), with Shewhart, EWMA and CUSUM charts being the most
popular ones. Initially they were developed for monitoring independent processes.
Since in many applications the process of interest appears to be time dependent,
several approaches evolved to extend the above schemes to time series. One ap-
proach relies on monitoring the residuals of the fitted time series process (e.g.,
Alwan and Roberts ([1]), Montgomery and Mastrangelo ([19]), Wardell et al.
([32]) and ([33]) , Lu and Reynolds ([16])). This makes, however, the inter-
pretation of the signal given by the control scheme difficult. Furthermore, the
estimated residuals are not independent after a change, implying that the use of
the classical charts is still erroneous (cf. Knoth and Schmid ([14])). Alternatively,
we can adjust the monitoring schemes to reflect the dependence structure of the
analyzed processes. This type of charts are called modified charts. The modified
CUSUM charts and the related generalized likelihood ratio tests were discussed,
for example, in Nikiforov ([21]), Yashchin ([34]), Schmid ([28]), Knoth and Schmid
([14]), Capizzi and Masarotto ([5]), Knoth and Frisén ([13]). The extension of the
EWMA chart to time series data was suggested by Schmid ([27]). Note that the
derivation of modified schemes is technically tedious, since the autocorrelation
structure of the process should by explicitly taken into account while determin-
ing the design parameters of the monitoring procedure. Furthermore, most of the
literature with just a few exception considers the ARMA processes. These pro-
cesses are of great importance in practice, but assume inherently a short memory
in the underlying data. Recently, Rabyk and Schmid ([25]) considered several
control charts for long memory processes and compared these schemes within an
extensive Monte Carlo study.

It is desirable for any control scheme to give a signal as soon as possible af-
ter the change has occurred, i.e. the process is out-of-control, and to give a signal
as rarely as possible if no change occurred, i.e. the process is in-control. False
alarms deteriorate the surveillance procedures and lead to potentially mislead-
ing inferences by practitioners. The performance of the chart in the in-control
state can be quantified by the false alarm probability up to a given time point
or, equivalently, the probability that the run length of the chart is longer than a
given time span. Of particular importance is the impact of the process parame-
ters on this probability. For a general family of linear processes and particularly
for ARMA processes several results on stochastic ordering of the run length can
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be found in Schmid and Okhrin ([29]) and Morais et al. ([20]). In these papers
the authors derive constraints on the autocorrelations of the observed in-control
process to guarantee stochastic monotonicity of the EWMA or more general mon-
itoring schemes. The case of nonlinear time series was treated by Pawlak and
Schmid ([24]) and Gonçalves et al. ([9]).

The subject of the analysis in this paper is the one-sided EWMA chart
aimed to detect an increase of the mean. The one-sided problem is of key impor-
tance in many fields, such as engineering (loading capacity, tear strength, etc.),
environmental sciences (high tide, concentration of particulate matter, ozone
level, etc), economics and finance (riskiness of financial assets, interest and un-
employment rates). In all these examples we are interested only in increases (or
only in decreases) of the quantity of interest. Its dynamics can be assessed with
the tools considered here.

In this paper we discuss the stochastic ordering for the false alarm proba-
bility of modified one-sided EWMA control charts aimed to detect a shift in the
mean of an ARFIMA process. First, we show that for an arbitrary ARFIMA(p,d,
q) process the probability of a false signal is always larger than this probability for
an i.i.d. or an ARFIMA(0,d,0) processes. To guarantee this it suffices to assume
that the autocorrelation of the underlying ARMA process is always non-negative.
Second, we extend the above results by showing that the false alarm probabili-
ties are non-decreasing functions in d for ARFIMA(0,d,0) and ARFIMA(1,d,1)
under specific assumptions on the process parameters. These results are of great
importance, since it is well known that the parameter of fractional differencing
is difficult to estimate. Thus we indicate the consequences of under- or overesti-
mation of d for monitoring procedures.

The paper is structured as follows. Section 2 summarizes relevant results
on modified EWMA control charts and on ARFIMA processes. The main results
together with numerical examples and counterexamples are given in Section 3.
The proofs of some results are given in the appendix.

2. The MODIFIED EWMA CHART FOR ARFIMA PROCESSES

The aim of statistical process control is to detect structural deviations in
a process over time. We assume that at each time point one observation is
available. The given observations x1, x2, ... are considered to be a realization of
the actual (observed) process. The underlying target process is denoted by {Yt}.
The objective of a monitoring procedure is to give a signal if the target and the
observed processes differ in their characteristics. A good procedure should give
a signal as soon as possible if the processes differ and give a signal as rarely as
possible if the processes coincide. In the following we analyze the behavior of
the modified EWMA control chart for the mean in the in-control case, i.e. if no
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change is present. The underlying target process is assumed to be a long-memory
process, which frequently encounters in applications, for example stock marker
risk in finance or environmental data (see Andersen et al. ([2]), Pan and Chen
([23])). The objective of the paper is to analyze the performance of in-control
EWMA charts for different memory patterns of the long memory processes. First
we introduce the control scheme and subsequently discuss the process and its
features in detail.

