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1. INTRODUCTION

Over the past decades, different statistical distributions and related models
have been proposed for treating randomness and uncertainty, among which the
exponentiated weibull distribution models is a key one [20]. Meanwhile, two-
parameter generalized exponential distribution (denoted by GED) has also been
proposed as a sub-model in the exponentiated weibull distribution model which
model the real data in a more realistic manner. Several researchers have concen-
trated on applying this distribution in various fields and studied the problem of
parameters estimation for GED [11]-[14], [18], [22]-[24], [27]-[30], [35].

Inferences about stress-strength model is an important and interesting fields
in the reliability theory. In the mechanical reliability of a system, if we denote X
as the strength of a component which is subject to the stress Y , then R = P (Y <
X) is known as a measure of system performance. The problem of estimating
R for certain family of probability distributions, has been widely studied in the
literature. In the following, we review the main studies in this context in an
attempt to display the motivation for this paper.

The MLE of P (Y < X), when X and Y have bivariate exponential distribu-
tion, has been considered by Awad et al . [1]. Church and Harris [3], Downtown
[5], Woodward and Kelley [34] and Owen et al . [26] considered the estimation
of P (Y < X), when X and Y are normally distributed. Similar problem for
the multivariate normal distribution has been considered by Gupta and Gupta
[10]. Kelley et al . [16], and Sathe and Shah [32] considered the estimation of
P (Y < X) when X and Y are independent exponential random variables. Con-
stantine and Karson [4] considered the estimation of P (Y < X), when X and Y
are independent Gamma random variables. Sathe and Dixit [31] have been esti-
mate of P (Y < X) in the negative binomial distribution. Surles and Padgett [33]
considered the estimation of P (Y < X), where X and Y are Burr Type random
variables. Finally, Nasiri and Pazira [25] have done the estimation of P (Y < X)
in exponential case.

The drawback of the above mentioned models is their lack of a supporting
the sample data which contain outliers due to human error in measuring or erro-
neous procedures. To the best of our knowledge, a few researchers investigated
the statistical inference about R based on samples contain outlier observation(s).
Kim and Chung [17] and Jeevanand and Nair [15] have considered the Bayesian
estimation of R based on samples containing outlier from the burr-X distribution
and exponential distribution, respectively. Li and Hao [19] studied the Bayesian
and maximum likelihood estimation of R when X and Y are two independent
generalized exponential distributions containing one outlier. Pazira and Nasiri
[28] and Nasiri [21] consider the estimating parameters of R for generalized expo-
nential istribution and Lomax distribution with presence k-outliers, respectively.
Ghanizadeh [8] and Ghanizadeh et. al. [9] studied the estimation of R in the
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presence of k-outlier for Rayleigh and Exponentiated Gamma distribution, re-
spectively.

In the present work, the Bayes and maximum likelihood approaches to es-
timate the P (Y < X) are incorporated into the samples containing outliers. This
paper is organized as follows: First, in Section 2, we recall the concept of GED
and then formulated the problem. Then, we investigate the MLE and the Bayes
estimators of R when the scale parameter is known and unknown, respectively
in Section 3 and 4. The different proposed methods have been compared using
Monte Carlo simulations and Bootstrap methods and their results have been re-
ported in Section 5. An numerical example is illustrated in Section 6. Finally, a
brief conclusion presented in Section 7.

2. Mathematical formulation

The two-parameter GED has the following density function

(2.1) f(x, α, λ) = αλe−λx(1− e−λx)α−1, x > 0

where α > 0 and λ > 0 are the shape and scale parameters, respectively. We
denote the two-parameter GED with the shape parameter α and scale parameter
λ will be denoted by GE(α, λ).

