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1. INTRODUCTION

The statistical study of single index models have been investigated and developed
by several authors from a practical and theoretical point of view. The case of
a vector explanatory variable was studied by [19] and [20]. The single index
models are very popular in the econometric community because it respond two
important preoccupations. The first concerns dimension reduction since this
type of model makes it possible to provide a solution to the problem of the
curse of dimensionality, in the sense that pure nonparametric models are highly
affected by dimensionality effects while semiparametric ideas are more appealing
candidates. The second is related to the interpretability of the index θ introduced
in these models, for more details on refer to [8], [18] and [3] for an overview
on methodological issues on FDA. Therefore, the single functional index model
accumulate the advantages of single index model, and inherits the potential of the
functional linear model in terms of applications. The interested reader, for the
semiparametric and the nonparametric functional models, may refer [17], [24, 25],
[27] and [7] for survey on the topics.

The modelization of functional data, has been developed intensively. The motiva-
tion of such statistical analysis is justified by the recent technological development
of the measuring instruments that offers the opportunity to observe phenomena
in an increasingly accurate way, but this accuracy obviously generates a large
amount of data observed over a finer grid, which can be considered as observa-
tions varying over a continuum. The most theoretical results are obtained under
independence condition. However, in practice, it is rarely that we have an inde-
pendent identically distributed observations of functional nature. The functional
time series presents the more realistic situation. Thus it is really crucial to study
the functional statistical models when the usual independence condition on the
statistical sample is relaxed. In this paper, we consider the problem of the non-
parametric estimation of the regression function in single functional index model
when the data are weakly dependant.

Usually the dependence structure is modelled with the strong mixing hypothe-
sis, in this paper we focus in some more general correlation, that is the quasi-
associated condition. The latter has been introduced for real valued random fields
by [5], which generalizes the positively associated variables introduced in [13].

From practical point of view, this kind of data has great importance in practice,
in particular, in reliability theory, mathematical physics and in percolation the-
ory (see , for instance [29]) for more discussion on the practical interest of these
random variables. Moreover, from the theoretical point of view, the concept of
quasi-association correlation can be viewed as a particular case of the weak de-
pendence condition for real-valued stochastic processes introduced by [12] which
allows treating the mixing condition and association correlation in a unified ap-
proach.
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Noting that, the single index model is a semi-parametric regression model, thus, it
couples the advantages of both parametric and nonparametric regression models.
Because of these advantages, it has received an increasing amount of attention
in the nonparametric regression literature. Key references on this topic in mul-
tivariate statistic are [21] and [20] for previous results and [32] for more recent
advances and references.

However, in the literature of functional statistic, the single functional index
model is strictly limited in the case where the data is functional (a curve). The
first result in this context, was given by [15]. They obtained the almost complete
convergence of the regression function r(·) in the independent and identically dis-
tributed (i.i.d.) case. The generalization of this result to the dependent case has
been studied by [26]. [30] uses a Bayesian method to estimate the bandwidths
in the kernel form error density and regression function, under an autoregressive
error structure, and according to empirical studies, the author considered that
the single functional index model gives improved estimation and prediction accu-
racies compared to any nonparametric functional regression considered. [28] have
proposed a new automatic and location-adaptive procedure for estimating regres-
sion in a Functional Single-Index Model (FSIM) based on k-Nearest Neighbours
ideas. Motivated by the analysis of imaging data, [23] proposed a novel functional
varying-coefficient single-index model to carry out the regression analysis of func-
tional response data on a set of covariates of interest. This mothod represents a
new extension of varying-coefficient single-index models for scalar responses col-
lected from cross-sectional and longitudinal studies. By simulation and real data
analysis, the authors demonstrated the advantages of the proposed estimate. [33]
have considered the problem of predicting the real-valued response variable using
explanatory variables containing both multivariate random variable and random
curve. The authors considerd the functional partial linear single-index model in
order to treat the multivariate random variable as linear part and the random
curve as functional single-index part, respectively.

The concept of quasi-association for random variables taking its values in
a Hilbert space has been investigated by [10], and obtained some limit theorems
for this type of variables. More recently, [11] studied the asymptotic normality
of regression function under quasi-associated data when the explanatory variable
takes its values in a Hilbert space.

The main purpose of the present paper is to establish the asymptotic properties of
the estimator r̂θ(·), when the variables are functional quasi-associated and in sin-
gle index structure, such as the almost complete convergence rates. Furthermore,
the asymptotic distribution is obtained under some mild conditions.

We point out that the mixing and the association concern two distinct
classes of processes but not disjoint and offer two complementary approaches to
study the dependence. Moreover, the functional quasi-associated data analysis
has great importance in various domains such as the reliability theory or the
statistical mechanics. Furthermore, it should be noted that the dependence con-
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dition considered here allow to avoid the widely used strong mixing condition
which is very easy to verified in practice.

The rest of this work is organized as follows. In Section 2, we describe the single
index regression model for functional data and in the quasi-associated framework,
the next section is devoted to the introduction of the notation and hypotheses
needed to state our main results. In Section 4, we will establish our main results
of the almost complete convergence of the kernel estimators and the asymptotic
normality under non restrictive conditions. In Section 5.2, we discuss the impact
of our contribution in practice application of our results for the construction of the
confidence interval. In Section 6 we perform a short simulation study to show
that our proposed model works well for finite samples. To avoid interrupting
the flow of the presentation, all mathematical developments are relegated to the
Section 7.

2. MODEL AND ESTIMATOR

We start by giving a definition of quasi-association adapted to the func-
tional framework. In the real valued random fields, [5] define the quasi-association
dependence in the Definition 2.1 and it adapted to functional random variables
in the Definition 2.2 given in [10] as follows.

Definition 2.1. A sequence (Xn)n∈N of r.v’s. is said to be quasi-associated,
if for any disjoint subsets I and J of N and all bounded Lipschitz functions
f1 : R|I| → R and f2 : R|J | → R satisfying :
(2.1)

|Cov(f1(Xi, i ∈ I), f2(Xj , j ∈ J))| ≤ Lip (f1) Lip (f2)
∑
i∈I

∑
j∈J
|Cov(Xi, Xj)| ,

where |I| denotes cardinality of a finite set I, and the Lipschitz of a function f(·)
defined by

Lip(f) = sup
x 6=y

|f(x)− f(y)|
‖x− y‖1

, with ‖(x1, . . . , xk)‖1 =
n∑
k=1

|xk|.

Definition 2.2. A sequence (Xi)i∈N of r.v’s. taking values in a Hilbert
space H is called quasi-associated relative to an orthonormal basis {ep : p ≥ 1}
of H, if for any p ≥ 1, (〈Xi, e1〉, . . . , 〈Xi, ep〉)i∈N is a sequence of random vectors
quasi-associates.