2.1. The Modified EWMA Chart

The exponentially weighted moving average (EWMA) chart was introduced
by Roberts ([26]). Contrary to the Shewhart chart all previous observations are
taken into account for the decision rule. It turns out to perform better than the
Shewhart control chart for detecting small and moderate shifts, namely, in the
process mean (Lucas and Saccucci ([17])) or in the process variance (Crowder and
Hamilton ([6])) of an independent output. An extension of the EWMA control
chart to time series was given by Schmid ([27]).

The EWMA chart for monitoring the process mean is based on the statistic

(2.1) Zt = (1− λ)Zt−1 + λXt, t ≥ 1.

Z0 is the starting value. Here we choose it equal to the mean of the target
process, i.e. Z0 = E(Yt) = µ0. The process starts in zero state, a head-start is
not considered. The parameter λ ∈ (0, 1] is a smoothing constant determining
the influence of past observations.

The quantity Zt can be written as weighted average

(2.2) Zt = λ
t−1∑
i=0

(1− λ)iXt−i + (1− λ)tZ0, t = 1, 2, . . . ,

whose weights decrease geometrically. This shows that if λ is close to one then
we have a short memory EWMA chart while for λ close to zero the preceding
values get a larger weight. For λ = 1 the EWMA chart reduces to the Shewhart
control chart.

Further {Yt} is assumed to be a stationary process with mean µ0 and au-
tocovariance function γ(k). Then (see Schmid ([27])) E(Zt) = µ0 and

V ar(Zt) = λ2
∑
|i|≤t−1

γ(i)

min{t−1,t−1−i}∑
j=max{0,−i}

(1− λ)2j+i = σ2e,t.

In this paper we consider a one-sided EWMA chart. Our aim is to detect
an increase of the mean. The process is concluded to be out of control at time
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point t if
Zt > µ0 + c

√
V ar(Zt)

with c > 0. The run length of the EWMA control chart is given by

Ne = inf
{
t ∈ N : Zt > µ0 + c

√
V ar(Zt)

}
.

Stochastic inequalities for the modified EWMA chart have been given in
Schmid and Schöne ([30]) and Schöne et al. ([31]). Assuming that {Yt} is a sta-
tionary Gaussian process with non-negative autocovariances Schmid and Schöne
([30]) showed that the probability of a false signal up to a certain time point k,
i.e. P (Ne > k) is greater or equal to that in the i.i.d. case. Thus the dependence
structure leads to an increase of the false alarm probability. Demanding further
assumptions on the autocovariances Schöne et al. ([31]) proved that the false
alarm probability is an increasing function in the autocorrelations provided that
they satisfy a certain monotonicity condition.

2.2. The Target Process

Throughout this paper the target process is assumed to be a stationary au-
toregressive fractionally integrated moving average (ARFIMA) process. In many
applications we are faced with processes having a long memory. The frequently
applied autoregressive moving average (ARMA) modeling is not suitable in such
a situation as its autocorrelation structure is geometrically decreasing.

Let L denote the lag operator, i.e. LYt = Yt−1 and let ∆ = 1 − L be
the difference operator, i.e. ∆Yt = Yt − Yt−1. In the study of non-stationary
time series more generalized ARIMA(p,d,q) models are often used (cf. Box et
al. ([3])). They make use of a d-multiple difference operator ∆ to the original
time series Yt where d is a non-negative integer. In the approach of Granger and
Joyeux ([10]) and Granger ([11]), however, d is a real number.

Let d > −1 then Granger and Joyeux ([10]) and Granger ([11]) define ∆d

using the binomial expansion as

∆d = (1− L)d =

∞∑
k=0

(
d
k

)
(−1)kLk =

∞∑
k=0

Γ(k − d)

Γ(−d)Γ(k + 1)
Lk,

where Γ(·) is the gamma function. Let

A(L) = 1− α1L− . . .− αpLp, B(L) = 1 + β1L+ . . .+ βqL
q

and {εt} be a white noise process, i.e.

E(εt) = 0, V ar(εt) = σ2, Cov(εt, εs) = 0 ∀ t 6= s.
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Now {Yt} is said to be an autoregressive fractionally integrated moving average
process of order (p, d, q) (ARFIMA(p,d,q)) if {Yt} is stationary and satisfies the
equation

(2.3) A(L)∆d(Yt − µ0) = B(L)εt

for d ∈ (−0.5, 0.5).

The condition on the existence and uniqueness of a stationary solution of
an ARFIMA process is given in the following theorem.

Theorem 2.1. Suppose that {Yt} is an ARFIMA(p,d,q) process as de-
fined in (3). Let d ∈ (−0.5, 0.5) and A(·) and B(·) have no common zeroes.

a) If A(z) 6= 0 for |z| = 1 then there is a unique purely nondeterministic
stationary solution of (3) given by

(2.4) Yt = µ0 +
∞∑

j=−∞
ψj∆

−dεt−j ,

where ψ(z) =
∞∑

j=−∞
ψjz

j = B(z)/A(z).

b) The solution {Yt} is causal if and only if A(z) 6= 0 for |z| ≤ 1.

Proof: Brockwell and Davis ([4])

The parameter of fractional differencing d determines the strength of the
process memory. Since ρ(k) ∼ ck2d−1 as k → ∞ with c 6= 0 ARFIMA processes
have a long memory for d ∈ (0, 0.5). For d ∈ (−0.5, 0) the process is called to
have an intermediate memory. ARMA processes are referred to as short memory
processes since |ρ(k)| ≤ Cr−k for k = 0, 1, .. with C > 0 and 0 < r < 1.