For different values of the shape parameter, the density function can take
different shape. If the scale parameter λ is equal to one, for α ≤ 1, the density
function is a decreasing function and for α > 1, it is a unimodal, skewed, right
tailed similar to the Weibull or Gamma density function. It is observed that
even for very large shape parameter (α), it is not symmetric. For this density
function (2.1), the mode is at logα for α > 1 and for α ≤ 1, the mode is at α. It
has the median at − ln(1− 0.51/α) . The mean, median and mode are non-linear
functions of the shape parameter α and as this parameter goes to infinity all of
them tend to infinity. For large values of α, the mean, median and mode are
approximately equal to α but they converge at different rates. Figure 1 shows
the shape of f(x, α) for different values of α when λ = 1 (For more details refer
to Gupta and Kundu [11]).

The main aim of this paper is to focus on the inference of R = P (Y < X),
where Y ∼ GE(α, λ), with pdf denoted in Equation (2.1) and Xhas GED with
presence of k outliers, with pdf ,

(2.2) f(x, β1, β2, λ) =
k

n
f(x, β1, λ) +

n− k
n

f(x, β2, λ), x > 0,

where function f(.) is given in Equation (2.1). For more details see Dixit [6] and
Nasiri and Pazira [24]-[25].

To this end, suppose that Y1, Y2, ..., Ym be a random sample for Y with pdf

(2.3) g(y, α, λ) = αλe−λy(1− e−λy)α−1, y > 0
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Figure 1: pdf of GE(α,1) for different values of α.

and X1, X2, ..., Xn be random sample for X with pdf

(2.4) f(x, β1, β2, λ) =
k

n
g(x, β1, λ) +

n− k
n

g(x, β2, λ), x > 0,

with presence of k outliers. The function g(.) is given in Equation (2.3).
Then, based on the difinition of R, we have that

R = P (Y < X) =

∫ ∞
0

∫ x

0
g(y, α, λ)f(x, β1, β2, λ)dydx(2.5)

=
k

n
.

β1

α+ β1
+
n− k
n

.
β2

α+ β2

Thus, in order to estimate the R, it is sufficient that we estimate the pa-
rameters α, β1 and β2.

3. Maximum Likelihood Estimator of R

In this section, we study the maximum likelihood estimation of the R.
In order to compute the MLE of R, first we consider the joint distribution of
X1, X2, ..., Xn with presence of k outliers as follows

(3.1)

f(x1, x2, ..., xn)

=
1

C(n, k)

n∏
i=1

[
β2λe

−λxi(1− e−λxi)β2−1
]∑

A

k∏
r=1

(
β1λe

−λxAr (1− e−λxAr )β1−1

β2λe−λxAr (1− e−λxAr )β2−1

)

=
1

C(n, k)
βk1β

n−k
2 λne−λ

∑
xi

n∏
i=1

[
(1− e−λxi)β2−1

]∑
A

k∏
r=1

(1− e−λxAr )β1−β2
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where C(n, k) =

(
n
k

)
and ΣA = Σn−k+1

A1=1 Σn−k+2
A2=A1+1 · · ·Σn

Ak=Ak−1+1. (For more

details see [28]).
Using Equation (3.1), the likelihood function based on two observed sample is
given as follows

L(α, β1, β2, λ) = g(y1, y2, ..., ym)f(x1, x2, ..., xn)

The Log-likelihood function of the observed sample is

lnL(α, β1, β2, λ) = m ln(αλ)− λ
m∑
i=1

yi + (α− 1)

m∑
i=1

ln(1− e−λyi)

+ ln

βk1βn−k2

C(n, k)
λne−

∑n
i=1 λxi

n∏
i=1

[
(1− e−λxi)β2−1

]∑
A

k∏
r=1

(1− e−λxAr )β1−β2

(3.2)

It is well known that, in order to compute the The MLE’s of α say α̂, we must
obtain the solution of following equation

∂ lnL

∂α
=
mλ

αλ
+

m∑
i=1

ln(1− e−λyi) = 0,

or

m

α
= −

m∑
i=1

ln(1− e−λyi).

