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Abstract:

• Partial least squares (PLS) regression reduces the regression problem from a large-p
number of interrelated predictors to a small-m number of extracted factors. These use
information for predicting the response making PLS regression models extremely good
for prediction purposes. The PLS regression coefficient vector is determined by the
PLS factor loadings which drive the dimension reduction process; it should therefore
be smooth, especially when the factor subspace dimension is small. We explore smooth
alternatives for PLS regression revisiting a topic that triggered the research interest
over the last two decades. We use for this the discrete wavelet transform focusing on
PLS regression applications in near infra-red spectroscopy.
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1. INTRODUCTION

Spectral data are characterized by a large number of interrelated measure-
ments, intensities and absorptions, which are regularly recorded across a range of
wavelengths. They are recorded by means of modern instruments and are often
used as predictors in regression problems. In near infra-red (NIR) spectroscopy,
in the food industry, for instance, samples of meat are analyzed for their fat con-
tent, and their NIR spectra are then used to predict fat concentration. Similar
applications may be found in agriculture for the determination of properties of
grains, in oil industry, in the analysis of pharmaceuticals, etc.

Using the spectral measurements as predictors in a regression problem lim-
its traditional regression methods and implies the use of high-dimensional regres-
sion techniques. Partial least squares (PLS) regression has been for a long time
implemented to deal with such regression problems, see [1]. PLS methods are
based on reducing the dimension of the regression problem to a small-m number
of factors rather than a large-p number of variables. This is achieved using in-
formation on the response variable, making PLS regression models excellent for
prediction purposes.

More than twenty years have passed since the first smooth PLS regression
has been presented in [2]. The authors have been motivated by non-parametric
regression techniques in [3], and established the link between PLS regression and
functional data analysis. This link resulted in numerous publications on PLS
regression for functional data; see [4, 5, 6, 7, 8, 9]. The increasing interest in
using functional data techniques for spectral applications stems from the fact
that spectral data are indeed functional. NIR spectra, for example, are discrete
instances of the chemical spectrum of a sample on a range of different wavelengths.
This is illustrated in Figure 1 for 60 gasoline samples for which their spectral
measurements are recorded at every two nanometers (nm) from 900 to 1700 nm.
They are discrete values of continuous functions which are also smooth. Following
[2] the extracted factor loadings should resemble to the spectra, and therefore
should exhibit some degree of smoothness; the same holds for the regression
solution. The gasoline samples data together with other two spectral data sets
will be used in the examples that follow.

We revisit smooth PLS regression after a short overview on PLS regression
given in Section 2. Two smooth PLS regression using wavelets are presented in
Section 3 and Section 4. Their theoretical properties are investigated in Section
5; proofs are given in the Appendix. In Section 6 three well-known NIR data
sets are revisited in order to illustrate smooth PLS regression. Focus is mainly
given on NIR applications. Nevertheless, the presented smooth PLS regression
alternative naturally applies to other spectral data, as well. Conclusions are given
in Section 7.

Throughout the paper bold face lower and upper case letters are used for
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Figure 1:
Gasoline data : Spectral data for 60 gasoline samples measured
from 900 to 1700 nanometers (nm). The spectral data are reg-
istered every two nanometers.

vectors and matrices, respectively. The number of samples will be denoted by
n while the number of predictors by p. The subscript m is used to denote the
dimension of the PLS regression models, while the hat suffix is used for least
squares fitted vectors. Further notations are introduced when needed.

2. PLS REGRESSION

Working within a linear model framework for regression problems the fol-
lowing linear model is assumed:

(2.1) yi = µ+ x′iβ + εi, i = 1, . . . , n,

where yi is the observed response for sample i, xi are p-vectors of explanatory
variables, β is the unknown p-vector of regression parameters, and εi the error
term of the regression model. Without loss of generality we assume data to be
centred to zero and therefore we freely assume µ = 0. Using matrix notation:
X = (x1, . . . ,xp) stands for the data matrix with predictors in its columns, y
is the response vector, and β ∈ Rp is the unknown regression coefficient vector
commonly estimated using least squares.