The knowledge of the autocovariance function of an ARFIMA(p,d,q) pro-
cess is crucial for the application of the monitoring techniques discussed in this
paper and their theoretical properties. Nevertheless, it is difficult to obtain ex-
plicit formulas for the autocovariance and the autocorrelation functions. The
autocovariance function of an ARFIMA(0,d,0) process was derived by Hosking
([12]). It holds that (see, e.g., Brockwell and Davis ([4], Theorem 13.2.1))

γd(0) = σ2
Γ(1− 2d)

(Γ(1− d))2
, γd(k) = γd(0) ρd(k) k ∈ ZZ(2.5)

where

ρd(k) =
Γ(k + d)Γ(1− d)

Γ(k − d+ 1)Γ(d)

=

k∏
i=1

i− 1 + d

i− d
=

k∏
i=1

(1− 1− 2d

i− d
), k = 1, 2, ....(2.6)
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and ρd(−k) = ρd(k).

To determine the autocovariance function of a general ARFIMA process
it is convenient to deploy the splitting method. This method is based on the
decomposition of the ARFIMA model into its ARMA and its fractionally in-
tegrated parts. Let γARMA(·) be the autocovariance of the ARMA component
which has a unit variance white noise and let γd(·) denote the autocovariance of
the ARFIMA(0,d,0) process given by (2.5) and (2.6). If the conditions of The-
orem 1a) are satisfied then the autocovariance of the corresponding ARFIMA
process is given by the convolution of these two functions (see, e.g., Palma ([22]),
Brockwell and Davis ([4], p.525, (13.2.19))

γ(k) =

∞∑
i=−∞

γd(i)γARMA(k − i).(2.7)

This result is obvious since {Yt} is an ARFIMA(p,d,q) process if and only if
∆d(Yt − µ0) is an ARMA(p,q) process.

In the following we shall frequently consider processes with γARMA(i) ≥ 0
for all i ≥ 1, d ∈ (0, 0.5) and σ > 0. Then it holds that

(2.8) γ(k) ≥ γd(k)γARMA(0) > 0

since γd(k) > 0 and γARMA(0) > 0. Thus the autocovariance function of a
general ARFIMA process is strictly positive for all k, if the autocovariances of
the underlying ARMA process are non-negative.

Next we consider the special case of an ARFIMA(1,d,1) process and use the
simplified notation α = α1 and β = β1. It holds that its autocovariance function
is

(2.9) γ(k) = σ2
∞∑

i=−∞

Γ(1− 2d)

Γ(d)Γ(1− d)

Γ(i+ d)

Γ(1 + i− d)
γARMA(k − i),

where γARMA(k) is the autocovariance of the ARMA(1,1) process, i.e.

γARMA(k) =

{
1+2αβ+β2

1−α2 for k = 0
(1+αβ)(α+β)

1−α2 α|k|−1 for k 6= 0
.

3. MONOTONICITY RESULTS FOR THE MODIFIED EWMA
MEAN CHART

In the following we consider the probability of a false signal assuming that
the underlying process is an ARFIMA process. It is always assumed that the
process is in control. We use the notation P(p,d,q) to denote that the probability
is calculated assuming that the underlying process is an ARFIMA(p,d,q) process.
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Note that for P(0,0,0) the in-control process is assumed to be independent and iden-
tically distributed random sequence and for P(0,d,0) it is a pure ARFIMA(0,d,0)
process.

In this section it is always demanded that the variance of the white noise
σ2 is positive. In the case σ = 0 the process {Yt} is deterministic, Ne = ∞
and Theorem 2, Lemma 1, Theorem 3 and Theorem 4 hold without any further
assumption.

3.1. Influence of the ARMA Structure on the False Alarm Probability

First, it is proved that for an ARFIMA(p,d,q) process the probability of a
false signal up to a fixed time point k is always greater equal to the corresponding
probability for an independent random process. This result is an immediate
consequence of Schmid and Schöne ([30]).

Theorem 3.1. Let {Yt} be an ARFIMA(p,d,q) process as defined in (3)
with d ∈ [0, 0.5) and let {εt} be a Gaussian white noise with σ > 0. Let A(z) 6= 0
for |z| = 1 and let γARMA(v) ≥ 0 for all v ∈ ZZ. Then

P(p,d,q)(Ne(c) > k) ≥ P(0,0,0)(Ne(c) > k), k = 0, 1, 2, ...

Proof: Because of (2.7) we get that γ(v) ≥ 0 for all v. Since {Yt} is a
Gaussian process the result is an immediate consequence of Theorem 1 of Schmid
and Schöne ([30]).

This result gives a lower bound for the probability of a false signal. The
bound itself is the probability of a false signal for an i.i.d. random sequence.