Now, we consider a sequence of quasi-associated random variables {(Xi, Yi)}i∈N
identically distributed as (X,Y ), which are valued in H × R, where H is a
separable real Hilbert space with inner product 〈·, ·〉 and a orthonormal basis
{ep : p ≥ 1}. We consider the semi-metric dθ(·, ·) associated to the single-index
θ ∈ H defined by ∀u, v ∈ H:

dθ(u, v) := |〈θ, u− v〉|.
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The purpose of this paper is to study the estimation of the nonparametric regres-
sion of Y given 〈θ,X〉 structure, denoted by

(2.2) r (〈θ,Xi = x〉) = E (Y | 〈θ,Xi = x〉) .

Such structure suppose that the explanation of Y from X is done through an
fixed functional index θ in Θ. Now, we suppose that exists a θ ∈ Θ ⊂ H where
the observations (Xi, Yi)i=1,...,n are related by the following relation

(2.3) Yi = r (〈θ,Xi〉) + εi, ∀i = 1, . . . , n

where r(·) is a real function, and for i = 1, . . . , n, εi is a real random variable
such that E(εi | Xi) = 0. We consider that the single functional index model
is identifiable, i.e., if the regression function is differentiable and if 〈θ, e1〉 = 1,
where e1 is the first element of an orthonormal basis of H. Then, if r1 (〈θ1, x〉) =
r2 (〈θ2, x〉) implies that r1 ≡ r2 and θ1 ≡ θ2. This hypothesis that we consider is
demonstrated by [15] once we have the differentiability of the regression operator
r(·). For more details on the problem of identifiability of the single functional
index model, one can refer to the last reference. The kernel estimator r̂θ(·) of
regression operator rθ(·) = r (〈θ, ·〉) is defined by

(2.4) r̂θ,n(x) =

n∑
i=1

YiKi(x)

n∑
i=1

Ki(x)

, for all x ∈ H,

where Ki(x) := K
(
〈θ,x−Xi〉

hn

)
kernel function and hn is the bandwidth parameter

decreases to zero as n goes to infinity.

3. ASSUMPTIONS AND NOTATION

In the sequel, we will denote by C and/or C ′ some strictly positive constants
and by λr the covariance coefficient defined as:

λr := sup
s≥r

∑
|i−j|≥s

λi,j ,

where

λi,j =
∑
k≥1

∑
l≥1

∣∣∣Cov(Xk
i , X

l
j)
∣∣∣+∑

k≥1

∣∣∣Cov(Xk
i , Yj)

∣∣∣+∑
l≥1

∣∣∣Cov(Yi, X
l
j)
∣∣∣+|Cov(Yi, Yj)| ,

with Xp
i := 〈Xi, ep〉. In our analysis, we shall assume the following assumptions.

(H1) Let Ei(x) := 〈θ, x−Xi〉 so that Ei(x) is a real-valued random variable,

Gθ(x, hn) := P (|Ei(x)| ≤ hn) > 0,

and Gθ(x, ·) is differentiable at 0.
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(H2) The random pair {(Xi, Yi), i ∈ N} is quasi-associated such that

(i) The covariance coefficient satisfies

λk ≤ Ce−ak for some a > 0, C > 0.

(ii) The process (Xi)is satisfies

max
i 6=j

{
P
(
|Ei| ≤ hn, |Ej | ≤ hn

)}
:= ψθ(x, hn) > 0,

where ψθ(x, ·) is differentiable at 0.

(iii) The response observations (Yi)i are such that, almost surely

∀i 6= j E (|YiYj | | Xi, Xj) ≤ C <∞ and E (|Y |p | X = x) ≤ C <∞ for p > 4.

(H3) For all u, v ∈ H we have

|rθ(u)− rθ(v)| ≤ C |〈θ, u− v〉|β ; for certain β > 0.

(H4) The kernel K(·) is a Lipschitzian function on [0, 1] such that

C1[0,1](t) < K(t) < C ′1[0,1](t);

(H5) There exists a sequence of positive real numbers δn such that δp−2
n χ

(p−4)/2p
θ (x, hn)→ 0,∑
n

nδ−pn <∞.

where χθ(x, hn) = max(ψθ(x, hn), G2
θ(x, hn)) and p is given in (H2)

Some comments on the assumptions

All the Assumptions are standard in this context of semiparametric func-
tional data analysis. The concentration property of the explanatory variable in
small balls under single index topological structure is defined in the assumption
(H1). The quasi-association features of the underlying functional time series is
explored through the condition (H2). It covers the three fundamental aspects of
the considered process. The correlation’s level of the data is quantified by the
geometric form of the covariance coefficient λk, while the local dependency of the
data is expressed by the function ψθ(x, hn) allowing to emphasize the functional
component of the time series (Xi)i. It should be noted that the conditional mo-
ments integrability in (H2)(iii) is usual in the regression data analysis. It was
used by [14] for the nonparametric case and by [1] in the single functional index
case. It is less restrictive than the exponential version assumed by [10]. Finally,
let’s mention that the hypothesis (H3) is used to control the regularity condition
of the link function with respect the single index. This kind of assumption is
needed to evaluate the bias in the asymptotic results of this paper. While the
conditions (H4) and (H5) are classical technical assumptions in NFDA.
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4. MAIN RESULTS

4.1. The almost consistency

Our aim is to establish the almost complete convergence (a.co.)1 of r̂θ(x)
to rθ(x), the main result is given by the following theorem.

Theorem 4.1. Under the assumptions (H1)-(H5), we have, as n→∞,

(4.1) r̂θ,n(x)− rθ(x) = Oa.co.

hβn +

√√√√χ
1/2
θ (x, hn) log n

nG2
θ(x, hn)

 .

Let

(4.2) r̂θ,0(x) :=
1

nEK1(x)

n∑
i=1

Ki(x) and r̂θ,1(x) :=
1

nEK1(x)

n∑
i=1

YiKi(x).

Let us consider the following decomposition:

r̂θ,n(x)− rθ(x) =
r̂θ,1(x)

r̂θ,0(x)
− rθ(x)

=
1

r̂θ,0(x)
[(r̂θ,1(x)− E(r̂θ,1))− (rθ(x)− E(r̂θ,1))]

− rθ(x)

r̂θ,0(x)
(r̂θ,0 − 1)

=
1

r̂θ,0(x)
[(r̂θ,1(x)− r̂θ,2(x)) + (r̂θ,2(x)− E(r̂θ,2))]

+
1

r̂θ,0(x)
[(E(r̂θ,2(x))− E(r̂θ,1))− (rθ(x)− E(r̂θ,1))]

− rθ(x)

r̂θ,0(x)
(r̂θ,0 − 1) ,

where

(4.3) r̂θ,2(x) :=
1

nEK1(x)

n∑
i=1

ŶiKi(x)

1We say that the sequence (Θn)n converges a.co. to zero, if and only if

∀τ > 0,
∑
n≥1

P(|Θn| > τ) <∞.