When the number of predictors (p) is large relative to the sample size (n)
and/or the predictors are correlated, the least squares solution, when it exists, is
highly variable due to rank deficiency of the data matrix X. When n < p the
least squares solution doesn’t even exist. In such cases, PLS regression offers an
alternative by solving the regression problem after reducing its dimension; from
hundreds of correlated predictors xj , j = 1, . . . , p, to a small set of orthogonal
components tm with m << p. These are linear combination of the original
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predictors, and are used in the final regression on the response. PLS regression,
therefore, iteratively approximates the least squares solution from a sequence of
subspaces indexed by m ≤ p. Using m orthogonal components in the final model,
PLS regression lets for bias to decrease variance, and allows for a low mean square
error for the final regression solution.

The restriction of orthogonal components may be relaxed in order to get
PLS regression on orthogonal loadings. This has given rise to two different imple-
mentations of PLS regression, see [10] and [11]. The two algorithms are equivalent
for prediction purposes; for a proof see [12]. Both PLS regression algorithms de-
flate data at each iteration, and X−residuals and y−residuals are used instead
of X and y when m > 1. These are least squares residuals and will be denoted
hereafter by Em and fm, respectively, while we let E0 = X and f0 = y. An im-
portant simplification when the response is a vector is the following: deflating y
is not necessary; see [1]. More efficient computational algorithms for PLS regres-
sion without X-data deflation have been proposed in [13] and [14]. We provide
in Algorithm (1) a sketch of the PLS regression on orthogonal loadings; see [11].
This implementation will be used in the PLS regression calculations throughout
the rest of the paper.

Algorithm 1 Partial least squares regression on orthogonal loadings.

Input: For i = 1, .., n and j = 1, ..., p , E0 = X and f0 = y.
For m = 1, 2, . . . , k ≤ p

1. Compute pm according to: pm = E′m−1fm−1 .
2. Derive tm = Em−1 pm/p

′
m pm and store in Tm = (t1, . . . , tm).

3. Em = Em−1 − tm p′m .
4. fm = y −

∑m
a=1 ta q̂ma where

q̂m = (q̂m1, . . . , q̂ma, . . . , q̂mm)′ = (T ′mTm)−1T ′my.

Output: Give the resulting sequence of the fitted vectors ŷm = Tm q̂m.

The PLS regression coefficient vector β̂pls
m is determined by the matrix Pm

containing in its columns the orthogonal loading vectors p1, . . . ,pm. It is derived
according to:

(2.2) β̂
pls

m = Pmq̂m,

where q̂m is defined in Algorithm 1. Similar to principal components; see [15]
the dimension reduction process of PLS implies a change of basis from the p-
dimensional unit basis to a subspace of reduced dimension m < p. For principal
components this corresponds to the subspace generated by a small set of selected
eigenvectors. For PLS regression the new basis corresponds to the Krylov sub-
space of dimension up to m, defined as follows:

Definition 2.1. For matrix A = X ′X and vector b = X ′y the Krylov
subspace of dimension m ≤ p is given by:

(2.3) Km( b, A ) = span( b, A1 b, . . . , Am−1 b).
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The loading vectors in Pm (see Algorithm 1) span the Krylov subspace
Km( b, A ). The same holds for the PLS regression solution; see [12]. The PLS
regression coefficient based on m components is given as the solution to:

(2.4) β̂
pls

m = argminβ
{

(y − ŷ)′(y − ŷ)
}

where ŷ = Xβ, β ∈ Km( b, A ).

Krylov spaces are location and scale invariant (see [16], chapter 12) and
they further benefit from the following property:

Remark 2.1. For an orthogonal basis change in Km( b, A ) induced by
an orthogonal matrix Q we get an orthogonal similarity transformation of A,
that is:

(2.5) Km(Q b,Q AQ′) = QKm( b, A ), for m ≤ p.

The last property becomes even more interesting given that the Discrete
Wavelet Transform (DWT), to be used in the following section, is such an or-
thogonal matrix.