One of the crucial assumptions of Theorem 1 of Schmid and Schöne ([30]) is
that all autocovariances are non-negative. Here we illustrate that the inequality
may not hold for negative autocovariances. The left picture in Figure 1 shows
the autocorrelations up to lag 5 of an ARFIMA(0,d,0) process. We see that for
positive d’s the autocorrelations are large and positive, but they become negative
and small for negative d’s. The right hand side picture shows the probability of
no signal up to the time point k. The probabilities are computed by numerical
integration of the k + 1-dimensional normal density with the covariance matrix
determined using Lemma 1 of Schmid and Schöne ([30]). The integration uti-
lizes the Genz-Bretz algorithm (see Genz ([8])). The solid black line stands for
the case d = 0 and thus for the i.i.d. process. Positive d’s (grey lines) induce
positive autocovariances, fulfill the assumptions of Theorem 2 and lead to prob-
abilities larger than for the i.i.d. case. However, the negative autocorrelations
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Figure 1: The first five autocorrelations ρd(h) (left side) and the proba-
bility of no signal up to the time point k (right side) for the
modified EWMA chart with λ = 0.1 and c = 2.04 applied to an
ARFIMA(0,d,0) process.
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Figure 2: The probability of no signal up to the time point k for the
modified EWMA chart with λ = 0.1 and c = 2.04 applied to an
ARFIMA(1,d,0) process.

for d < 0 (black lines) lead to smaller probabilities of no signal. Thus we have a
counterexample for the case if the assumptions of Theorem 2 are not satisfied.

It is important to note that in the case γARMA(v) ≤ 0 for all v ∈ ZZ the
inequality in Theorem 2 does not with the reversed inequality. This is illustrated
in Figure 2. It is shown that for an ARFIMA(1,d,0) process with d = 0.2 and
α = −0.5 the probability of no signal up to time point k is sometimes larger and
sometimes smaller than that of the i.i.d. case depending on the choice of k.

Next, we try to improve the lower bound. It is analyzed for which ARFIMA(p,d,q)
processes it can be replaced by the probability of a false signal of an ARFIMA(0,d,0)
process.

Let {ρARMA(h)} denote the autocorrelation function of an ARMA(p,q)
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process and let {ρd(h)} denote the autocorrelation function of an ARFIMA(0,d,0)
process.

Let k ∈ IN , 1 ≤ v ≤ k − 1 and

Iv =

v−1∑
i=1

i ρARMA(i) (
ρd(v − 1 + i)

v + i− d
− ρd(v − 1− i)

v − i− d
),

IIv = v ρARMA(v)

(
ρd(2v − 1)

2v − d
+

1

1− d

)
,

IIIv =
∞∑

i=v+1

i ρARMA(i)

(
ρd(i− v)

i− v + 1− d
+
ρd(i+ v − 1)

v + i− d

)
.

Lemma 3.1. Let k ∈ IN and let {Yt} be an ARFIMA(p,d,q) process as
defined in (3) with d ∈ [0, 0.5) and let {εt} be a Gaussian white noise with σ > 0.
Let A(z) 6= 0 for |z| = 1 and γARMA(v) ≥ 0 for all v. If additionally

(3.1) Iv + IIv + IIIv ≥ 0 , v = 1, .., k − 1

then P(p,d,q)(Ne(c) > k) ≥ P(0,d,0)(Ne(c) > k).

Proof: see Appendix.

Keeping in mind the conditions of Lemma 1, it can be seen that IIv and
IIIv are non-negative while Iv is non-positive because

ρd(v − 1 + i)

v + i− d
≤ ρd(v − 1 + i)

v − i− d
≤ ρd(v − 1− i)

v − i− d

using Lemma 3c of the Appendix. Thus it is not clear for which processes this
condition is fulfilled at all. Next the condition (3.1) is analyzed for various pro-
cesses.

Lemma 3.2. Suppose that the conditions of Lemma 1 are fulfilled. Then
it holds that:

a) For k = 2 condition (3.1) is always fulfilled.

b) For k = 3 condition (3.1) is satisfied if 2ρARMA(2) ≥ ρARMA(1).

c) Let k ≥ 2. If {Yt} is an ARFIMA(1,d,0) process with autoregressive coeffi-
cient α ∈ [0, 1) and α ≥ (k − 2)/(k − 1) then condition (3.1) is satisfied.

Proof: see Appendix.



12 Yarema Okhrin and Wolfgang Schmid

5 10 15 20

0.
85

0.
90

0.
95

k

beta=0
beta=−0.3
beta=−0.6
beta=0.3
beta=0.6

5 10 15 20

0.
86

0.
88

0.
90

0.
92

0.
94

0.
96

k

alpha=0
alpha=−0.3
alpha=−0.6
alpha=0.3
alpha=0.6

Figure 3: The probability of no signal up to the time point k for the
EWMA control chart with λ = 0.1 and c = 2.04. The target
process is an ARFIMA(0,d,1) process with d = 0.2 (left side)
and an ARFIMA(1,d,0) process with d = 0.2 (right side), re-
spectively.

Note that from Lemma 1 is an extension of Theorem 2. It shows that the
presence of the ARMA part with specific parameters (see Lemma 2) leads to an
increase of the probability of no signal. The condition in b) does not hold for
an ARFIMA(0,d,1) process with positive coefficient. As it is shown in the left
picture in Figure 3 for k = 3 the probabilities of no signal are larger for the
ARFIMA(0,d,1) process than for ARFIMA(0,d,0) for negative β’s and smaller
for positive β’s. The same holds, however, also for higher values of k too, i.e. no
signals for longer time intervals.