Hence,

α̂ =
−m∑m

i=1 ln(1− e−λ̂yi)
(3.3)

In similar way, the MLE’s of β1, β2 and λ, say β̂1, β̂2 and λ̂ respectively, obtained
as the solutions of

∂ lnL

∂β1
=

k

β1
+

∂
∂β1

∑
A

∏k
r=1(1− e−λxAr )β1−β2∑

A

∏k
r=1(1− e−λxAr )β1−β2

= 0

=
k

β1
+

∑
A

∏k
r=1(1− e−λxAr )β1−β2 ln(1− e−λxAr )∑

A

∏k
r=1(1− e−λxAr )β1−β2

= 0(3.4)

∂ lnL

∂β2
=

n− k
β2

+
n∑
i=1

ln(1− e−λxi) +

∂
∂β2

∑
A

∏k
r=1(1− e−λxAr )β1−β2∑

A

∏k
r=1(1− e−λxAr )β1−β2

= 0

=
n− k
β2

+

n∑
i=1

ln(1− e−λxi)−
∑

A

∏k
r=1(1− e−λxAr )β1−β2 ln(1− e−λxAr )∑

A

∏k
r=1(1− e−λxAr )β1−β2

= 0(3.5)
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∂ lnL

∂λ
=

m

λ
−

m∑
i=1

yi +
n

λ
−

n∑
i=1

xi + (α− 1)
m∑
i=1

yie
−λyi

1− e−λyi

+ (β2 − 1)
n∑
i=1

xie
−λxi

1− e−λxi
+

∂
∂λ

∑
A

∏k
r=1(1− e−λxAr )β1−β2∑

A

∏k
r=1(1− e−λxAr )β1−β2

= 0

=
m

λ
−

m∑
i=1

yi +
n

λ
−

n∑
i=1

xi + (α− 1)

m∑
i=1

yie
−λyi

1− e−λyi

+ (β2 − 1)
n∑
i=1

xie
−λxi

1− e−λxi
+

∑
A

∏k
r=1(β1 − β2)xAr(1− e−λxAr )β1−β2−1∑

A

∏k
r=1(1− e−λxAr )β1−β2

= 0(3.6)

From Equations (3.4)-(3.6), we obtain the β̂1, β̂2 and λ̂ as the solution of
non-linear equations.

Since ML estimators are invariant, so the MLE of R becomes

R̂ =
k

n

β̂1

α̂+ β̂1

+
n− k
n

β̂2

α̂+ β̂2

.(3.7)

Note 3.1. For β1 = β2 = β in case of no outliers presence, α̂ and β̂ can
be obtain as

α̂ =
−m∑m

i=1 ln(1− e−λ̂yi)
, β̂ =

−n∑n
i=1 ln(1− e−λ̂xi)

and λ̂ can be obtained as the function of the non-linear equation

g(λ) =
m+ n

λ
− n∑n

i=1 ln(1− e−λxi)

n∑
i=1

xie
−λxi

(1− e−λxi)

− m∑m
i=1 ln(1− e−λyi)

m∑
i=1

yie
−λyi

(1− e−λyi)
−

n∑
i=1

xi
(1− e−λxi)

−
m∑
i=1

yi
(1− e−λyi)

= 0

are given by Kundu and Gupta [18].

Note 3.2. The estimation of R when λ is known was studied by Pazira
and Nasiri [28]. In this case, the MLE estimation of R is given as Equation (3.7)
in which α̂, β̂1 and β̂2 given as follows

α̂ =
−m∑m

i=1 ln(1− e−yi)
(3.8)

∂ lnL

∂β1
==

k

β1
+

∑
A

∏k
r=1(1− e−xAr )β1−β2 ln(1− e−xAr )∑

A

∏k
r=1(1− e−xAr )β1−β2

= 0(3.9)
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∂ lnL

∂β2
=
n− k
β2

+

n∑
i=1

ln(1− e−xi)−
∑

A

∏k
r=1(1− e−xAr )β1−β2 ln(1− e−xAr )∑

A

∏k
r=1(1− e−xAr )β1−β2

= 0

(3.10)

3.1. Bootstrap Method

In this subsection, we propose the percentile bootstrap method based on
the idea of Efrom [7] in two cases of parameter λ is known and unknown. The
algorithms for estimating the R in these cases are illustrated below.