3. Smooth PLS regression on wavelet transformed data

Spectral data are discrete values of continuous functions. Wavelets are used
to approximate such functional data by means of the so-called mother and father
wavelet, at different scales ` and locations k according to:

(3.1) f(x) =
∑
k∈Z

c`0,k φ`0,k(x) +
∑

`0≤`,k∈Z
d`,k ψ`,k(x),

where c`,k and d`,k are the scaling and detail wavelet coefficients, respectively.
The father wavelet coefficient at scale zero (`0) reflects the global average of
the spectrum, and when the data are centered it is equal to zero. The wavelet
transform can be expressed as a matrix multiplication using the Discrete Wavelet
Transform (DWT) matrix; see [17], Chapter 12 as well as [18], paragraph 4.3.
This allows changing coordinates system from the original to the wavelet domain
forwards and backwards. The operation is fast ([19]) and safe given that DWT is
orthogonal. Each row spectrum xi is mapped into a vector of wavelet coefficients
x̃i by means of matrix multiplication according to: x̃i = W xi, where W is the
DWT orthogonal matrix of dimension p×p. Note that for a spectral data matrix
X the DWT is given by postmultiplying the spectral data by W ′, to get:

(3.2) X̃ = XW ′.

PLS regression on transformed data has been presented in [5]. It is run on the
wavelet domain instead of the original spectra. The regression solution is then
approximated on the wavelet domain as:

(3.3)
̂̃
βpls
m,` = argmin

β̃

{
(y − ŷ)′(y − ŷ)

}
where ŷ = X̃ β̃, β̃ ∈ Km( b̃, Ã),
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with Ã = W` AW ′` and b̃ = W` b. The matrix W` denotes the truncated DWT
matrix of dimension 2`×p. The use of the subscript ` for the coefficient vector in
the transformed coordinates is used to highlight the wavelet truncation. Mother
wavelet coefficients associated to the finest scales and very often the noisy part of
the spectrum are truncated to zero. The final regression solution is recovered in
original coordinates by means of the inverse DWT, denoted hereafter as iDWT.
Using matrix multiplication this is the transpose of the DWT matrix. The PLS
regression solution is smooth and given according to:

(3.4) β̂
spls.1

m =W ′`
̂̃
β
pls

m,`.

The authors in [5] used the term ’wavelet compressed data’ to describe their
algorithm motivated by the wavelet’s outstanding performance to retain spectral
information in a few wavelet coefficients. They truncated wavelet coefficients
based on their variance spectrum, retaining most often the largest ones. Our
motivation is smoothness. We truncate to zero wavelet coefficients associated to
the finest resolution level scales. Other truncation strategies could be based upon
other rules such as the universal threshold or using adaptive thresholding rules
at each different resolution level; see [20], [21] and the references therein.

The smooth PLS regression algorithm based on wavelet transformed data
is implemented using the orthogonal loadings PLS regression algorithm. It is
similar to Algorithm 1, and therefore will not be given here. It uses all vectors
and matrices z transformed in the wavelet domain and denoted z̃. For instance,
the loading vector pm is replaced by p̃m. The same holds for all data and residual
data matrices, for the score vectors, and for the coefficient vectors q and β.
Expression (3.4) is used in the end to recover the final regression solution back
in the original coordinates system. The choice of ` is an additional argument in
the algorithm’s input.

4. PLS regression on smooth loadings

Transforming data to the wavelet domain is not the only one way to ob-
tain a smooth PLS regression solution. Smoothness may be embedded directly
on the loadings. This is done here by means of a PLS regression algorithm on
smooth loadings. Wavelets are used on the loading vectors and data aren’t trans-
formed. At each iteration m the loading vector is reconstructed using a subset
of the wavelet coefficients. The resulting loading vectors are both orthogonal
and smooth. They are orthogonal due to the PLS algorithm, and smooth due
to wavelet truncation. In terms of matrix multiplication we truncate the DWT
matrix W to its first ` rows, that is, W` which correspond to the coarsest scales.
The resulting reconstructed smooth loading vector is given as: p?m =W ′` p̈m, with
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(4.1) p̈m =
∑

ř,ǩ∈Z

dř,ǩψř,ǩ(pm),

being the approximated loading vector using all the detail wavelet coefficients for
scales up to ř and their associated locations ǩ. The smooth loadings (p?1, . . . ,p

?
m)

are stored in the matrix P ?
m. Similarly the regression coefficients q̂?ma are stored

in the vector q̂?m = (q̂?m1, . . . , q̂
?
ma, . . . , q̂

?
mm)′. The final regression solution is given

according to Expression (2.2) with matrix P ?
m taking over Pm. The algorithm

for PLS regression on smooth loadings is sketched in Algorithm 2.