The case of ARFIMA(1,d,0) is particularly important from practical per-
spective. The right picture of Figure 3 reveals a similar pattern as we observed for
ARFIMA(0,d,1). The probabilities of no signal are larger for the ARFIMA(1,d,0)
process than for ARFIMA(0,d,0) for positive α’s and smaller for negative α’s.
However, part c) of Lemma 2 contains an additional constraint which makes the
set where (3.1) holds very small. It stems from a statement about the magnitude
of a hypergeometric function in α which is hard to obtain. Nevertheless, numeri-
cally we can argue that the monotonicity also holds for 0 ≤ α ≤ (k−2)/(k−1). For
the left picture in Figure 4 the selected α’s are small and satisfy α ≤ (k−2)/(k−1)
for k ≥ 3. Despite the condition in part c) of Lemma 2 is not fulfilled, we observe
that P(1,d,0)(Ne(c) > k) ≥ P(0,d,0)(Ne(c) > k) still holds. As a counterexample
consider an ARFIMA(1,d,1) process with d = 2 and β = −0.8 and the right
picture in Figure 4. The probability of no signal up to time point k is some-
times larger for α = 0.6 than for α = 0.0, sometimes smaller. This depends
on the value of k. The probabilities for the discussed figures are determined by
numerical integration as above.
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Figure 4: The probability of no signal up to the time point k for the
EWMA control chart with λ = 0.1 and c = 2.04. The target
process is an ARFIMA(1,d,0) process with d = 0.2 (left side)
and an ARFIMA(1,d,1) process with d = 0.2 and β = −0.8
(right side), respectively.

3.2. Behavior of the False Alarm Probability as a Function of the
Fractional Parameter

In the previous subsection the probability of a false signal for an ARFIMA
process was compared with that of an independent random process and an ARFIMA(0,d,0)
process, respectively. In this subsection we want to analyze how the probability
of a false signal behaves as a function of the fractional parameter d.

In a first stage we consider the simplest case, an ARFIMA(0,d,0) process.

Theorem 3.2. Let {Yt} be an ARFIMA(0,d,0) process as defined in
(3) with d ∈ [0, 0.5) and let {εt} be a Gaussian white noise with σ > 0. Then
P(0,d,0)(Ne(c) > k) is a non-decreasing function in d.

Proof: First we observe that the autocovariances of an ARFIMA(0,d,0)
process can be easily recursively calculated. It holds that γd(k) = k+d−1

k−d γd(k−1)
for k ≥ 1 (cf. Lemma 3b of the appendix).

Next let 0 < d1 < d2 < 1/2. Then it holds for k ≥ 1 that

γd2(k)

γd2(k − 1)
=
k + d2 − 1

k − d2
≥ k + d1 − 1

k − d1
=

γd1(k)

γd1(k − 1)
.

The result follows with Theorem 1 of Schöne et al. ([31]).

If d1 = 0 the result is a special case of Schmid and Schöne ([30]).

Figure 5 illustrates the result of Theorem 3. It shows that the probabilities
of no signal up to the time point k are increasing in d.
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Figure 5: Probabilities of no signal up to the time point k as a function
of d. The target process is an ARFIMA(0,d,0) process. The
EWMA parameters are c = 2.04, λ = 0.1 (left), and c = 2.33,
λ = 1.0 (right).

Next we want to study the behavior of the false alarm probability for an
ARFIMA(1,d,1) process.

Theorem 3.3. Let {Yt} be an ARFIMA(1,d,1) process as defined in (3)
with d ∈ [0, 0.5) and let {εt} be a Gaussian white noise with σ > 0. Suppose
that 0 ≤ α < 1 and β ≥ 0. Then it follows that for all k ∈ IN the quantity
P(1,d,1)(Ne(c) > k) is a non-decreasing function in d.

Proof: see Appendix.
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Figure 6: Probabilities of no signal up to the time point k as a function
of d for ARFIMA(1,d,1) processes. We set α = 0.4 for the left
figure, α = −0.8 for the right one and choose c = 2.04, λ = 0.1.

This result is quite remarkable. It says that the probability of a false signal
is increasing with the fractional parameter d for positive parameters α and β. In
the left plot of Figure 6 we visualize this effect for α = 0.4 and several values of
the MA parameter. On the right hand side figure we show a counterexample of
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nonmonotonicity if the assumptions of the theorem are not fulfilled. Here α is
set equal to -0.8.

4. SUMMARY

In this paper we consider the stochastic properties of the run length of
an EWMA monitoring scheme if applied to an ARFIMA process. Particularly
we are interested in the monotonic behavior of the probability of no signal up
to an arbitrary time point as a function of the fractional differencing parameter
d. We compare the probability of no signal for an ARFIMA(p,d,q) process with
non-negative autocovariances with the probability of no signal for a sequence of
i.i.d. variables and for an ARFIMA(0,d,0) process, respectively. It is analyzed
under what conditions the probability of no signal of an ARFIMA(p,d,q) process
is greater or equal to that of an i.i.d. sequence and of an ARFIMA(0,d,0) pro-
cess. Furthermore, we prove that for ARFIMA(0,d,0) and ARFIMA(1,d,1) with
positive parameters the probability of no signal is increasing in d.

5. APPENDIX

In the following lemma some useful properties on the behavior of the auto-
correlation function ρd(k) of an ARFIMA(0,d,0) process are summarized which
will be used in the proofs.

