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vergence; Uniform distribution.

AMS Subject Classification:

� 62B10, 94A15, 94A17.

https://orcid.org/0000-0003-4260-9028
https://orcid.org/0000-0001-9032-8701


2 Jitto Jose and E. I. Abdul Sathar

1. INTRODUCTION

Shannon [33] defined the entropy of a system which measures uncertainty
contained in a random variable. The Shannon entropy measure of uncertainty is
inversely related to the occurrence probability of the event. For a non-negative
and absolutely continuous random variable X with probability density function
(pdf) f(x), the Shannon entropy is defined by

H(X) = −
∫ ∞
0

f(x) ln f(x)dx.

Moreover, Rényi [30] introduced one parameter extension of Shannon entropy by
defining an entropy of order α called Rényi entropy. The Rényi entropy of X
with pdf f(x) is defined by

(1.1) Hα(X) =
1

1− α
ln

∫ ∞
−∞

fα(x)dx, α > 0, (α 6= 1).

It can be easily shown that lim
α→1

Hα(X) = H(X). Some important properties of

Rényi entropy are as follows: Hα(X) can be negative, Hα(X) is invariant under
a location transformation, Hα(X) is not invariant under a scale transformation
and for any α1 < α2, we have Hα1(X) ≥ Hα2(X), the equality occurs if and
only if X is uniformly distributed. The Rényi divergence of order α between two
random variables X and Y with density functions f(x) and g(y), respectively,
given by

Dα(f, g) =
1

α− 1

∫ ∞
−∞

[
f(x)

g(x)

]α−1
f(x)dx.(1.2)

For details, see Golshani and Pasha [19] and Contreras-Reyes [8]. The intriguing
properties and applications of Rényi entropy have been extensively studied in
literature.

Morales et al. [27] studied properties of Rényi entropy with respect to test-
ing of hypothesis in parametric models. The connection of Rényi information
with log-likelihood of the random variable derived from the gradient of the spec-
trum of Rényi information is discussed in Song [34]. Csiszár [10] gave Rényi’s
entropy and divergence of order α operational characterizations in terms of block
coding and hypothesis testing. In the field of statistical mechanics, the ergodic
diffusion processes in terms of Rényi entropy has been discussed in De Gregorio
and Iacus [12]. Further, Kirchanov [24] uses Rényi entropy to describe quantum
dissipative systems. For more details about the application of Rényi entropy, one
may refer Nadarajah and Zografos [28], Asadi et al. [5], Contreras-Reyes [8] and
Contreras-Reyes and Cortés [9].

This paper is structured as follows: Section 2 gives a brief introduction
about k-records. Section 3 expresses Rényi Entropy of k-records arising from any
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continuous distribution. In Section 4, we discuss some important properties of
Rényi entropy of upper and lower k-records. Section 5 presents two applications
of Rényi entropy of k-records. The overall findings are stated in Section 6.

2. BACKGROUND OF k-RECORDS

Chandler [7] defined records as successive extremes occuring in a sequence
of independent and identically distributed (iid) random variables. Records are
of great importance in several real life problems involving weather, economic
studies, sports, etc. Prediction of next record value is an interesting problem
in many real life situations. For example, the prediction of next record level of
water that a dam can capture is helpful in holding or discharge of the water.
Similarly, prediction of lowest share value in stock markets is essential to plan
for the investment strategies. More applications of record values are available in
Arnold et al. [4] and Ahsanullah [3].

In many events associated with athletics, temperature, wind velocity, etc.,
one is compelled to depend upon the available record data to deal with statistical
inference problems of the parent distribution. But, statistical inferences based on
records are difficult to make since the records occurs rarely in real life situations.
We can observe that the expected waiting time for every record after the first
observation is infinite. One may overcome this difficulty by the use of k-records
introduced by Dziubdziela and Kopociński [13] which occur more frequently than
the classical records. For example, consider first 10 observations from the data
given in David and Nagaraja [11]: 0.464, 0.060, 1.486, 1.022, 1.394, 0.906, 1.179,
-1.501, -0.690, 1.372. The records observed from the data are: 0.464 and 1.486.
We can construct upper k-records from the data as given below:

Table 1: Sequences of k-records for k = 2, 3, 4.