Furthermore, we say that Θn = Oa.co.(θn), if there exists τ0 > 0, such that∑
n≥1

P(|Θn| > τ0θn) <∞.
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The real variable Y response which is not necessarily bounded. For this, we
introduce the truncated random variable Ŷ defined by Ŷi = Yi1{|Yi|≤δn}. The
proof of the Theorem 4.1 is based on the following Lemmas:

Lemma 4.1. (See [22]) Let X1, . . . , Xn the real random variables such
that EXi = 0 and P(|Xi| ≤M) = 1, for all i = 1, . . . , n and some M <∞. Let

σ2
n = V ar

(
n∑
i=1

Xi

)
.

Assume, furthermore, that there exist K < ∞ and β > 0 such that, for all u-
tuplets (s1, . . . , su) and all v-tuplets (t1, . . . , tv) with 1 ≤ s1 ≤ · · · ≤ su ≤ t1 ≤
· · · ≤ tv ≤ n, the following inequality is fulfilled :∣∣∣Cov (Xs1 . . . Xsu , Xt1 . . . Xtv)

∣∣∣ ≤ K2Mu+v−2ve−β(t1−su).

Then,

P
(∣∣∣ n∑

i=1

Xi

∣∣∣ ≥ t) ≤ exp

{
− t2/2

An +B
1
3
n t

5
3

}
,

for An ≤ σ2
n and

Bn =

(
16nK2

9An(1− e−β)
∨ 1

)(
2(K ∨M)

1− e−β

)
.

Lemma 4.2. Under the assumptions (H1) - (H5), we have, as n→∞,

(4.4) |r̂θ,2(x)− Er̂θ,2| = Oa.co.


√√√√χ

1/2
θ (x, hn) log n

nG2
θ(x, hn)

 .

Lemma 4.3. Under the assumptions (H1), (H2)(i, ii)-(H5), we have, as
n→∞,

(4.5) |r̂θ,0(x)− 1| = Oa.co.


√√√√χ

1/2
θ (x, hn) log n

nG2
θ(x, hn)

 .

Lemma 4.4. Under the assumptions of Lemma 4.3, we have, as n→∞,

(4.6) ∃η > 0 such that

n∑
i=1

P (|r̂θ,0(x)| < η) <∞.
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Lemma 4.5. Under the assumptions (H1), (H3)-(H5), we have, as n→
∞,

(4.7) |rθ(x)− E (r̂θ,1)| = O
(
hβn

)
.

Lemma 4.6. Under the assumptions (H1), (H3)-(H5), we have, as n→
∞,

(4.8) |E(r̂θ,2)− E(r̂θ,1)| = O


√√√√χ

1/2
θ (x, hn) log n

nG2
θ(x, hn)

 .

Lemma 4.7. Under the assumptions (H1), (H2)(iii)-(H5), we have, as
n→∞,

(4.9) |r̂θ,1(x)− r̂θ,2(x)| = Oa.co.


√√√√χ

1/2
θ (x, hn) log n

nG2
θ(x, hn)

 .

4.2. The asymptotic normality

Now, we study the asymptotic normality of r̂θ(x). To do that, we assume
that the function

ϕθ(x) := E
(
Y 2

1 |< θ,X1 = z >
)

, z ∈ H,

exists and is uniformly continuous in some neighborhood of z. Moreover, we
modify slightly the assumptions (H1), (H4) and (H ′5) is required .

(H ′1) The concentration property (H1) holds. Moreover, there exists a function
βx(·) such that

∀s ∈ [0, 1], lim
hn→0

Gθ(x, shn)/Gθ(x, hn) = βx(s).

(H ′4) The kernel K(·) satisfies (H3) and is a differentiable function on ]0, 1[ with
derivative K ′(·) such that −∞ < C < K ′(·) < C ′ < 0.

(H ′5) There exists a sequence of positive real numbers γn such that{
γnχθ(x, hn)→ 0,

n3/2χ
p/p−2
θ (x, hn)→ 0.
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Theorem 4.2. Under the assumptions (H ′1)-(H2), (H3), (H ′4), (H ′5) and
if

nh2β
n Gθ(x, hn) −→ 0,

we have, for all x ∈ A

(4.10)
√
nGθ(x, hn) (r̂θ,n(x)− rθ(x))

D−→2N(0, σ2
θ(x)), as, n→∞,

where

σ2
θ(x) =

β2(ϕθ(x)− r2
θ(x))

β2
1

,

with

βj = −
∫ 1

0
(Kj)′(s)βx(s)ds, for j = 1, 2,

and
A = {x ∈ H, such that , σ2

θ(x) 6= 0}.

Using the same decomposition as in the proof of Theorem 4.2, where δn is
replaced by γn in r̂θ,2(x). Observe that the consistency of r̂θ,0 to 1 is shown in

Lemma 4.3 and under the consideration nh2β
n Gθ(x, hn) −→ 0, we get√

nGθ(x, hn) (rθ(x)− E(r̂θ,1)) −→ 0.

Moreover by straightforward modification of the proofs of Lemmas 4.7 and 4.6,
we obtain under (H ′5)√

nGθ(x, hn) |r̂θ,1(x)− r̂θ,2(x)| −→ 0, in probability.

and √
nGθ(x, hn) (E(r̂θ,2)− E(r̂θ,1)) −→ 0.

So, all it remains to show that the following intermediate lemma.

Lemma 4.8. Under the hypotheses of Theorem 4.2 , we have, as n −→
∞,
(4.11)√
nGθ(x, hn) (r̂θ,2(x)− rθ(x)r̂θ,0(x)− E (r̂θ,2(x)− rθ(x)r̂θ,0(x)))

D−→N(0, σ2
θ(x)).

5. DISCUSSION AND APPLICATIONS

5.1. On the weak functional time series data analysis

The functional time series data analysis is one of the most important subject
in functional data analysis (FDA). It is motivated by the rarity of the indepen-
dent identically distributed observations functional observations in practice. The

2 D−→ denotes the convergence in distribution
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functional time series presents the more realistic situation. At this stage, the
most of the existing studies on functional dependent data are developed under
mixing assumption, namely, strong mixing framework. However, in this contribu-
tion, we investigate functional semiparametric regression under weak dependency
condition of the quasi-associated correlation. From theoretical point of view this
consideration allows to increase the scope of application of the proposed func-
tional model. Indeed, it is well known that the mixing conditions are very hard
to check and there exists lot of usual process fail to verify the mixing assump-
tion. [4] have listed a numerous process, we quote for instance, Bernoulli shifts
class, Markov processes driven by discrete innovations and the AR(1) process
with ρ < 1/2 and Bernoulli innovation among others. Thus we can say that the
important feature of our study is to analyse the functional time series data with-
out the mixing assumption. In addition we point out that our study generalize
also the classical association (negative or positive). Thus the quasi-associated
functional time series data is sufficiently weak to cover a large class of weak func-
tional time series data. Finally, let’s precise that our theoretical development
explore the dependence structure of the data through the convergence rate. The
latter contains the additional χθ(x, hn) that is control the local dependency of
the data. It is clear that this dependency condition impact significantly the con-
vergence rate of the estimator compared to the independent situation. Of course
the independent case is more fast than the dependent one.