Lemma 5.1. Suppose that {Yt} is an ARFIMA(0,d,0) process with d ∈
(−0.5, 0.5).

a) Let k ∈ IN . Then ρd(k) > 0 for d > 0, ρd(k) = 0 for d = 0, and ρd(k) < 0
for d < 0.

b)

(5.1) ρd(k) =
k − 1 + d

k − d
ρd(k−1) = (1− 1− 2d

k − d
)ρd(k−1), k = 1, 2, ....

c) Let 0 ≤ d < 0.5. Then it holds that ρd(k) is a non-increasing function in k.

d) Let k ∈ IN ∪ {0}. Then

ρ′d(k) = ρd(k) Ad(k)

with

Ad(k) =

k∑
i=1

(
1

i− 1 + d
+

1

i− d
).
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e) Let 0 ≤ d < 0.5. Then ρd(k) is a non-decreasing function in d.

Proof: Parts a) and b) are obvious.
c) The statement follows from the fact that 1−2d

k−d ≥ 0, since d ∈ [0, 0.5) and k ≥ 1.
d) Since

log(ρd(k) =
k∑
i=1

(log(i− 1 + d)− log(i− d))

the result follows by building the derivative with respect to d.
e) Follows from d).

Proof of Lemma 1:

Proof: Note that for d = 0 Lemma 1 reduces to Theorem 2 which was
already proved. Thus it can be assumed that d > 0 in the following. In order
to prove Lemma 1 we apply Theorem 1 of Schöne et al. ([31]) and the comment
after the theorem. In order to do that we need that γ(v) > 0 for v = 1, .., k − 1
but this was already proved in (2.8).

Following Theorem 1 of Schöne et al. ([31]) it holds that P(p,d,q)(Ne(c) >
k) ≥ P(0,d,0)(Ne(c) > k) if all autocovariances are positive and if for all 1 ≤ v ≤
k − 1 it holds that

γd(v − 1)
∞∑

i=−∞
γd(v − i)γARMA(i) ≥ γd(v)

∞∑
i=−∞

γd(v − 1− i)γARMA(i).

This condition is equivalent to

∞∑
i=−∞

ρARMA(i)(ρd(v − i)ρd(v − 1)− ρd(v)ρd(v − 1− i)) ≥ 0, v = 1, .., k − 1

and

∞∑
i=1

ρARMA(i)((ρd(v−i)+ρd(v+i))ρd(v−1)−(ρd(v−1−i)+ρd(v−1+i))ρd(v)) ≥ 0,

for v = 1, .., k − 1 and

v−1∑
i=1

ρARMA(i) [(ρd(v − i) + ρd(v + i))ρd(v − 1)− (ρd(v − 1− i) + ρd(v − 1 + i))ρd(v)]

+ ρARMA(v)(1 + ρd(2v))ρd(v − 1)− [ρd(1) + ρd(2v − 1)]ρd(v))

+

∞∑
i=v+1

ρARMA(i) [(ρd(i− v) + ρd(i+ v))ρd(v − 1)− (ρd(i− v + 1) + ρd(i+ v − 1))ρd(v)] ≥ 0
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for v = 1, ..., k − 1 respectively. Using the recursion property of the autocorre-
lations of an ARFIMA(0,d,0) process (cf. (Lemma 3b of the Appendix) the last
condition can be rewritten as follows

(5.2)
ρd(v − 1)(1− 2d)

v − d
[Iv + IIv + IIIv] ≥ 0, v = 1, .., k − 1

with

Iv =
v−1∑
i=1

i ρARMA(i) (
ρd(v − 1 + i)

v + i− d
− ρd(v − 1− i)

v − i− d
),

IIv = v ρARMA(v)

(
ρd(2v − 1)

2v − d
+

1

1− d

)
,

IIIv =
∞∑

i=v+1

i ρARMA(i)

(
ρd(i− v)

i− v + 1− d
+
ρd(i+ v − 1)

v + i− d

)
.

Proof of Lemma 2:

Proof: a) The proof is obvious.
b) Since

I2 = −ρARMA(1)
6

(3− d)(2− d)
, II2 = 24ρARMA(2)

d2 − 2d+ 2

(4− d)(3− d)(2− d)(1− d)

it holds that I2 + II2 ≥ 0 if ρARMA(1) ≤ 2ρARMA(2).
c) For an ARFIMA(1,d,0) process with coefficient α it holds that

Iv =
2v−2∑
i=v

ρd(i)

i+ 1− d
(i− v + 1)αi−v+1 −

v−2∑
i=0

ρd(i)

i+ 1− d
(v − 1− i)αv−1−i,

IIIv =
v−2∑
i=0

ρd(i)

i+ 1− d
(i+ v)αi+v +

∞∑
i=v−1

ρd(i)

i+ 1− d
(i+ v)αi+v

+

∞∑
i=2v

ρd(i)

i+ 1− d
(i− v + 1)αi−v+1.

Consequently
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Iv + IIv + IIIv = α

[
v−2∑
i=0

ρd(i)

i+ 1− d
(
(i+ v)αi+v−1 − (v − 1− i)αv−2−i

)
+

2v−1∑
i=v

ρd(i)

i+ 1− d
(i− v + 1)αi−v +

∞∑
i=2v

ρd(i)

i+ 1− d
(i− v + 1)αi−v

+

∞∑
i=v−1

ρd(i)

i+ 1− d
(i+ v)αi+v−1

]
.