2-Records 0.060, 0.464, 1.022, 1.394.
3-Records 0.060, 0.464, 1.022, 1.179, 1.372
4-Records 0.060, 0.464, 0.906, 1.022, 1.179

It is well known that if the number of observations on the random variable
increases the statistical inferences becomes more reliable. In other words, the
uncertainty contained in the random variable reduces.

Many works are going on to detect outliers in a data so as to delete them
for devising more reasonable statistical methods to the problem of interest. The
integer parameter k involved in k-records can be chosen in such a manner that
the record data generated will exclude the specified number of outliers which
are feared to be crept into the data. For example, if some initial scrutiny of
the data reveals that there is a possibility of occurrence of only one outlier in
terms of its largeness in the data, then it is enough to consider upper 2-records
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as the desirable record data that may be used for further analysis. Hence, it
is beneficial to construct k-records from a sequence of random variables than
constructing classical record values in such situations.

Suppose {Xi, i ≥ 1} is a sequence of iid random variables. If for a positive
integer k, we collect those observations in the sequence which occupy the kth
largest position but exceeds in value for the first time the just previously recorded
kth largest value. Then, the resulting sequence is known as the sequence of kth
upper records or simply k-records. We denote the times at which upper k-record
values occur as Tn(k) for n = 1, 2, . . . and are defined by T1(k) = k and for
n > 1, Tn+1(k) = min{j : j > Tn(k), X[j : j + k − 1] > X[Tn(k) − k + 1 : Tn(k)]},
where X[p : q] is the pth order statistic in a random sample of size q. Then
we define the sequence of upper k-record values denoted by Un(k) as Un(k) =
X[Tn(k) − k + 1 : Tn(k)]. If the parent distribution is absolutely continuous with
survival function F̄X(x) and pdf fX(x), then, the pdf of the nth upper k-record
value Un(k) is given by (see Arnold et al. [4])

fn(k)(x) =
kn

Γ(n)

[
− ln F̄X(x)

]n−1
[F̄X(x)]k−1fX(x), n = 1, 2, . . . .(2.1)

Similarly, we can define the lower k-records. For a positive integer k, if we
denote the times at which lower k-records occur as TLn(k) for n = 1, 2, . . . and are

defined by TL1(k) = k and for n > 1, TLn+1(k) = min{j : j > TLn(k), X[j : j + k − 1] <

X[TLn(k) − k + 1 : TLn(k)]}. Then we define the sequence of lower k-records de-

noted by Ln(k) as Ln(k) = X[TLn(k) − k + 1 : TLn(k)]. If the parent distribution

is absolutely continuous with cumulative distribution function (cdf) FX(x) and
pdf fX(x), then, the pdf of the nth lower k-record value Ln(k) is given by (see
Ahsanullah [3])

gn(k)(x) =
kn

Γ(n)
[− lnF (x)]n−1 [F (x)]k−1 f(x), n = 1, 2, . . . .(2.2)

Several applications of k-records are available in the literature. In reliabil-
ity, a k-out-of-n system breaks down at the time of the failure of (n − k + 1)th
component. The life time of a k-out-of-n system is the (n− k+ 1)th order statis-
tic in a sample of size n. Consequently, the nth upper k-record value can be
regarded as the life length of a k-out-of-Tn(k) system. In actuarial science, there
arises situations where second or third largest set of values are of special interest
when the insurance claim of some non-life insurance is considered. One may refer
Kamps [23] for more details. Detailed description on the theoretical aspects as
well as applications of k-records are available in Arnold et al. [4], Nevzorov [29]
and Ahsanullah [3].

Many authors have discussed about the information measures of classical
records and its generalized version (k-records) arising from probability distribu-
tion. Hofmann and Nagaraja [21] derived some general results on the Fisher
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information contained in the classical record values and Hofmann and Balakr-
ishnan [20] derived some general results on the Fisher information contained in
the k-record values generated from an iid sample of fixed size from a continuous
distribution. Madadi and Tata [25] present results on the Shannon information
contained in classical record values and Madadi and Tata [26] present results on
the Shannon information contained in k-record values. They have established
a relationship between the Shannon information content of a random sample of
fixed size and the Shannon information in the data consisting of sequential max-
ima. Also, they have considered the information contained in the k-record data
from an inverse sampling plan as well. Goel et al. [18] discussed the measure
of entropy for past lifetime distributions based on k-records. Recently, Jose and
Sathar [22] studied some important properties of residual extropy of k-record
values as well. It is to be noted that, when k = 1, we can easily obtain classi-
cal record values from k-records. Hence, k-records can be also considered as a
generalized version of classical records. Baratpour et al. [6] studied entropy prop-
erties of classical records. Abbasnejad and Arghami [2] have discussed about the
information contained in classical record values in detail and have derived some
important properties as well. But to the best of our knowledge, no attention has
been paid to the study of Rényi information contained in k-records.