5.2. Application to the confidence intervals

The purpose of a confidence interval is to supplement the functional esti-
mate at a point with information about the uncertainty in this estimate. It is
a direct application of the Central Limit Theorem (CLT). In order to provide a
confidence interval for the regression function in single functional model, we need
first to propose a consistent estimator of the variance σ2

θ(x). A natural consistent
estimator of this variance is obtained by estimating the parameters involved in
this quantity such as (βj)j=1,2 and ϕθ(·). A natural estimator of βj is:

(5.1) β̂j =
1

nGθ(x, h)

n∑
i=1

Kj

(
〈θ, x−Xi〉

hn

)
, j = 1, 2,

While the Nadaraya-Waston type estimator ϕ(·) is

(5.2) ϕ̂n(x) =

n∑
i=1

Y 2
i K

(
〈θ, x−Xi〉

hn

)
n∑
i=1

K

(
〈θ, x−Xi〉

hn

) ,

Consequently, by combining the equations (5.1), (5.2) with the definition of
r̂θ,n(x) consistent estimator of σ2

θ(x) denoted by σ̂2
θ(x). It follows that the asymp-
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totic confidence band at asymptotic level 1− α for rθ(x) is

(5.3) r̂θ,n(x)± U1−α
2

(
σ̂2
θ(x)

nGθ(x, h)

) 1
2

.

Let’s note the
(

σ̂2
θ(x)

nGθ(x,h)

)
is essay to compute and does not require the estimation

of Gθ(x, h). The latter will be removed by a simple manipulation.

5.3. On the applicability of the SFIM

From theoretical point of view, it is well known that the single index model is one
of the most important additive models used to improve the convergence rate of the
nonparametric approach. This model keeps this feature in functional statistics.
However, the applicability of this model in practice requires an additional works
that is the determination of the functional index θ and the smoothing parameter
h which are often unknown in practice. This issue has been widely addressed in
the nonfunctional case, but, remains not fully explored in the functional statistics.
The readers interested by this topics can refer to [31] and the references therein
(for recent advances in this topic) . Thus, the estimation of the functional index
and/or the bandwidth hn in the quasi-associated functional time series case is an
important prospect of the present contribution. As preliminary step, we present
in this paragraph some selector rules compatible with our context of the functional
time series data analysis. The first one is the Least Squares Cross-Validation
(LSCV) rule defined by

(5.4) (θ̂, ĥ) = arg min
hn∈Hn, θ∈Θ

1

n

n∑
i=1

(Yi − r̂−iθ,n(Xi))
2,

where r̂−iθ,n is the leave- one-out estimator of r̂θ,n. This kind of cross-validation
is widely used in the nonparametric prediction problems to select the bandwidth
parameter in the kernel smoothing. It was popularized in semi-parametric func-
tional data analysis by [1]. The second one is the Maximum Likelihood Cross-
Validation (MLCV) rule expressed by

(5.5) (θ̂, ĥ) = arg min
hn∈Hn, θ∈Θ

1

n

n∑
i=1

log f̂(Yi|r̂−iθ,n(Xi)),

where f̂(·|·) is the estimator of the conditional density of Y given 〈θ,X〉. This
criterion can be viewed as generalization of the rule (5.4) when the conditional
distribution is gaussian. Of course in practice we must optimize these rule over
finite subset Θ of index. Similarly to [1], we propose to select the optimal index
from the following subset

Θ = Θn =

{
θ ∈ H, θ =

k∑
i=1

ciei, ‖θ‖ = 1, and ∃j ∈ [1, k] such that 〈θ, ej〉 > 0

}
,
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where (ei)i=1,...k is finite basis functions of the Hilbert subspace spanned by the
covariates (Xi)i and (ci)i some real calibrated constants allowing to insure the
identifiability of the model. The common way is to choose the (ci)i with cal-
ibration from the subset {−1, 0, 1}. Finally let’s point both rules (5.4) and
(5.5) we can take Hn as the subsets of the p-quantiles of the vector distance
D = Dij = ‖Xi −Xj‖.

6. A SIMULATION STUDY

This section is devoted to some simulation experiments allowing to highlight the
finite sample performance of the proposed SFIM-regression in different situations.
This empirical study has two main purposes: The first one is to show the easy
implantation of the SFIM in practice and the second one is to control the effect
of the principal settings of the study (such as, the dependence’s level, the type of
the functional index, the smoothing degree of the link functions and the nature
of the conditional distribution ) in the efficiency of this functional model. For
these objects, we simulate a functional time series data using the following SFIM
equation:

(6.1) Yi = r(〈θ,Xi〉) + εi for i = 1, . . . , n = 150,

where the εi’s are generated independently according to a normal distribution
N (0, 1). The functional regressors are generated by the following formula

Xi(t) = cos(Wit) + sin(Wi + t) + .2(Wit), t ∈ [−π,+π]

and Wi is selected random variable . Three levels of dependency are considered
that are independent, quasi-associated (weak-dependency) and α-mixing (strong
dependency). For the independent case, we take (Wi)i as sample of N (0, 1). The
quasi-associated case is carried out by generating the process (Wi)i as non-strong
mixing autoregressive of order 1. It obtained by taking the coefficient of the
autoregressive ρ = 0.1 and the innovation random variable as Binom(10, 0.25).
It is shown in [6] that this kind of process fails to satisfy the α-mixing assump-
tion. However, this process is quasi-associated because it can be treated as linear
process with positive coefficients. Concerning the strong dependency, we drown
W from an autoregressive of order 1 with ρ = 0.75 and the χ2(4) as innovation
random variable. The strong mixing property of this kind of process has been
proved by [2]. The following Figure 1 shows the shape of n = 150 curves Xi’s
for three situations (independent, quasi-associated and strong dependency). The
curves are discretized in the same grid formed by 100 points [−π, π].

In the first illustration, we control the effect of the degree of dependency on the
prediction’s quality using the single functional index regression. For this goal, we
generate the scalar response Yi by taking r1(x) = 3 log(1+x2) as link function and
θ1 = e1 is the first element of the Karhunen–Loève basis functions. Explicitly θ1

is the eigenfunction associated to the first eigenvalue of the covariance operator
of the process (Xi)i. It is eligible functionals index because it belongs in the
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Figure 1:
The shape of the regressors in the three cases

same Hilbert subspace of the functional variable and is an element of Θn (see the
previous section).