This quantity is non-negative if (i + v)αi+v−1 − (v − 1 − i)αv−2−i ≥ 0 for i =

0, .., v − 2. This is fulfilled if α ≥
(

1− 2i+1
i+v

)1/(2i+1)
for all i = 0, .., v − 2 since(

1− 2i+1
i+v

)1/(2i+1)
≤ 1 − 1

v . Using mathematical induction we shall prove that

(1 − 1
v )2i+1 ≥ 1 − 2i+1

i+v for all i = 0, .., v − 2. For i = 0 it is obvious. Next we
consider the induction step. Note that

(1− 1

v
)2i+3 ≥ (1− 2i+ 1

i+ v
)(1− 1

v
)2

= 1−
(

2i+ 1

i+ v
+

2v − 1

v2
− (2v − 1)(2i+ 1)

v2(i+ v)

)
≥ 1− 2i+ 3

i+ 1 + v

since after some calculations it can be seen that the last inequality is equivalent
to i2 + 2i+ 1 ≥ 0.

Since v ≤ k − 1 we finally get that α ≥ (k − 2)/(k − 1) for k ≥ 2.

Proof of Theorem 4:

Proof: Note that

ρARMA(k) = αk−1ρ1, k ≥ 1, ρ1 =
(1 + αβ)(α+ β)

1 + 2αβ + β2
.

Since 0 ≤ α < 1 and β ≥ 0 it follows that ρ1 ≥ α.

In Theorem 2 it was proved that for an ARFIMA process the in-control
probability of a false signal up to a given time point is greater or equal than for
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an independent random sequence. Thus we may assume in the following that
d > 0. As shown in the proof of Lemma 1 this implies that γ(v) > 0.

a) Let {γ(h)} denote the autocovariance function of an ARFIMA(1,d,1) process.
In order to prove the result we make use of the comment after Theorem 1 of
Schöne et al. ([31]) which says that it is sufficient to show that γ(k)/γ(k − 1) is
a non-decreasing function in d. Suppose that α > 0. Let ρ∗ = ρ1/α. Then

γ(k)

γARMA(0)γd(0)
=

∞∑
i=−∞

ρd(i)ρARMA(k − i) = ad(k) + bd(k)

= (1− ρ∗)ρd(k) + α a∗d(k − 1) +
1

α
bd(k − 1).

with

ad(k) =
k∑

i=−∞
ρd(i)ρARMA(k − i) = (1− ρ∗)ρd(k) + a∗d(k) = ρd(k) + αa∗d(k − 1),

bd(k) =

∞∑
i=k+1

ρd(i)ρARMA(k − i) = ρ∗
∞∑

i=k+1

ρd(i)α
i−k =

1

α
bd(k − 1)− ρ∗ρd(k).

a∗d(k) = ρ∗
k∑

i=−∞
ρd(i)α

k−i.

b) The numerator of the derivative of γ(k)/γ(k− 1) with respect to d is equal to

(
1

α
− α)

[
a∗d(k − 1)b′d(k − 1)− a∗′d (k − 1)bd(k − 1)

]
+(1−ρ∗) a∗′d (k−1) [αρd(k−1)−ρd(k)] + (1−ρ∗) a∗d(k−1) [−αρ′d(k−1) +ρ′d(k)]

+(1− ρ∗) b′d(k− 1) [
1

α
ρd(k− 1)− ρd(k)] + (1− ρ∗)bd(k− 1)[− 1

α
ρ′d(k− 1) + ρ′d(k)]

+(1− ρ∗)2[ρd(k − 1)ρ′d(k)− ρ′d(k − 1)ρd(k)].

It is sufficient to prove that this quantity is not negative.

Let γ = (1−ρ∗)/(1/α−α). Note that γ ≤ 0. An equivalent representation
is [

a∗d(k − 1)b′d(k − 1)− a∗′d (k − 1)bd(k − 1)
]

+ γ α [ρd(k − 1)a∗′d (k − 1)− ρ′d(k − 1)a∗d(k − 1)]

+ γ [ρ′d(k)a∗d(k − 1)− ρd(k)a∗′d (k − 1)] +
γ

α
[ρd(k − 1)b′d(k − 1)− ρ′d(k − 1)bd(k − 1)]

+ γ[ρ′d(k)bd(k − 1)− ρd(k)b′d(k − 1)] + γ(1− ρ∗)[ρd(k − 1)ρ′d(k)− ρ′d(k − 1)ρd(k)]

= I + II + III + IV + V + V I.

c) Next we apply Lemma 3d. Defining Ad(−h) = Ad(h) for h ≥ 1 we get that
ρ′d(h) = ρd(h)Ad(h) for all h ∈ ZZ.
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It holds that

I/ρ∗2 =
k−1∑
i=−∞

∞∑
j=k

ρd(i)ρd(j)α
j−i(Ad(j)−Ad(i)) = I1 + I2

with

I1 =
∞∑
j=k

−j−1∑
i=−∞

ρd(i)ρd(j)α
j−i(Ad(j)−Ad(−i)),

I2 =
∞∑
j=k

k−1∑
i=−j

ρd(i)ρd(j)α
j−i(Ad(j)−Ad(|i|)).