Algorithm 2 PLS regression on smooth loadings.

Input: For i = 1, .., n and j = 1, ..., p , E0 = X and f0 = y.
Select ` such that 2` < p and compute W`.
For m = 1, 2, . . . , k ≤ p

1. Compute p?m according to: p?m =W ′` p̈m,
where p̈m as in Expression (4.1) with pm = E

′
m−1fm−1.

2. Derive t?m = Em−1 p
?
m/p

? ′
mp

?
m and store in T ?

m = (t?1, . . . , t
?
m).

3. Em = Em−1 − t?m p? ′m .
4. fm = y −

∑m
a=1 t

?
a q̂

?
ma where

q̂?m = (q̂?m1, . . . , q̂
?
ma, . . . , q̂

?
mm)′ = (T ?′

mT
?
m)−1T ?′

my.

Output: Give the resulting sequence of the fitted vectors ŷsplsm = X β̂
spls.2

m ,

where β̂
spls.2

m = P ?
m q̂

?
m for P ?

m = (p?1, . . . ,p
?
m).

The PLS regression on smooth loadings algorithm is computationally much
faster than the algorithm for smooth PLS regression on wavelet transformed data.
In the former algorithm the data are not transformed and only a few matrix-
vector multiplications are required. In Algorithm 2 the wavelet expansion and
truncation is done once for each loading vector. Normally the number of the
extracted loadings is much smaller than the number of data samples. Moreover,
the regression solution resulting from Algorithm 2 is on the original coordinates
system and there is no need to be transformed back from the wavelet to the
original domain. It turns out that the relation between the two algorithms is far
more interesting from a theoretical point of view. This is further explored in the
following section.

5. Theoretical aspects of smooth PLS regression

The relation between the two smooth PLS regression algorithms is explored
here from a theoretical viewpoint. The loading and regression vectors resulting
from the two smooth PLS regression implementations are investigated. Results
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are given in the following propositions, while the proofs are provided separately
in the Appendix.

Proposition 5.1. The regression loadings p̃m and p̈m are identical.

Proposition 5.2. The smooth PLS regression loadings p?m computed in
Algorithm 2 are orthogonal.

Proposition 5.3. The two smooth PLS regression algorithms generate
the same sequence of approximate regression solutions, that is:

(5.1) β̂
spls.1

m,` = β̂
spls.2

m,` = β̂
spls

m,` .

Proposition 5.4. Both algorithms approximate the solution of the lin-
ear system of equations

(5.2) M Aβ?
m = M,

¯
with M =W ′`W` for m ≤ p and 2` ≤ p ,

iteratively through Krylov subspace approximations.

As a direct consequence of Proposition 5.4 we state the following proposi-
tion.

Proposition 5.5. For m ≤ p and increasing wavelet scale ` such that
2` → p the sequence of smooth PLS regression solutions generates the same
subspaces and converges to the sequence of ordinary PLS regression solutions,
that is:

β̂
spls

m,` → β̂
pls

m .

For both ordinary and smooth PLS regression the reduction of the dimen-
sion of the regression problem from large-p to small-m is almost identical. This is
stated in the proposition below by employing the term of equivalence. The proof
for Proposition 5.6 is given in the Appendix.

Proposition 5.6. Ordinary and smooth PLS regression models are equiv-
alent in reducing the dimension of the regression problem.