When λ is Unknown

Step 1: From the sample {y1, ..., ym} and {x1, ..., xn}, compute α̂, β̂1, β̂2

and λ̂ from equations (3.3), (3.4) and (3.5) and (3.6) respectively.

Step 2: Using α̂ and λ̂, we generate a bootstrap sample {y∗1, ..., y∗m} and
similarly using β̂1, β̂2 and λ̂, generate a bootstrap sample {x∗1, ..., x∗n}. Based on
{y∗1, ..., y∗m} and {x∗1, ..., x∗n} compute R.

Step 3: Repeat step 2, NBOOT times.

When λ is Known

Step 1: From the sample {y1, ..., ym} and {x1, ..., xn}, compute α̂, β̂1 and
β̂2 from Equations (3.8), (3.9) and (3.10) respectively.

Step 2: Using α̂, we generate a bootstrap sample {y∗1, ..., y∗m} and similarly
using β̂1 and β̂2, generate a bootstrap sample {x∗1, ..., x∗n}. Based on {y∗1, ..., y∗m}
and {x∗1, ..., x∗n} compute R.

Step 3: Repeat step 2, NBOOT times.

4. Bayes Estimator of R

In this section, we obtain the Bayes estimation of R under assumption
that the parameters β1, β2, α and λ are random variables. We mainly ob-
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tain the Bayes estimate of R under the squared error loss. It is assumed that
the parameters β1, β2, α and λ have independent gamma priors with the pa-
rameters β1 ∼ Gamma(a1, b1), β2 ∼ Gamma(a2, b2), α ∼ Gamma(a3, b3) and
λ ∼ Gamma(a4, b4). Based on the above assumptions, the joint density of the
data, β1, β2, α and λ can be obtained as

L(data, β1, β2, α, λ) = L(data;β1, β2, α, λ)π(β1), π(β2), π(α)π(λ)

= C1 β
k+a1−1
1 βn−k+a2−1

2 αm+a3−1λn+m+a4−1 h (β1, β2, α)h (β1, β2, α, λ)

where

C1 =
4∏
i=1

(
b
ai
i

Γ(ai)

)
1

C(n,k) ,

h (β1, β2, λ) =
∑

A

∏k
r=1(1− e−λxAr )β1−β2 ,

h (β1, β2, α, λ) = e
−b1 β1−β2

(
b2−

n∑
i=1

ln(1−e−λxi)
)
−α
(
b3−

m∑
j=1

ln
(

1−e−λ yj
))

e−λ(nx̄+mȳ)

.

Therefore, the joint posterior density of given the data is

(4.1)

L(β1, β2, α, λ|data) =

βk+a1−1
1 βn−k+a2−1

2 αm+a3−1λn+m+a4−1 h (β1, β2, α)h (β1, β2, α, λ)
∞∫
0

∞∫
0

∞∫
0

∞∫
0

βk+a1−1
1 βn−k+a2−1

2 αm+a3−1λn+m+a4−1 h (β1, β2, α)h (β1, β2, α, λ) dβ1 dβ2 dα dλ

Finally, the Bayes estimator of R, denoted by R̂B, given as follows

(4.2)

R̂B =

k

n

∞∫
0

∞∫
0

∞∫
0

∞∫
0

u(α, β1)βk+a1−1
1 βn−k+a2−1

2 αm+a3−1λn+m+a4−1 h (β1, β2, α)h (β1, β2, α, λ) dβ1 dβ2 dα dλ

∞∫
0

∞∫
0

∞∫
0

∞∫
0

βk+a1−1
1 βn−k+a2−1

2 αm+a3−1λn+m+a4−1 h (β1, β2, α)h (β1, β2, α, λ) dβ1 dβ2 dα dλ

+
n− k
n

∞∫
0

∞∫
0

∞∫
0

∞∫
0

u(α, β2)βk+a1−1
1 βn−k+a2−1

2 αm+a3−1λn+m+a4−1 h (β1, β2, α)h (β1, β2, α, λ) dβ1 dβ2 dα dλ

∞∫
0

∞∫
0

∞∫
0

∞∫
0

βk+a1−1
1 βn−k+a2−1

2 αm+a3−1λn+m+a4−1 h (β1, β2, α)h (β1, β2, α, λ) dβ1 dβ2 dα dλ

,

where u(α, βi) = βi
α+βi

, i = 1, 2.
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Furthermore, in the case of λ known, the Bayes estimator of R is given by