Through this paper, the Rényi entropy of k-records arising from any con-
tinuous distribution has been discussed in detail. We also explore some of its
important properties and have presented two applications of Rényi entropy of
k-records.

3. RÉNYI ENTROPY OF k-RECORDS

Let {Xi, i ≥ 1} be a sequence of iid random variables with parent distri-
bution f(x). Then, analogous to (1.1), the Rényi entropy of nth upper k-record
value

(
Un(k)

)
is defined by

Hα(Un(k)) =
1

1− α
ln

∫
x

fαn(k)(x)dx, α > 0, (α 6= 1).(3.1)

In the following example, we illustrate that Rényi entropy measure of un-
certainty contained in the original random variable is more when compared to
that of k-records arising from the observations on the original random variable.

Example 3.1. Assume X is a random variable following U(2, 4) with
pdf given by

fX(x) =

{
1
2 , 2 ≤ x ≤ 4
0, otherwise

.

We use the Rényi entropy to measure the uncertainty involved in the random
variable X. Let Hα(X) denote the Rényi entropy of X. Then from (1.1), we get
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Hα(X) = ln 2. Also, the Rényi entropy of nth upper k-record value arising from
U(2, 4) is obtained from (3.1) as

Hα

(
Un(k)

)
=

1

1− α
ln

[
kαn

Γα(n)2α−1
Γ(α(n− 1) + 1)

(α(k − 1) + 1)α(n−1)+1

]
.

It is to be noted thatHα(X) is independent of α. Moreover, Hα(X)−Hα

(
Un(k)

)
≥

0 for α > 0. This means that the uncertainty of X is more than Un(k). Thus,
the predictability of X is smaller than the predictability of Un(k). The graphical
representation of Rényi entropy of X and the Rényi entropy of Un(k) for varying
α is given in Figure 1.

Figure 1: Rényi entropy of X and Un(k) for various values of α.

Fashandi and Ahmadi [15] have represented Rényi entropy of nth upper
k-record value in terms of Rényi entropy of nth upper k-record value arising from
U(0, 1). But they have not used that representation to study the properties of
Rényi entropy of nth upper k-record value arising from any continuous distribu-
tion. In this paper, we use the expression of Rényi entropy of nth upper k-record
value in terms of Rényi entropy of nth upper k-record value arising from U(0, 1)
to carry out investigation on properties and divergence of Rényi entropy of nth
upper k-record value. Let {Xi, i ≥ 1} be a sequence of iid random variables with
a common distribution U(0, 1). Let U∗n(k) denote the nth upper k-record value

arising from the sequence {Xi, i ≥ 1}. Using (2.1) in (3.1), we get

Hα

(
U∗n(k)

)
=

1

1− α
ln

∫ ∞
−∞

kαn

Γα(n)
[ln(1− x)]α(n−1)[1− x]α(k−1)dx.

Using the transformation z = − ln(1− x), we have

Hα

(
U∗n(k)

)
=

1

1− α
ln

∫ ∞
0

kαn

Γα(n)
zα(n−1)e−z(α(k−1)+1)dz.

Then, the Rényi entropy of U∗n(k) is given by

Hα

(
U∗n(k)

)
=

1

1− α
ln

[
kαn

Γα(n)

Γ(α(n− 1) + 1)

(α(k − 1) + 1)α(n−1)+1

]
.(3.2)
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Then, for a sequence of iid random variables {Xi, i ≥ 1} with cdf F (x) and
pdf f(x). If we denote Un(k) the nth upper k-record value of the sequence {Xi}.
Applying (2.1) in (3.1), we get

Hα

(
Un(k)

)
=

1

1− α
ln

kαn

Γα(n)

∞∫
−∞

[− ln (1− F (x))]
α(n−1)

[1− F (x)]
α(k−1)

fα(x)dx.