Proper model selection is crucial for smooth PLS regression as it is for
ordinary PLS regression. Prior to applying and assessing smooth PLS regression
one needs to identify the dimension of the regression model, that is, the number of
PLS regression components to be retained. This is done in the following section
by means of cross validation prior to investigating smooth PLS regression on
three well known NIR data sets.
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6. Experience with NIR data

Three well-known data from NIR spectroscopy are used here to assess
smooth PLS regression. These are the diesel, the gasoline, and the biscuit data
sets. All of them are available through the internet. The diesel data has been
downloaded from the Eigenvector Research site at http://www.eigenvector.com/data/SWRI/,
while the gasoline and the biscuit data have been downloaded from the R packages
pls ([22]) and ppls ([23]) through the R website at http://www.r-project.org/. All
three NIR data sets have been extensively used in the literature; see for instance
[2], [24], [7], [8], and [9].

The diesel and the gasoline data sets quantify the cetane and the octane
number of 381 diesel and 60 gasoline samples, respectively. The cetane number
for diesel samples is the equivalent of the octane number for gasoline samples.
The biscuit data measure fat concentration of 71 cookies. The data include
information on 72 biscuit samples, yet, observation 23 is removed as a reported
outlier. One can find more information on these three NIR data sets in the
references given above. All three data sets use spectra for predictors. The NIR for
the analyzed samples are registered over a broad range of wavelengths, measured
in nanometers (nm). We retained in the analysis the appropriate wavelength
ranges in order to build spectra of appropriate length (equal to a power of 2).
For all three data sets the length of the spectra equals 256 = 28.

The data have been centered prior to regression analysis by subtracting
column means. They have been randomly split on 10 folds, and a 10-fold cross
validation (see [25], Chapter 7) has been used in order to assess the number of PLS
components. The NIR data (D) have been split into 10 mutually exclusive groups,
forming a training set Dtrain (used for model construction) and a test set Dtest =
D? (used for model validation), where Dtrain ∩ Dtest = ∅ and Dtrain ∪ Dtest = D.
The cross validated mean squared prediction error MSEP cv for a regression model
based on m components, has been computed according to:

(6.1) MSEP cv
m = EK

[
Ek

(
L (y?, ŷ? (−k)

m )
)]
,

where the superscript ? is used to indicate the observations in D?, and k =
1, . . . ,K the part of the K = 10 groups of data which are left out. The notation
EK highlights average over the K different splits, while Ek indicates average over
the number of observations inside the kth test set. The suffix (−k) indicates that
the fits are given by the investigated regression model on the data set excluding
the kth part. Using the same splits we did the same for the smooth PLS regression
using wavelet approximation including wavelet scales up to ` = 6 and ` = 7. The
results for the model selection study are reported in Table 1.

The PLS regression model selection results in Table 1 are similar to the ones
already known from the existing literature. Furthermore, the model selection re-
sults for the smooth PLS regression are almost identical to the PLS regression
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Table 1:
NIR data: 10-fold cross-validation estimates for the prediction
loss of the PLS and the smooth PLS regression models (sPLS`)
including 1 to 10 components for ` = 7 and ` = 6, respectively.

1 2 3 4 5 6 7 8 9 10

PLS 3.09 2.84 2.64 2.27 2.09 2.26 1.99 2.09 2.17 2.15
diesel sPLS7 2.60 2.44 2.02 2.35 2.12 2.39 2.20 2.04 2.05 2.07

sPLS6 2.04 2.03 1.98 1.98 1.77 1.75 1.53 1.53 1.55 1.55

PLS 0.79 0.29 0.23 0.25 0.25 0.26 0.30 0.28 0.27 0.24
gasoline sPLS7 0.83 0.23 0.11 0.15 0.14 0.13 0.15 0.19 0.15 0.13

sPLS6 0.79 0.21 0.11 0.11 0.12 0.10 0.13 0.17 0.18 0.17

PLS 1.25 1.33 0.79 0.42 0.25 0.30 0.28 0.30 0.28 0.27
biscuit sPLS7 1.86 1.80 1.34 0.92 0.637 0.45 0.39 0.37 0.37 0.35

sPLS6 1.07 1.12 0.58 0.43 0.40 0.28 0.23 0.27 0.25 0.24

results. As expected, the minimum prediction loss for smooth PLS regression
is reached after retaining almost the same number of components as for ordi-
nary PLS regression. The estimated out-of-sample prediction error for smooth
PLS regression is sometimes even reduced compared to ordinary PLS regression
prediction error. Notably for the gasoline data the prediction performance for
smooth PLS improves substantially compared to ordinary PLS regression. Yet,
this is not the case for the biscuit data.