(4.3)

R̂B =

k

n

∞∫
0

∞∫
0

∞∫
0

u(α, β1)βk+a1−1
1 βn−k+a2−1

2 αm+a3−1 g (β1, β2) g (β1, β2, α) dβ1 dβ2 dα

∞∫
0

∞∫
0

∞∫
0

βk+a1−1
1 βn−k+a2−1

2 αm+a3−1 g (β1, β2) g (β1, β2, α) dβ1 dβ2 dα

+
n− k
n

∞∫
0

∞∫
0

∞∫
0

u(α, β2)βk+a1−1
1 βn−k+a2−1

2 αm+a3−1 g (β1, β2) g (β1, β2, α) dβ1 dβ2 dα

∞∫
0

∞∫
0

∞∫
0

βk+a1−1
1 βn−k+a2−1

2 αm+a3−1 g (β1, β2) g (β1, β2, α) dβ1 dβ2 dα

,

where

g (β1, β2) =
∑

A

∏k
r=1(1− e−λxAr )β1−β2 ,

g (β1, β2, α) = e
−b1 β1−β2

(
b2−

n∑
i=1

ln(1−e−λxi)
)
−α
(
b3−

m∑
j=1

ln
(

1−e−λ yj
))
.

Since Equations 4.2 and 4.3 can not be obtained analytically, we adopt the Gibbs
sampling technique to compute the Bayes estimate of R. Moreover, to compute
different Bayes estimates, we prefer to use the non-informative prior, because we
do not have any prior information on R. On the other hand, the non-informative
prior provides prior distributions which are not proper, we adopt the suggestion
of Congdon [2] and Kundu and Gupta [18].

5. Simulation results

In this section, we present some results based on Monte Carlo simulations
to compare the performance of the different methods. We consider two cases
separately to draw inference on R, namely when (i) the common scale parameter
λ is known, (ii) the common scale parameter λ is unknown. In both cases we
consider the following small sample size

(n,m) = (15, 15), (20, 20), (25, 25), (15, 20), (20, 15), (15, 25), (25, 15), (20, 25), (25, 20).

Moreover, in both cases we take α = 1.50, β1 = 2.50 and β2 = 2.75. Without loss
of generality we take λ = 1 in the case λ is known. Here we present a complete
analysis of a simulated data, and the results are given in tables 1 to 4 for k = 1
and tables 5 to 8 for k = 2.

It is observed that the maximum likelihood estimator of R, when λ is known
and unknown works quite well. We report the average estimates and the MSEs
based on 5000 replications. The results are reported in Tables 1 and 2 for k = 1
and, 5 and 6 for k = 2. In this case, as we expected, when m = n and m , n
increase then the average biases and the MSEs decrease. For fixed m as n increase
the MSEs decrease and also for fixed n as m increases the MSEs decrease.
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Based on obtained results, it is clear that the estimator ofR using Bootstrap
method, when λ is known and unknown works quite well. We report the average
estimates and the MSEs based on 100 replications. The results are reported in
Tables 3 and 4 for k = 1 and, 7 and 8 for k = 2. In this case, as we expected,
when m = n and m , n increase then the average biases and the MSEs decrease.
For fixed m as n increase the MSEs decrease and also for fixed n as m increases
the MSEs decrease.