Using the transformation u = − ln(1− F (x)) and on integrating, we get

Hα

(
Un(k)

)
=

1

1− α
ln

{
kαn

Γα(n)

Γ(α(n− 1) + 1)

(α(k − 1) + 1)α(n−1)+1
E
[
fα−1

(
F−1(1− e−V )

)]}
,

where V follows gamma distribution with parameters α(n−1)+1 and α(k−1)+1
and we denote it by V ∼ Gamma(α(n− 1) + 1, α(k − 1) + 1). Then, from (3.2),
the Rényi entropy of Un(k) is given by

Hα

(
Un(k)

)
= Hα

(
U∗n(k)

)
+

1

1− α
ln
{
E
[
fα−1

(
F−1(1− e−V )

)]}
.(3.3)

Similarly, the Rényi entropy of nth lower k-record value arising from any
continuous distribution can be expressed in terms of Rényi entropy of nth lower
k-record value arising from U(0, 1). Let Ln(k) denote the nth lower k-record value
of the sequence {Xi}. Then, the Rényi entropy of Ln(k) is given by

Hα

(
Ln(k)

)
= Hα

(
L∗n(k)

)
+

1

1− α
ln
{
E
[
fα−1

(
F−1(e−V )

)]}
,(3.4)

where Hα

(
L∗n(k)

)
denote the Rényi entropy of nth lower k-record value arising

from U(0, 1) and V ∼ Gamma(α(n− 1) + 1, α(k − 1) + 1).

As an illustration, we obtain the Rényi entropy of k-records arising from
exponential and Pareto distribution in the following examples.

Example 3.2. Let {Xi, i ≥ 1} be a sequence of iid random variables
having a common Pareto distribution with density function given by

f(x) =
β

σ

(x
σ

)−β−1
, x > σ.

Here

F−1(x) = σ [1− x]
− 1
β .

Now, we have

E
[
f(F−1(1− e−Vn))

]
=

βαn

σα−1

[
α(k − 1) + 1

α(βk + 1)− 1

]α(n−1)+1

.

Then, from (3.2) and (3.3), we get

Hα

(
Un(k)

)
=

1

1− α
ln

[
kαn

Γα(n)

βαnΓ(α(n− 1) + 1)

σα−1[α(βk + 1)− 1]α(n−1)+1

]
.
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Figure 2: Rényi entropy of UXn(k) for various values of α.

The graphical representation of the Rényi entropy of UXn(k) arising from
Pareto distribution with shape parameter β = 3 and scale parameter σ = 2 is
given in Figure 2, for varying α.

If we put k = 1, we can easily obtain the classical records from the sequence
of k-records. From the figure, it can be observed that the Rényi entropy of
classical upper record values (when k = 1) is greater than the Rényi entropy of
upper k-records. This means that the uncertainty contained in classical records
is more than that of k-records. Hence, one may observe certain situations where
the predictability of classical records is less than the predictability of k-records
when analyzed using Rényi entropy.

Example 3.3. Let {Xi, i ≥ 1} be a sequence of iid random variables
having a common exponential distribution with density function given by

f(x) = θe−θx, x > 0, θ > 0.

Here

F−1(x) = −1

θ
ln(1− x).

Now, we have

E
[
fα−1(F−1(1− e−V ))

]
=

[
α(k − 1) + 1

αk

]α(n−1)+1

θα−1.

Then, from (3.2) and (3.3), we get

Hα

(
Un(k)

)
=

1

1− α
ln

[
kαn

Γα(n)

θα−1Γ(α(n− 1) + 1)

(αk)α(n−1)+1

]
.
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4. PROPERTIES OF RÉNYI ENTROPY OF k-RECORDS

In this section, we discuss some important properties of Rényi entropy of
upper and lower k-records arising from any continuous distribution. To determine
the monotonicity of Rényi entropy of upper and lower k-records arising from any
continuous distribution we make use of the following definitions of stochastic and
likelihood ratio orders given in Shaked and Shanthikumar [32].