Undoubtedly, the easy implementation of any statistical approach in practice
is closely linked to the flexibility of the choice of parameters involved in this
approach. At this stage the bandwidth parameter hn and the functional index
θ are the principal parameters of the estimator. In this first illustration, we
use the least squares cross-validation rule (5.4) described in the previous section
to determine θ. The mentioned rule is optimized over Θn associated to the
Karhunen–Loève basis functions (for k = 5). For sake of brevity, we use the
default smoothing parameter hn of r-package fda.usc and quadratic kernel on
(0, 1).

The obtained results are given in the Figure 2. The latter gives a global overview
on the behaviours of SFIM-predictor with respect the dependence’s level. In this
Figure we plot the true values (Yi)i versus the predicted values for the three
situations (independent, quasi-associated and strong dependency).
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Figure 2:
The SFIM-prediction results

The results are not surprising. The SFIM-predictor has a satisfactory degree of
performance. However, its behavior is strongly affected by the correlation of the
data. The quality of prediction decreases with the degree of the dependency.
The performance of the prediction procedures is tested by comparing the Mean
Square Prediction Error defined by :

MSPE =
1

150

150∑
i=1

(Yi − r̂θ̂1,n(Xi))
2, θ̂1 being the optimizer of (5.4).

For this first illustration, we have obtained 0.23 for the independent against 0.92
for the quasi-associated and 1.78 for the strong mixing case.

Now, in order to give comprehensive empirical analysis for this semi-parametric
model, we examine, in this second illustration, the impact of the other characteris-
tics (the type of the functional index, the smoothing degree of the link functions
and the nature of the conditional distribution) on the SFIM-prediction. More
precisely, we compare two link functions (smooth and unsmooth (discontinuous
in some points)), two functional indexes (eligible and ineligible) and two condi-
tional distributions (gaussian and non-gaussian). This comparison will be carried
out for the three previous dependence situations (independent, quasi-associated
and strong mixing). We keep the data of the first illustration as prefect situation
of the SFIM-prediction (eligible index, smooth link function and gaussian condi-
tional distribution). Now, for the other situations, we follow the same algorithm
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of the first illustration to generate the output observations (Yi)i. To do that, we
simulate with an arbitrary functional index expressed by the normalised function

θ2(t) = 0.15t sin(t)

and the link function

r2(x) = r1(x)1[0,.5] − r2
1(x)1[−1,−.5].

The last factor of SFIM-prediction is the conditional distribution of Y given X.
The latter is explicitly given by the distribution of εi shifted by r(〈θ, x〉). For
this second illustration, we generate the white noise εi from normal mixture dis-
tribution (0.75)N (0, 1) + 0.25N(.5, 2). To quantify the impact of the conditional
distribution on the SFIM-prediction we compare the two selector rules of the
functional index (5.4) and (5.5). Of course both rules coincide when the condi-
tional distribution is gaussian. Finally, we point out that we have used the same
kernel and the same bandwidth as in the first illustration and the conditional
distribution in the rule (5.5) is computed by the routine npcdist in the R-package
np. The results on this comparison study are presented in Table 1. It contains
the MSPE for the six scenarios mentioned before.

The simulation results of Table 1 show that the prediction is strongly af-
fected by the different features of the data (dependence degree) as well as the
model (the smoothing property of the link function). This statement incorpo-
rates the theoretical result that relates the convergence rate of the estimator
to the correlation of the data and the regularity assumption of the model. In
addition the choice of the functional index impact also the performance of the
prediction by the SFIM. In particular the two rules (5.4) and (5.5) are equivalent
when the conditional distribution is gaussian while the selector criterion (5.5) is
more adequate for the mixture case. Overall, both criterion give a satisfactory
level of accuracy even in the critical situation when the index is illegible and the
link function is discontinuous.

7. PROOFS OF THE INTERMEDIATE RESULTS

This section is devoted to the proofs of our results. The previously pre-
sented notation continues to be used in the following.

Proof of Lemma 4.2

The proof of this lemma is based on inequality given in Lemma 4.1 on the
variables

∆̂i(x) :=
1

nE(K1(x))

[
Ẑi − E(Ẑi)

]
, i = 1, . . . , n,
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The dependency
Conditional distribution SFIM The CV-rule

Index Function LSCV MLCV

Independent case

Gaussian distribution
Eligible Smooth 0.23 0.24
Ineligible Smooth 0.71 0.76
Eligible Discontinuous 0.57 0.64
Ineligible Discontinuous 1.23 1.36

Normal Mixture
distribution Eligible Smooth 0.41 0.33

Ineligible Smooth 0.93 0.67
Eligible Discontinuous 0.79 0.62
Ineligible Discontinuous 1.56 0.95

Quasi-associated case

Gaussian distribution
case Ineligible Smooth 1.62 1.71

Eligible Discontinuous 1.27 1.29
Ineligible Discontinuous 2.09 2.14

Normal Mixture
distribution Eligible Smooth 1.18 0.97

Ineligible Smooth 1.54 1.18
Eligible Discontinuous 1.41 1.07
Ineligible Discontinuous 2.14 1.92

Strong mixing case

Gaussian distribution
Eligible Smooth 1.78 1.88
Ineligible Smooth 2.23 2.34
Eligible Discontinuous 2.17 2.25
Ineligible Discontinuous 2.57 2.59

Normal Mixture
distribution Eligible Smooth 1.93 1.57

Ineligible Smooth 2.37 2.05
Eligible Discontinuous 2.18 1.93
Ineligible Discontinuous 2.68 2.15

Table 1:
Comparison of the MSPE errors of the SFIM-prediction

where Ẑi = ŶiKi(x), we have

E(∆̂i) = 0,

‖∆̂i‖∞ ≤
2δn

nGθ(x, hn)
‖K‖∞,

Lip(∆̂i) ≤ 2Lip(K)
δn

nGθ(x, hn)hn
,

r̂θ,2(x)− E(r̂θ,2(x)) =
n∑
i=1

∆̂i.

We start by evaluating the covariance term Cov
(

∆̂s1 , . . . , ∆̂su , ∆̂t1 , . . . , ∆̂tv

)
, for

all (s1, . . . , su) ∈ Nu and (t1, . . . , tu) ∈ Nv with 1 ≤ s1 ≤ · · · ≤ su ≤ t1 ≤ · · · ≤
tv ≤ n. If m = t1 − su = 0, using the fact that for all p > 0,

E(Kp
1 (x)) = O(Gθ(x, hn))
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and under the second part of (H2)(iii), we readily obtain∣∣∣Cov (∆̂s1 . . . ∆̂su , ∆̂t1 . . . ∆̂tv

)∣∣∣
≤
(

1

nE(K1(x))

)u+v

E
(∣∣∣Ẑs1 . . . Ẑ2

su . . . Ẑtv

∣∣∣)
≤
(
Cδn‖K‖∞
nGθ(x, hn)

)u+v

E
(
Y 2
suK

2
su

)
≤
(

Cδn
nGθ(x, hn))

)u+v

Gθ(x, hn).