(n,m) α̂ β̂1 β̂2 R̂ Bias(R̂) MSE(R̂)

(15,15) 1.8444 2.5000 3.3135 0.6278 -0.0178 0.0217
(20,20) 1.6075 2.5000 2.7086 0.6237 -0.0222 0.0063
(25,25) 1.8233 2.5000 2.7277 0.6074 -0.0388 0.0082
(15,20) 1.6851 2.5000 3.1127 0.6445 -0.0011 0.0023
(20,15) 1.4864 2.5000 3.4041 0.6959 0.0500 0.0034
(15,25) 1.7807 2.5000 2.6832 0.6071 -0.0385 0.0088
(25,15) 1.4213 2.5000 2.7206 0.6490 0.0028 0.0033
(20,25) 1.6360 2.5000 2.8331 0.6333 -0.0126 0.0030
(25,20) 1.5888 2.5000 2.6093 0.6249 -0.0213 0.0073

Table 1: MLE when k = 1, α = 1.5, β1 = 2.5, β2 = 2.75 and λ = 1

(n,m) λ̂ α̂ β̂1 β̂2 R̂ Bias(R̂) MSE(R̂)

(15,15) 0.9877 1.5666 2.5000 2.7500 0.6443 -0.0012 0.0051
(20,20) 0.9899 1.6447 2.5000 2.7500 0.6338 -0.0122 0.0050
(25,25) 1.0223 1.6172 2.5000 2.7500 0.6344 -0.0118 0.0036
(15,20) 1.0108 1.6242 2.5000 2.7500 0.6365 -0.0091 0.0050
(20,15) 1.0209 1.6831 2.5000 2.7500 0.6291 -0.0168 0.0060
(15,25) 1.0165 1.6402 2.5000 2.7500 0.6359 -0.0097 0.0052
(25,15) 1.0037 1.6527 2.5000 2.7500 0.6324 -0.0138 0.0054
(20,25) 0.9974 1.5571 2.5000 2.7500 0.6425 -0.0034 0.0032
(25,20) 1.0251 1.6440 2.5000 2.7500 0.6325 -0.0137 0.0044

Table 2: MLE when k = 1, α = 1.5, β1 = 2.5, and β2 = 2.75

6. Numerical example

In this section an numerical example is illustrated and the results of differ-
ent methods are compared. to do this, the data has been generated using k = 2,
m = n = 15, α = 1.50, β1 = 2.50, β2 = 2.75 and λ = 1. The data has been trun-
cated after four decimal places and it has been presented below. The Y values
are
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(n,m) α̂ β̂1 β̂2 R̂ Bias(R̂) MSE(R̂)

(15,15) 1.6774 14.6622 59.6942 0.9076 0.2620 0.0735
(20,20) 1.7030 9.7609 180.1635 0.8881 0.2421 0.0780
(25,25) 0.3793 2.5000 12.5714 0.9010 0.2548 0.0796
(15,20) 4.5208 2.5000 13.3324 0.6994 0.0539 0.0105
(20,15) 1.5245 6.5037 89.0338 0.9411 0.2952 0.0899
(15,25) 3.4078 6.1308 272.3902 0.8519 0.2063 0.0503
(25,15) 2.6388 2.5401 112.7504 0.8501 0.2039 0.0489
(20,25) 1.6082 2.5000 7.5632 0.7984 0.1525 0.0324
(25,20) 0.5908 2.5000 2.1251 0.8065 0.1603 0.0692

Table 3: Bootstrap method when k = 1, α = 1.5, β1 = 2.5, β2 =
2.75 and λ = 1

(n,m) λ̂ α̂ β̂1 β̂2 R̂ Bias(R̂) MSE(R̂)

(15,15) 0.0942 47.7459 2.5000 2.7500 0.3846 -0.2609 0.1497
(20,20) 0.1831 4.0096 2.5000 2.7500 0.4931 -0.1528 0.0571
(25,25) 1.8805 9.7125 2.5000 2.7500 0.3571 -0.2890 0.1195
(15,20) 0.7036 8.4306 2.5000 2.7500 0.4055 -0.2401 0.0980
(20,15) 1.9512 6.6062 2.5000 2.7500 0.3598 -0.2861 0.1075
(15,25) 0.8380 2.2379 2.5000 2.7500 0.6275 -0.0181 0.0474
(25,15) 0.2228 10.3235 2.5000 2.7500 0.3642 -0.2820 0.1196
(20,25) 1.4792 2.4191 2.5000 2.7500 0.5761 -0.0698 0.0277
(25,20) 0.4040 1.7287 2.5000 2.7500 0.6455 -0.0006 0.0198