Figures 2, 3, and 4 illustrate the regression solutions for PLS and smooth
PLS regression. Black solid lines and points are used to depict the PLS regression
solution, while dashed lines are used for smooth PLS regression results. For
illustration purposes selected wavelength regions are magnified and plotted in
the lower left and right panels. These allow better inspecting the smoothness
induced by the use of the smooth PLS regression.

For the diesel and the gasoline data set in Figures 2 and 3 the smooth
PLS regression solution efficiently smooths the PLS regression coefficient vector
especially for ` = 6, see the light gray (blue) dashed line. The lower panel plots
help discriminating between the three solutions. The smooth PLS regression
coefficient is less efficient in smoothing the final solution for the biscuit data; see
Figure 4. The ordinary PLS regression solution for this data set was already
rather smooth.

Finally it is worth noting that smooth PLS regression may improve the pre-
diction performance notably when the PLS regression solution is noisy. Smooth-
ing reduces the prediction error in the diesel and the gasoline data. In contrast
this is not the case in the biscuit data where PLS regression is already smooth.
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Figure 2:
Diesel data. Regression coefficient for a regression model in-
cluding 7 components. Response is the cetane number of the
diesel samples and predictors are the NIR spectra over the wave-
length region from 848 to 1358 nanometers (nm). Black points
and black thin line correspond to the PLS regression coefficient.
The smooth PLS regression coefficients with ` = 7 and ` = 6
are plotted in green and blue dashed lines, respectively. Selected
wavelength regions (A and B) are magnified in the lower left and
right panels.

7. Conclusions

Most spectral data used in chemometrics are high dimensional and very
often functional. PLS regression methods are well suited for high dimensional
data. Wavelets are well suited for functional data. We explored the combination
of these two in order to build smooth alternatives for PLS regression. The ratio-
nale behind smooth PLS regression stemmed from the fact that PLS regression
coefficients are low dimensional approximations for the regression solution and
should exhibit some degree of smoothness.

We showed that PLS regression can be effectively combined to wavelets
for functional data analysis and provide smooth regression solutions to high di-
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Figure 3:
Gasoline data. Regression coefficient vector for a regression
model including 3 components. Response is the octane num-
ber of 60 gasoline samples and predictors are the NIR spectra
over the wavelength region from 1098 to 1608 nanometers (nm)
in steps of two. Black points and black thin line correspond
to the PLS regression coefficient. The smooth PLS regression
coefficients with ` = 7 and ` = 6 are plotted in green and blue
dashed lines, respectively. Selected wavelength regions (A and
B) are magnified in the lower left and right panels.

mensional regression problems. Wavelet expansion and truncation allowed us
building two equivalent smooth PLS regression algorithms. The two algorithmic
implementations for smooth PLS regression have been proven to be equivalent
and to produce the same sequence of approximate solutions. These are regression
solutions approximated through Krylov subspaces of dimension m ≤ p. They are,
therefore, PLS regression solutions. Working in the framework of spectral data
we focused on near infra-red experiments which have been used to illustrate the
potential of smooth PLS regression using wavelets. Three well known NIR data
sets from the literature have been used to confirm that smooth PLS regression
is a valuable alternative to ordinary PLS regression for smoothing the final re-
gression solution while maintaining good prediction performance and dimension
reduction.
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Figure 4:
Biscuit data. Regression coefficient vector for a regression model
including 5 components. Response is the fat concentration of
biscuit samples and predictors are the NIR spectra over the
wavelength region from 1100 to 2498 nanometers (nm). Black
points and black thin line correspond to the PLS regression co-
efficient. The smooth PLS regression coefficients with ` = 7
and ` = 6 are plotted in green and blue dashed lines, respec-
tively. Selected wavelength regions (A and B) are magnified in
the lower left and right panels.