If m = t1 − su > 0, by quasi-association of the sequence (Ẑn), we infer that∣∣∣Cov (∆̂s1 . . . ∆̂su , ∆̂t1 . . . ∆̂tv

)∣∣∣
≤ 4

(
δnLip(K)

nGθ(x, hn)hn

)2( 2δn‖K‖∞
nGθ(x, hn)

)u+v−2 u∑
i=1

v∑
j=1

λsi,tj

≤ Cu+v

(
Lip(K)

hn

)2( δn
nGθ(x, hn)

)u+v

(u ∧ v)λt1−su

≤ Cu+v

(
Lip(K)

hn

)2( δn
nGθ(x, hn)

)u+v

ve−am.(7.1)

On the other hand, making use of the first part of the condition (H2)(iii) to write
that ∣∣∣Cov (∆̂s1 . . . ∆̂su , ∆̂t1 . . . ∆̂tv

)∣∣∣
≤
(
Cδn‖K‖∞
nGθ(x, hn)

)u+v−2 ∣∣∣Cov (∆̂su , ∆̂t1

)∣∣∣
≤
(
Cδn‖K‖∞
nGθ(x, hn)

)u+v−2 (∣∣∣E(∆̂su∆̂t1

)∣∣∣+ E
∣∣∣∆̂su

∣∣∣E ∣∣∣∆̂t1

∣∣∣)
≤
(
Cδn‖K‖∞
nGθ(x, hn)

)u+v−2( C

nGθ(x, hn)

)2

δ2
nχθ(x, hn).

It follows that

(7.2)
∣∣∣Cov (∆̂s1 , . . . , ∆̂su , ∆̂t1 , . . . , ∆̂tv

)∣∣∣ ≤ Cu+v

(
δn

nGθ(x, hn)

)u+v

χθ(x, hn).

Moreover, by multiplying a τ -power of (7.1) and (1− τ)-power of (7.2) for some
1
4 < τ < 1

2 , we obtain an upper-bound of the covariance as follows for 1 ≤ s1 ≤
. . . ≤ su ≤ t1 ≤ . . . ≤ tv ≤ n:∣∣∣Cov (∆̂s1 . . . ∆̂su , ∆̂t1 . . . ∆̂tv

)∣∣∣
≤ Cu+v

(
δn

nGθ(x, hn)

)u+v (Lip(K)

hn

)2τ√
χθ(x, hn)

2(1−τ)
ve−aτm.

So, by (H5), we have∣∣∣Cov (∆̂s1 . . . ∆̂su , ∆̂t1 . . . ∆̂tv

)∣∣∣
≤
(

Cδn
nGθ(x, hn)

)u+v−2( Cδn
nGθ(x, hn)

)2√
χθ(x, hn)ve−aτm,
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where

Mn =
Cδn

nGθ(x, hn)
and Kn =

Cχ
1/4
θ (x, hn)δn
nGθ(x, hn)

.

It remains to calculate Var

(
n∑
i=1

∆̂i

)
:

Var

(
n∑
i=1

∆̂i

)
=

(
1

nE(K1(x))

)2∑
i

∑
j

Cov
(
Ẑi, Ẑj

)

=

(
1

nE(K1(x))

)2
nVar (Ẑ1

)
+
∑
i

∑
j 6=i

Cov
(
Ẑi, Ẑj

)
=

(
1

nE(K1(x))

)2

[nT1 + Tij ] .

Now, under the assumption (H5), we obtain for the first term:

T1 = Var
(
Ẑ1

)
= E

(
Ŷ 2

1 K
2
1 (x)

)
−
(
E(Ŷ1K1(x))

)2

≤ E
(
Y 2

1 K
2
1 (x)

)
≤ E

(
K2

1 (x)E
(
Y 2

1 | X
))
≤ CE

(
K2

1 (x)
)
.

For all j ≥ 1, we have

(7.3) E
(
Kj

1(x)
)

= O (Gθ(x, hn)) ,

and

T1 = Var
(
Ẑ1

)
= O

(
χ

1/2
θ (x, hn)

)
.

We readily obtain that

1

n (E (K1(x)))2T1 ≤
Cχ

1/2
θ (x, hn)

n
(
G2
θ(x, hn)

) .(7.4)

For the second term, we have the following decomposition

Tij =
∑
i

∑
0<|i−j|≤un

Cov
(
Ẑi, Ẑj

)
+
∑
i

∑
|i−j|>un

Cov
(
Ẑi, Ẑj

)
= J1 + J2,

where (un) is a sequence of positive integer and

lim
n−→∞

un =∞.

Now, under the assumptions (H2), we have

|J1| =
∑
i

∑
0<|i−j|≤un

∣∣∣Cov (Ẑi, Ẑj)∣∣∣ ≤ nun

[
max
i 6=j
|E (Ki(x)Kj(x))|+ (E(K1(x)))2

]
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≤ Cnunχθ(x, hn).

Making use of the condition (H2)(i), we infer that

|J2| =
∑
i

∑
|i−j|>un

∣∣∣Cov (Ẑi, Ẑj)∣∣∣
≤ Cδ2

n

(
Lip(K)

hn

)2∑
i

∑
|i−j|>un

λi,j ≤ Cnδ2
nh
−2
n e−aun .

This implies that

|Tij | ≤
n∑
i=1

∑
i 6=j

∣∣∣Cov (Ẑi, Ẑj)∣∣∣ ≤ C (nunχθ(x, hn) + nδ2
nh
−2
n e−aun

)
.

Next, taking

un =
1

a
log

(
δ2
na

h2
nχθ(x, hn)

)
.

Observe that (H5) insure that√
χθ(x, hn) log(δn)→ 0,

which allows to write that

(7.5) Tij = o
(
nχ

1/2
θ (x, hn)

)
→ 0.

It follows that

Var

(
n∑
i=1

∆̂i

)
= O

(
χ

1/2
θ (x, hn)

nG2
θ(x, hn)

)
.

The conditions of Lemma 4.1 are verified for

Kn =
Cχ

1/4
θ (x, hn)δn
nGθ(x, hn)

,Mn =
Cδn

nGθ(x, hn)
,

An =
χ

1/2
θ (x, hn)

nG2
θ(x, hn)

,

Bn =

(
16nK2

9An(1− e−β)
∨ 1

)(
2(K ∨M)

1− e−β

)
=

δn
nGθ(x, hn)

.