Table 4: Bootstrap method when k = 1, α = 1.5, β1 = 2.5, and β2 =
2.75

(n,m) α̂ β̂1 β̂2 R̂ Bias(R̂) MSE(R̂)

(15,15) 1.8567 2.8847 2.2264 0.5198 -0.1244 0.0217
(20,20) 1.5968 2.5165 2.5660 0.5848 -0.0601 0.0071
(25,25) 1.6174 1.9278 2.4801 0.6004 -0.0449 0.0056
(15,20) 1.5593 3.9744 2.8183 0.6380 -0.0061 0.0111
(20,15) 1.6675 3.1053 2.6176 0.6174 -0.0274 0.0166
(15,25) 1.6831 2.9464 2.3125 0.5741 -0.0700 0.0106
(25,15) 1.5960 1.7858 2.6101 0.6034 -0.0419 0.0071
(20,25) 1.6159 3.1946 2.7131 0.6198 -0.0250 0.0060
(25,20) 1.4687 3.1153 2.8283 0.6556 0.0103 0.0034

Table 5: MLE when k = 2, α = 1.5, β1 = 2.5, β2 = 2.75 and λ = 1

0.1656 1.4907 0.1297 0.1890 1.0442 0.2366 2.0775 2.0741
1.6354 0.3315 1.4178 1.0370 4.0119 1.3847 1.9806

and the corresponding X values are
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(n,m) λ̂ α̂ β̂1 β̂2 R̂ Bias(R̂) MSE(R̂)

(15,15) 1.0637 1.6394 2.7108 2.3042 0.5491 -0.0950 0.0106
(20,20) 0.9842 1.6196 2.6559 2.4108 0.5779 -0.0670 0.0110
(25,25) 0.9916 1.8235 2.6076 2.4758 0.5824 -0.0629 0.0159
(15,20) 0.9449 1.3620 2.5189 2.3047 0.5885 -0.0557 0.0037
(20,15) 1.0560 1.9955 2.8272 2.4110 0.5297 -0.1152 0.0185
(15,25) 0.9265 1.4211 3.7023 2.3022 0.5857 -0.0584 0.0051
(25,15) 0.9867 1.5628 2.2423 2.4753 0.5911 -0.0542 0.0056
(20,25) 1.0057 1.4799 2.4455 2.4105 0.5931 -0.0517 0.0056
(25,20) 0.9153 1.5412 2.7855 2.4752 0.5947 -0.0506 0.0045

Table 6: MLE when k = 2, α = 1.5, β1 = 2.5, and β2 = 2.75

(n,m) α̂ β̂1 β̂2 R̂ Bias(R̂) MSE(R̂)

(15,15) 2.21351 0.65190 1.30161 0.348023 -0.254428 0.0671290
(20,20) 2.42581 0.46529 1.21980 0.315847 -0.297756 0.0922301
(25,25) 1.95369 3.91502 2.95105 0.601363 -0.018931 0.0036032
(15,20) 1.14788 5.47549 3.46179 0.748267 0.145816 0.0250333
(20,15) 1.50094 6.10851 3.89440 0.709387 0.095784 0.0205170
(15,25) 1.42394 0.66237 1.25841 0.439300 -0.163151 0.0443621
(25,15) 4.55750 1.89003 2.24141 0.362190 -0.258104 0.0943967
(20,25) 1.09092 1.39501 1.75356 0.603435 -0.010168 0.0032842
(25,20) 1.53441 1.77145 2.36214 0.589008 -0.031286 0.0134582

Table 7: Bootstrap method when k = 2, α = 1.5, β1 = 2.5, β2 =
2.75 and λ = 1

(n,m) λ̂ α̂ β̂1 β̂2 R̂ Bias(R̂) MSE(R̂)