Now

I1 = −
∞∑
j=k

∞∑
i=j+1

ρd(i)ρd(j)α
j+i(Ad(i)−Ad(j))

= −
∞∑

j=k+1

j−1∑
i=k

ρd(i)ρd(j)α
j+i(Ad(j)−Ad(i)),

I2 =
∞∑
j=k

k−1∑
i=−k+1

ρd(i)ρd(j)α
j−i(Ad(j)−Ad(|i|))

+
∞∑
j=k

−k∑
i=−j

ρd(i)ρd(j)α
j−i(Ad(j)−Ad(|i|))

=

∞∑
j=k

k−1∑
i=−k+1

ρd(i)ρd(j)α
j−i(Ad(j)−Ad(|i|))− I1.

Thus

(5.3) I/ρ∗2 =

∞∑
j=k

k−1∑
i=−k+1

ρd(i)ρd(j)α
j−i(Ad(j)−Ad(|i|)).
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d) Since

I = ρ∗2

 ∞∑
j=k

k−1∑
i=−k+1

ρd(i)ρd(j)α
j−i(Ad(j)−Ad(|i|))


= ρ∗2

 ∞∑
j=k+1

k−2∑
i=−k+2

ρd(i)ρd(j)α
j−i(Ad(j)−Ad(|i|))

+ ρd(k)

k−1∑
i=−k+1

ρd(i)α
k−i(Ad(k)−Ad(|i|))

+ ρd(k − 1)

∞∑
j=k+1

ρd(j)α
j−k+1(Ad(j)−Ad(k − 1))

+ ρd(k − 1)
∞∑

j=k+1

ρd(j)α
j+k−1(Ad(j)−Ad(k − 1))


= I3 + I4 + I5 + I6, Ii ≥ 0, i = 3, .., 6

II = −γαρ∗ρd(k − 1)

k−2∑
i=−k+2

ρd(i)α
k−1−i(Ad(k − 1)−Ad(|i|))

+ γαρ∗ρd(k − 1)
∞∑
j=k

ρd(j)α
k−1+j(Ad(j)−Ad(k − 1)) = II1 + II2,

with II1 ≥ 0, II2 ≤ 0,

III = γρ∗ρd(k)

k−1∑
i=−k+1

ρd(i)α
k−1−i(Ad(k)−Ad(|i|))

+ γρ∗ρd(k)

∞∑
j=k+1

ρd(j)α
k−1+j(Ad(k)−Ad(j))

= III1 + III2, III1 ≤ 0, III2 ≥ 0,

IV =
γρ∗

α
ρd(k − 1)

∞∑
j=k

ρd(j)α
j−k+1(Ad(j)−Ad(k − 1)) ≤ 0
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we get that

V II = I4 + III1 = (ρ∗2 + γρ∗/α)ρd(k)
k−1∑

i=−k+1

ρd(i)α
k−i(Ad(k)−Ad(|i|)) ≥ 0,

I6 + II2 + V I = (ρ∗2 + γαρ∗)ρd(k − 1)
∞∑

j=k+1

ρd(j)α
j+k−1(Ad(j)−Ad(k − 1))

+ (γρ∗α2k + γ(1− ρ∗)ρd(k − 1)ρd(k)(Ad(k)−Ad(k − 1))

= V III1 + V III2, with V III1 ≥ 0

I5 + IV = (ρ∗2 + γρ∗/α)ρd(k − 1)
∞∑

j=k+1

ρd(j)α
j−k+1(Ad(j)−Ad(k − 1))

+ γρ∗ρd(k − 1)ρd(k)(Ad(k)−Ad(k − 1)) = IX1 + IX2,

with IX1 ≥ 0, IX2 ≤ 0,

V III2 + IX2 = γ(1 + ρ∗α2k)ρd(k − 1)ρd(k)(Ad(k)−Ad(k − 1)) = X.

Now

V II ≥ (ρ∗2 +
γρ∗

α
)(α+ α2k−1)ρd(k − 1)ρd(k)(Ad(k)−Ad(k − 1)),

=
ρ21 + γρ1

α
(1 + α2k−2) ρd(k − 1)ρd(k)(Ad(k)−Ad(k − 1))

and

V II +X ≥ (γ(1 + ρ∗α2k) +
ρ21 + γρ1

α
(1 + α2k−2)) ρd(k − 1)ρd(k)(Ad(k)−Ad(k − 1)).

Since

γ(1 + ρ∗α2k) +
ρ21 + γρ1

α
(1 + α2k−2) = γ(1 + ρ1α

2k−1) +
ρ21 + γρ1

α
(1 + α2k−2)

≥ ρ21 + γρ1
α

(1 + α2k−1) + γ(1 + α2k−1)

=
1 + α2k−1

α
(ρ21 + γρ1 + γα)

=
1 + α2k−1

α(1− α2)
(ρ21(1− α2) + ρ1(α− ρ1) + α(α− ρ1))

=
α(1− ρ21)(1 + α2k−1)

1− α2
≥ 0

it holds that V II +X ≥ 0.

Moreover, we get that

V = γρ∗
∞∑
i=k

ρd(k)ρd(i)α
i−k+1(Ad(k)−Ad(i)) ≥ 0,

V I = γ(1− ρ∗)ρd(k − 1)ρd(k)(Ad(k)−Ad(k − 1)) ≥ 0.

Thus the result is proved.
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