The two presented smooth PLS regression algorithms have been imple-
mented based on the PLS regression algorithm on orthogonal loadings. It is
straightforward to implement both using the PLS regression algorithm on or-
thogonal scores; the results will be identical. The implementation of the proposed
methods is straightforward. We used the S-PLUS wavelet package S+WAVELETS
in our implementation; see [17]. Similar computer packages for wavelet analy-
sis exist in R, as well; see for instance the wavethresh package in R (see [22]).
Existing computational tools give all that is required for further smooth PLS
regression developments.
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Appendix

Prior to the proof of the propositions in Section 5 we state two lemmas
required for the development of the proofs. The proof for Lemma 7.1 is a direct
consequence of wavelet properties and is omited; the interest reader can see [18],
paragraph 4.3.1. The proof for Lemma 7.2 is provided below using mathematical
induction. Finally the notation 2` → p is used to denote the increasing order
approximation of X by allowing finner scales to be included in the rows of matrix
W`.

Lemma 7.1. For the truncated matrixW` of dimension 2` < p we have:

1. All cross-product matrices W ′`W` with 2` < p are block-diagonal, with

W ′`W` → Ip as 2` → p,

where Ip is used to denote the identity matrix of order p.

2. All cross-product matrices W`W ′` with 2` ≤ p satisfy:

W`W ′` = Ip.

Lemma 7.2. For all m ≤ p, EmW ′` = Ẽ
(`)

m .

Proof of Lemma 7.2: We use mathematical induction. For m = 1 the
lemma holds given:

E0W ′` = XW ′` = X̃
(`)

= Ẽ
(`)

0 .

Let it be true for m− 1, that is assume that:

Em−1W ′` = Ẽ
(`)

m−1.

We will prove that this also holds for m, that is:

(7.1) EmW ′` = Ẽ
(`)

m .

We develop seperately both sides of Expression (7.1). For the left hand side of
Expression (7.1) we have:

EmW ′` = (Em−1 − t?mp? ′m)W ′`
= (Em−1 −Em−1p

?
mp

? ′
m)W ′`

= (Em−1 −Em−1W ′`p̈mp̈′mW`)W ′`
= Em−1W ′` −Em−1W ′`p̈mp̈′mW`W ′`
= Em−1W ′` −Em−1W ′`p̈mp̈′m
= Em−1W ′`(I − p̈mp̈′m).



16 Athanasios Kondylis

For the right hand side of Equation (7.1) we have:

Ẽ
(`)

m = Ẽ
(`)

m−1 − t̃mp̃
′
m

= Ẽ
(`)

m−1 − Ẽ
(`)

m−1p̃mp̃
′
m

= Ẽ
(`)

m−1(I − p̃mp̃
′
m).

Furthermore, given Expression (4.1) we have:

p̈mp̈
′
m =W`pmp

′
mW ′` = p̃mp̃

′
m,

which completes the proof.

Proof of Proposition 5.1: Recall that for univariate PLS regression there is
no need to deflate the response vector y. The loading vector p̈m in Expression
(4.1) can be written in matrix form as W` pm; it then follows:

p̈m =W` pm =W`E
′
m−1y = (Em−1W ′`)′y = Ẽ

(`) ′
m−1 y = p̃m.

Proof of Proposition 5.2: Using Proposition 5.1 and noting that the loading

vectors p̃ are orthogonal by construction (they are the ordinary PLS regression
loadings in the wavelet domain), it follows that:

p? ′i p
?
j = p̈′iW`W ′` p̈j = p̃′iW`W ′` p̃j = p̃′i p̃j = 0, for i 6= j and i, j ≤ p.

Therefore the smooth PLS regression loadings p? are orthogonal.

Proof of Proposition 5.3: The smooth regression coefficients β̂
spls.1

m and

β̂
spls.2

m are identical, as:

β̂
spls.2

m = P ?
m q̂

?
m

= W ′` P̈m q̂
?
m

= W ′` P̃m
̂̃qm

= W ′`
̂̃
β
pls

m,` = β̂
spls.1

m .

Note that ̂̃qm = q̂?m. This is justified by the fact that both are implied by the
loading’s matrix P̈m and P̃m, respectively. These are, yet, identical as shown in
Proposition 5.1.