(15,15) 1.5127 2.0224 2.2197 2.3071 0.5339 -0.1102 0.0150
(20,20) 1.0199 1.5270 1.5802 2.4121 0.6068 -0.0380 0.0047
(25,25) 1.1685 2.2125 2.3427 2.4754 0.5302 -0.1151 0.0150
(15,20) 2.2332 1.8661 2.5324 2.3066 0.5534 -0.0908 0.0110
(20,15) 1.3911 0.6630 1.7005 2.4124 0.7806 0.1357 0.0209
(15,25) 1.3795 3.0205 3.4349 2.3031 0.4660 -0.1781 0.0424
(25,15) 0.6082 1.1873 2.5821 2.4751 0.6773 0.0321 0.0020
(20,25) 0.7843 1.9834 2.8723 2.4099 0.5562 -0.0887 0.0103
(25,20) 1.1818 2.1626 2.0703 2.4756 0.5314 -0.1139 0.0142

Table 8: Bootstrap method when MLE when k = 2, α = 1.5, β1 =
2.5, and β2 = 2.75

3.5641 3.5056 4.9680 2.4494 2.6494 2.7850 3.3939 5.0067
4.8371 2.3331 3.4162 3.7709 3.4634 1.8660 1.7731

Now, we obtain the MLE estimates of α, β1, β2 and R as, α̂ = 2.234, β̂1 =
2.5, β̂2 = 10.43, R = 0.6441 and therefore R̂ = 0.7542. Also, using Equation 4.3
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the Bayes estimation becomes R̂B = 0.7623.

In case (ii), when λ is unknown, the Y values are

1.5746 0.1059 0.5531 0.1378 0.2374 2.1082 1.5347 0.6255
3.3972 0.1119 0.8613 0.7467 1.8130 1.9542 0.3958

and the corresponding X values are

3.6642 3.5416 4.1511 4.3893 4.5871 3.0850 4.2729 4.1823
2.7502 2.5972 3.6886 6.5070 3.2589 1.6457 0.7974

Then α̂ = 0.7731, β̂1 = 2.5, β̂2 = 2.75, λ̂ = 0.5405, R = 0.6441 and R̂ = 0.7783.
Also, the Bayes estimation becomes R̂B = 0.7763 using Equation 4.2.

For the Bootstrap method when λ is known, the Y values are

0.2550 1.3994 0.9810 1.8751 1.6076 2.7293 2.6022 0.6569
1.5485 0.4147 0.1028 1.7211 0.9942 0.9493 2.7400

and the corresponding X values are

4.0273 4.0531 5.2043 4.8492 3.9213 2.8151 2.9842 5.4328
2.1106 3.6646 2.7675 7.1520 4.4030 1.4194 1.3471

Then α̂ = 1.7297, β̂1 = 2.5, β̂2 = 6.206, R = 0.6441 and R̂ = 0.7566.
In the Bootstrap method when λ is unknown, the Y values are

1.9301 3.3788 0.6447 1.4552 0.8611 2.1686 1.8280 0.3618
2.3616 4.9962 1.0273 2.5419 1.2103 0.3400 0.4183

and the corresponding X values are

3.4369 4.5594 4.9697 4.7634 3.2003 3.7920 2.4787 2.5690
2.6606 4.2689 3.6796 2.8361 3.6791 0.6259 0.3760

Then α̂ = 1.7886, β̂1 = 2.5, β̂2 = 2.75, λ̂ = 0.7535, R = 0.6441 and R̂ =
0.6029.
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7. Conclusion

In this paper, we have studied the estimation of P (Y < X) for the GED.
We assume that the sample from each population contains k-outlier. Two cases
scale parameter is known or unknown are considered in this context. The MLE
and Bayes estimator of R are obtained in each case.

When the common scale parameter is unknown, it is observed that the
maximum likelihood estimator works quite well. Based on the simulation re-
sults, when the sample size is very small, we recommend to use the parametric
Bootstrap percentile method. The similar results was obtained in the case of the
common scale parameter is known.
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