Definition 4.1. Let X and Y be two non-negative random variables
with cdfs F and G and with pdfs f and g respectively, then X is said to be
smaller than Y

(1) in the likelihood ratio order, denoted by X ≤lr Y , if f(x)
g(x) is decreasing in

x ≥ 0,

(2) in the usual stochastic order, denoted by X ≤st Y , if F̄ (x) ≤ Ḡ(x) for all
x ≥ 0, where H̄(·) is the survival function.

It is well known that X ≤lr Y =⇒ X ≤st Y and X ≤st Y if and only if
E[φ(X)] ≤ E[φ(Y )] for all increasing functions φ.

Definition 4.2. The random variable X is said to be less than or equal
to the random variable Y in Rényi entropy ordering, denoted by X ≤RE Y , if
Hα(X) ≤ Hα(Y ) for all α > 0.

The following theorem reveals the monotone behaviour of Rényi entropy of
upper k-record values based on n.

Theorem 4.1. Let {Xi, i ≥ 1} be a sequence of iid random variables
with a common cdf F (x) and pdf f(x). Let Un(k) denote the nth upper k-record
value. If f(x) is non-decreasing in x, then for n > k, Hα

(
Un(k)

)
is non-increasing

in n.

Proof: The proof is straightforward as in Theorem 2.1 of Abbasnejad
and Arghami [2].

In a similar way, we can state the monotone behaviour of Rényi entropy
of lower k-records as given in the following theorem. The proof is not included
since it easily follows as in Theorem 4.1.
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Theorem 4.2. Let {Xi, i ≥ 1} be a sequence of iid random variables
with a common cdf F (x) and pdf f(x). Let Ln(k) denote the nth lower k-record
value. If f(x) is non-increasing in x, then for n > k, Hα

(
Ln(k)

)
is non-increasing

in n.

We will now discuss about the Rényi entropy ordering of nth upper k-
record value of two random variables. Abbasnejad and Arghami [2] have used
Rényi entropy ordering of the random variables to establish their Rényi entropy
ordering of classical record values. In the following theorem, we make use of
Rényi entropy ordering of the random variables to establish their Rényi entropy
ordering of nth upper k-record value.

Theorem 4.3. Let X and Y be two continuous random variables with
cdfs F (x) and G(y) and pdfs f(x) and g(y) respectively. Suppose that UXn(k) and

Uyn(k) represents the nth upper k record value arising from X and Y respectively.
Assume that

Λ1 =

{
v > 0

g(G−1(1− e−v))

f(F−1(1− e−v))
≤ 1

}
,

Λ2 =

{
v > 0

g(G−1(1− e−v))

f(F−1(1− e−v))
> 1

}
and X ≤RE Y . If inf Λ1 ≥ sup Λ2, then UXn(k) ≤RE U

Y
n(k), ∀ n ≥ 1 and n > k.

Proof: The proof is omitted since it is similar to that of Theorem 2.3
in Abbasnejad and Arghami [2].

In the following example, we apply Theorem 4.3 to obtain Rényi entropy
ordering of two random variables following exponential distribution based on
upper k-records.

Example 4.1. Let X and Y be two random variables having common
exponential distribution with different scale parameters σ and λ respectively,
where σ > λ. Then from (1.1), we get

Hα(X) =
1

1− α
ln(α)− ln(σ).

It can be easily verified that Hα(X) is a decreasing function of σ. Thus, we have
Hα(X) ≤ Hα(Y ) and thereby X ≤RE Y . We have f(F−1(1− e−x)) = 1

σ e−x and
inf Λ1 = sup Λ2. Hence, by Theorem 4.3 we get UXn(k) ≤RE U

Y
n(k).

Similar to Theorem 4.3, we establish the Rényi entropy ordering of two
random variables based on lower k-records.
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Theorem 4.4. Let X and Y be two continuous random variables with
cdfs F (x) and G(y) and pdfs f(x) and g(y) respectively. Suppose

Λ1 =

{
v > 0

g(G−1(e−v))

f(F−1(e−v))
≤ 1

}
,

Λ2 =

{
v > 0

g(G−1(e−v))

f(F−1(e−v))
> 1

}
and X ≤RE Y . If inf Λ1 ≥ sup Λ2, then LXn(k) ≤RE L

Y
n(k), ∀ n ≥ 1 and n > k.