So, we apply the inequality in [22] to the random variables ∆̂i to infer that

P

|r̂θ,2(x)− E(r̂θ,2(x))| > ε

√√√√χ
1/2
θ (x, hn) log n

nG2
θ(x, hn)


= P

∣∣∣∣∣
n∑
i=1

∆̂i

∣∣∣∣∣ > ε

√√√√χ
1/2
θ (x, hn) log n

nG2
θ(x, hn)





Functional single index regression model 21

≤ exp

(
−ε2χ

1/2
θ (x, hn) log n

nG2
θ(x, hn)Lθ(n)

)
,

where

Lθ(n) =

χ1/2
θ (x, hn)

nG2
θ(x, hn)

+

(
δn

nG2
θ(x, hn)

) 1
3

(
χ

1/2
θ (x, hn) log n

nG2
θ(x, hn)

) 5
6

 .

Then we finally obtain that

P

|r̂θ,2(x)− E(r̂θ,2)| > ε

√√√√χ
1/2
θ (x, hn) log n

nG2
θ(x, hn)


≤ exp

 −ε2 log n

C +
(
δ2
nχ
−1/2
θ (x, hn) log5 n

) 1
6


≤ C1 exp

(
−ε2 log(n)

)
.

The proof is achieved by a suitable choice of ε. 2

Proof of Lemma 4.3

The proof of this Lemma is similar to the proof of the previous Lemma 4.2.
Since Ŷi = 1, it suffices to replace ∆̂i by

∆̃i =
1

nE(K1(x))
[Ki(x)− E(Ki(x))] , i = 1, . . . , n.

Thus we obtain, under (H1)− (H5),

P

(
|r̂θ,0(x)− 1| > ε

√
log n

nGθ(x, hn)

)

= P

∣∣∣∣∣
n∑
i=1

∆̃i

∣∣∣∣∣ > ε

√√√√χ
1/2
θ (x, hn) log n

nG2
θ(x, hn)


≤ C ′1 exp

(
−ε2 log(n)

)
.

Thus the proof is complete. 2

Proof of Lemma 4.4

Notice that we have{
|r̂θ,0(x)| ≤ 1

2

}
⊂
{
|r̂θ,0(x)− 1| > 1

2

}
,
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that implies that

P

(
|r̂θ,0(x)| ≤ 1

2

)
≤ P

(
|r̂θ,0(x)− 1| > 1

2

)
.

Under the hypothesis (H1)− (H5) and by applying Lemma 4.3, we deduce that∑
n

P

(
|r̂θ,0(x)| ≤ 1

2

)
≤
∑
n

P

(
|r̂θ,0(x)− 1| > 1

2

)
<∞.

Then, for η = 1
2 , we have

∑
n

P (|r̂θ,0(x)| ≤ η) < ∞. Thus the proof is complete.

2

Proof of Lemma 4.5

One can see easily that we have

|rθ(x)− E(r̂θ,1(x))| =

∣∣∣∣∣rθ(x)− E

(
1

nE(K1(x))

n∑
i=1

YiKi(x)

)∣∣∣∣∣
=

1

E(K1(x))
[|rθ(x)E(K1(x))− E(Y1K1(x))|]

=
1

E(K1(x))
E [(|rθ(x)− rθ(X1)|)K1(x)] ≤ Chβn.

This readily implies that we have

rθ(x)− E (r̂θ,1) = O
(
hβn

)
.

Thus the proof is complete. 2

Proof of Lemma 4.6

We first observe that we have

|E(r̂θ,2)− E(r̂θ,1)| =
1

nEK1(x)

∣∣∣∣∣E
(

n∑
i=1

Yi1{|Yi|>δn}Ki(x)

)∣∣∣∣∣
≤ E

(
|Y1|1|Y1|>δnK1(x)

)
(E(K1(x)))−1 .

The Hölder’s inequality allows to write that, for α = p
2 and β such that 1

α+ 1
β = 1,

|E(r̂θ,2(x))− E(r̂θ,1(x))| ≤ 1

Gθ(x, hn)
E1/α

[
|Y α|1{Y≥δn}

]
E1/β

[
Kβ

1

]
≤ 1

Gθ(x, hn)
δ−1
n E1/α [|Y p|]G1/β

θ (x, hn)

≤ Cδ−1
n G

(1−β)/β
θ (x, hn).
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Hence, we obtain that form (H5) that

|E(r̂θ,2(x))− E(r̂θ,1(x))| = o


√√√√χ

1/2
θ (x, hn) log n

nG2
θ(x, hn)

 .

Thus the proof is complete. 2

Proof of Lemma 4.7

By (H5) and we apply the Markov’s inequality to show that, ∀ε > 0,

P (|r̂θ,1(x)− r̂θ,2(x)| > ε) = P

(
1

nEK1(x)

∣∣∣∣∣
n∑
i=1

Yi1|Yi|>δnKi(x)

∣∣∣∣∣ > ε

)
≤ nP (|Y1| > δn) ≤ nδ−pn E (|Y |p) ≤ Cnδ−pn .

Since ∑
n≥1

nδ−pn <∞,

then there exists ε0 > 0, such that

(7.6)
∑
n≥1

P

|r̂θ,1(x)− r̂θ,2(x)| > ε0

√√√√χ
1/2
θ (x, hn) log n

nG2
θ(x, hn)

 <∞,

which completes the proof of the lemma. 2

Proof of Lemma 4.8

Let us introduce the following sum Sn =

n∑
i=1

Lni, where

Lni =

√
Gθ(x, hn)√
nE(K1(x))

(
(Ŷi − rθ(x))Ki(x)− E((Ŷi − rθ(x))Ki(x))

)
.

Therefore

Sn =
√
nGθ(x, hn) (r̂θ,2(x)− rθ(x))r̂θ,0(x)− E(r̂θ,2(x)− rθ(x))r̂θ,0(x))) .

Thus, our claimed result is, now

(7.7) Sn → N (0, σ2
θ(x)).
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To do that, we use the basic technique of [9] for which we split Sn into

Sn = Tn + T ′n + ζk,

with

Tn =
k∑
j=1

ηj , and T ′n =
k∑
j=1

ξj ,

where

ηj :=
∑
i∈Ij

Lni, ξj :=
∑
i∈Jj

Lni, ζk :=

n∑
i=k(p+q)+1

Lni.

with

Ij = { (j − 1)(p+ q) + 1, . . . , (j − 1)(p+ q) + p},
Jj = { (j − 1)(p+ q) + p+ 1, . . . , j(p+ q)},

and p = pn, q = qn two sequences of natural numbers tending to ∞, such that

p = O
(
G−1
θ (x, hn)

)
, q = o(p) and k =

⌊
n

p+ q

⌋
,

where b·c stands for the integer part. Firstly, observe that we have kq
n → 0, and

kp
n → 1, qn → 0, which imply that p

n → 0 as n → ∞. Now, our asymptotic
normality results is a consequence of the following statements

(7.8) E(T ′n)2 + E(ζk)
2 → 0

and

(7.9) Tn → N (0, σ2
θ(x)).