Proof of Proposition 5.4: The link between PLS regression and conjugate
gradients for solving large linear system of equations is well-known; see for in-
stance [26]. The solution to the system of equations is approximated through
Krylov subspaces. The system in (5.2) is pre-multipled by a non-singular matrix
M. This is sometimes referred ro in numerical analysis as a preconditioned sys-
tem. While preconditioning mainly focuses on improvement in the convergence of
iterative solution methods, such as the Krylov methods, here it is used to induce
smoothness. This is done by using M =W ′`W`. The two smooth PLS regression
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algorithms are two facets of preconditioning the conjugate gradients. While the
former operates on transformed coordinates ( Ã and b̃), the latter (Algorithm
2) iterates starting from directions determined by matrix M. The equivalence
between these two algorithms is sketched below:

M Aβ?
m = M b

W ′`W` Aβ?
m = W ′`W` b

W` AW ′`β̃m = W` b

Ãβ̃m = b̃, for m ≤ p.

The final solution β̃ can be transformed back in the original coordinates according
to:

β?
m =W ′`β̃m,

in exactly the same manner that the loading vectors p̃ can be also transformed
back in original coordinates as:

p?m =W ′` p̃m .

Proof of Lemma 5.5: For M = Ip in the system of equations (5.2) the
ordinary PLS regression solution is recovered. This happens for increasing ` as
2` → p. The PLS regression solution is a Krylov solution, that is:

β̂
pls

m ∈ Km( b, A ) for m ≤ p.

The smooth PLS regression solution given in Expression (3.4) as:

β̂
spls

m =W ′`
̂̃
β
pls

m , for m ≤ p,

is a Krylov solution. Combining remark (2.1) and expression (2.5) to the orthog-
onality of the DWT matrix W, as long as 2` → p one gets:

β̂
spls

m ∈ W ′` Km(W` b,W` AW ′`) =W ′`W` Km( b, A ) u Km( b, A ) for m ≤ p.

Proof of Proposition 5.6: The dimension reduction performance of both
ordinary and smooth PLS regression is determined by the minimum number of
iterations required to achieve the best approximate solution to the system of
equations in (5.2). This is strongly dependent on the spectrum of A and MA
for ordinary and smooth PLS regression, respectively. Let S( A ) be the spectrum
of a symmetric matrix A as given by its eigen decomposition A = V Λ V′ with
Λ = diag (λ1, . . . , λp) denoting the diagonal matrix of eigenvalues of A, and V
its orthonormal set of eigenvectors. Similarly, let S(MA ) be the spectrum of the
symmetric matrix Ã. A sufficient condition for Proposition 5.6 to hold is given
below:

Ordinary and smooth PLS regression are approximately equivalent in re-
ducing the dimension of the regression problem whenever:

S(MA ) ≈ S( A ).
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Consider the eigen decomposition of matrix Ã as follows:

(
Ṽ` Ṽ¯̀

)
×

(
Λ̃` 0

0 Λ̃¯̀

)
×

(
Ṽ ′`
Ṽ ′¯̀

)
,

for Ṽ` = W`V` and Ṽ¯̀ = W¯̀V¯̀, where the subscript ` is used to denote the `-
scales wavelet approximation and ¯̀ used to denote the excluded wavelet scales.
The expression above simplifies to:

(7.2) W`V`Λ̃` V
′
` W′` + W ¯̀V¯̀Λ̃¯̀V ′¯̀ W′¯̀,

We discuss the two following cases:

1. When 2` = p, the second term in Expression (7.2) disappears and S( Ã ) =
S( A ) sinceW` is the identity matrix and V` = V . The two regression meth-
ods are then identical in reducing the dimension of the regression problem.

2. When 2` < p the second term in Expression (7.2) is generally much smaller
than the first term, especially for collinear and functional data (such as the
NIR data) where PLS regression is used. The diagonal entries in Λ̃¯̀ are
close to zero and the second term in Expression (7.2) vanishes; hence the
spectrum of A is approximated by the first term and S(MA ) ≈ S( A ).
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