For (7.8), we write

E(T ′n)2 = kVar(ξ1) + 2
∑

1≤i<j≤k
|Cov(ξi, ξj)|,

and

Var(ξ1) ≤ qVar(Ln1) + 2
∑

1≤i<j≤q
|Cov(Lni, Lnj)|.

Similarly to (7.4), we infer that

Var(Ln1) = O
(
n−1

)
,

which implies that

kqVar(Ln1) = O

(
kq

n

)
→ 0, as n→∞.
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On the other hand, we use the same arguments as those used in (7.5) to conclude
that

k
∑

1≤i<j≤q
|Cov(Lni, Lnj)| = o

(
kq

n

)
→ 0, as n→∞.(7.10)

Thus, the limit of the first term of E(T ′n)2 is equal to 0. Next, by using station-
arity, we can write

∑
1≤i<j≤k

|Cov(ξi, ξj)| =
k−1∑
l=1

(k − l)|Cov(ξ1, ξl+1)| ≤ k
k−1∑
l=1

|Cov(ξ1, ξl+1)|

≤ k
k−1∑
l=1

∑
(i,j)∈J1×Jl+1

Cov(Lni, Lnj).

It is clear that, for all (i, j) ∈ J1 × Jj , we have |i− j| ≥ p+ 1 > p, then

∑
1≤i<j≤k

|Cov(ξi, ξj)| ≤ k
Cγ2

n

nh2
nGθ(x, hn)

p∑
i=1

k(p+q)∑
j=2p+q+1,|i−j|>p

λi,j

≤ Ckpγ2
n

nh2
nGθ(x, hn)

λp ≤
Cγ2

n

G3
θ(x, hn)

e−ap → 0.

Finally, we get
E(T ′1)2 → 0 as n→∞.

Since (n− k(p+ q)) ≤ p, we have by the same manner

E(ζk)
2 ≤ (n− k(p+ q))Var(Ln1) + 2

∑
1≤i<j≤n

|Cov(Lni, Lnj)|

≤ pVar(Ln1) + 2
∑

1≤i<j≤n
|Cov(Lni, Lnj)| ≤

Cp

n
+ o(1).

Hence,
E(ζk)

2 → 0, as n→∞.

So, it remains to proof the asymptotic normality (7.9). The proof it is standard.
Indeed, it is based in the following assertions∣∣∣∣∣∣E

(
eit

∑k
j=1 ηj

)
−

k∏
j=1

E
(
eitηj

)∣∣∣∣∣∣→ 0,(7.11)

and

kVar(η1)→ σ2
θ(x), kE(η2

11{η1>εσθ(x)})→ 0.(7.12)
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To prove (7.11), notice that∣∣∣∣∣∣E
(
eit

∑k
j=1 ηj

)
−

k∏
j=1

E
(
eitηj

)∣∣∣∣∣∣
≤
∣∣∣E(eit∑k

j=1 ηj
)
− E

(
eit

∑k−1
j=1 ηj

)
E
(
eitηk

)∣∣∣
+

∣∣∣∣∣∣E
(
eit

∑k−1
j=1 ηj

)
−
k−1∏
j=1

E
(
eitηj

)∣∣∣∣∣∣
=
∣∣∣Cov (eit∑k−1

j=1 ηj , eitηk
)∣∣∣+

∣∣∣∣∣∣E
(
eit

∑k−1
j=1 ηj

)
−
k−1∏
j=1

E
(
eitηj

)∣∣∣∣∣∣(7.13)

and successively, we have

∣∣∣∣∣∣E
(
eit

∑k
j=1 ηj

)
−

k∏
j=1

E
(
eitηj

)∣∣∣∣∣∣
≤
∣∣∣Cov (eit∑k−1

j=1 ηj , eitηk
)∣∣∣+

∣∣∣Cov (eit∑k−2
j=1 ηj , eitηk−1

)∣∣∣
+ · · ·+

∣∣Cov (eitη2 , eitη1)∣∣ .(7.14)

The use the quasi-associated propriety permits to write that∣∣Cov (eitη2 , eitη1)∣∣ ≤ Ct2γ2
n

nG3
θ(x, hn)

∑
i∈I1

∑
j∈I2

λi,j .

Applying this inequality to each term on the right-hand side of (7.14) in order to
obtain∣∣∣∣∣∣E

(
eit

∑k
j=1 ηj

)
−

k∏
j=1

E
(
eitηj

)∣∣∣∣∣∣
≤ Ct2γ2

n

nG3
θ(x, hn)

∑
i∈I1

∑
j∈I2

λi,j +
∑

i∈I1∪I2

∑
j∈I3

λi,j + · · ·+
∑

i∈I1∪···∪Ik−1

∑
j∈Ik

λi,j

 .
Observe that for every 2 ≤ l ≤ k−1, (i, j) ∈ Il× Il+1, we have |i− j| ≥ q+1 > q,
then ∑

i∈I1∪···∪Il−1

∑
j∈Il

λi,j ≤ pλq.

Therefore, inequality (7.13) becomes∣∣∣∣∣∣E
(
eit

∑k
j=1 ηj

)
−

k∏
j=1

E
(
eitηj

)∣∣∣∣∣∣ ≤ Ct2γ2
n

nG3
θ(x, hn)

kpλq ≤
Ct2γ2

n

nG3
θ(x, hn)

kpe−aq → 0.
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Concerning (7.12), we use the same arguments as in to conclude that

lim
n→∞

kVar(η1) = lim
n→∞

kpVar(Ln1).

On the other hand

Var(Ln1) =
Gθ(x, hn)

nE2(K1(x))
Var

(
(Ŷ1 − rθ(x))K1(x)

)
.

It can be written as

Var(Ln1) =
Gθ(x, hn)

nE2(K1(x))

{
E
(
K2

1 (x)(Y1 − rθ(x))2
)
− E

[
K2

1 (x)(Y1 − rθ(x))21|Y1|>γn
]}

− Gθ(x, hn)

nE2(K1(x))

(
E
(
K1(x)(Y1 − rθ(x))1|Y1|<γn

))2
.

By combining the same ideas used in the proof of Lemma 4.6 to those used by
by [16] we show that

(7.15) Var(Ln1) =
σ2
θ(x)

n
+ o

(
1

n

)
.

Therefore,

kVar(η1) =
kpσ2

θ(x)

n
+ o

(
kp

n

)
→ σ2

θ(x).

For the second part of (7.12), we use the fact that

|η1| ≤ Cp|Ln1| ≤
Cγnp√

nGθ(x, hn)
,

and Tchebychev inequality to get

kE(η2
11{η1>εσθ(x)}) ≤

Cγ2
np

2k

nGθ(x, hn)
P(η1 > εσθ(x))

≤ Cγ2
np

2k

nGθ(x, hn)

Var(η1)

ε2σ2
θ(x)

= O

(
γ2
np

2

nGθ(x, hn)

)
,

which completes the proof.
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