The following lemma explains the effect of location-scale transformation on
random variable in the case of Rényi entropy of k-records. The proof is simple
and hence omitted.

Lemma 4.1. Consider a non-negative random variable X with pdf f
and cdf F . Let Z = aX + b be a transformation on X, where a > 0 and b ≥ 0
are constants. Then

Hα

(
UZn(k)

)
= Hα

(
UXn(k)

)
+ ln a,(4.1)

where UZn(k) and UXn(k) are the nth k-record corresponding to Z andX respectively.

Thus, the Rényi entropy of k-records changes due to the change in scale, but
it does not change due to the change in location. The next theorem will discuss
on the Rényi entropy ordering of k-records under location-scale transformation.

Theorem 4.5. Consider two absolutely continuous random variables X
and Y . Assume that UZn(k) and UXn(k) are the nth upper k-record corresponding to

X and Y respectively. Let UZ1

n(k) = a1U
X
n(k) + b1 and UZ2

n(k) = a2U
Y
n(k) + b2, where

a1, a2 > 0 and b1, b2 ≥ 0 are constants. If UXn(k) ≤RE U
Y
n(k), then UZ1

n(k) ≤RE U
Z2

n(k)
for a1 ≤ a2.

Proof: If UXn(k) ≤RE U
Y
n(k), then

Hα

(
UXn(k)

)
≤ Hα

(
UYn(k)

)
.

Since a1 ≤ a2, ln a1 ≤ ln a2. Hence,

ln a1 +Hα

(
UXn(k)

)
≤ ln a2 +Hα

(
UYn(k)

)
.

Thus, from (4.1), we get UZ1

n(k) ≤RE U
Z2

n(k). Hence the theorem.

We will now deduce the following corollary which removes the restriction on the
scale constants.
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Corollary 4.1. Consider two absolutely continuous random variables X
and Y . Assume that UZn(k) and UXn(k) are the nth upper k-record corresponding

to X and Y respectively. Let UZ1

n(k) = aUXn(k) + b and UZ2

n(k) = aUYn(k) + b, where

a > 0 and b ≥ 0 are constants. If UXn(k) ≤RE U
Y
n(k), then UZ1

n(k) ≤RE U
Z2

n(k).

We will now discuss the effect of monotone transformation for Rényi entropy
of k-records through the following theorem.

Theorem 4.6. Assume a strictly convex function ψ having ψ(0) = 0
and ψ(∞) =∞. Consider, if Y = ψ(X) then

Hα

(
UYn(k)

)
= Hα

(
U∗n(k)

)
+

1

1− α
ln

{
E

[
f(F−1(1− e−Vn))

ψ′(F−1(1− e−Vn))

]α−1}
,(4.2)

where Vn ∼ Gamma(α(n − 1) + 1, α(k − 1) + 1). Here UYn(k) are the nth upper
k-record value corresponding to Y .

Proof: Let gn(k)(y) and Ḡn(k)(y) be the pdf and survival function of nth
upper k-record value corresponding to Y . Then, from (2.1) we get

Hα

(
UYn(k)

)
=

1

1− α
ln

∫ ∞
0

kαn

Γα(n)

[
− ln Ḡ(y)

]α(n−1)
[Ḡ(y)]α(k−1)gα(y)dy.

Applying the transformation Y = ψ(X), we have

Hα

(
UYn(k)

)
=

1

1− α
ln

kαn

Γα(n)

∞∫
0

[
− ln F̄ (x)

]α(n−1)
[F̄ (x)]α(k−1)

(
f(x)

ψ′(x)

)α
ψ
′
(x)dx.

Using the substitution u = − ln F̄ (x) in the integral, the theorem follows.

The following theorem, establishes the Rényi entropy ordering of strictly increas-
ing convex functions of two nth upper k-records based on the Rényi entropy
ordering of their respective k-records.

Theorem 4.7. Suppose X and Y are non-negative random variables
such that UXn(k) ≤RE UYn(k) and ψ be a strictly increasing convex function with

ψ(0) = 0, ψ(∞) = ∞, ψ
′
(x) exists and is continuous with ψ

′
(0) ≥ 1. Then

ψ
(
UXn(k)

)
≤RE ψ

(
UYn(k)

)
, where UXn(k) and UYn(k) denote the nth upper k-record

value corresponding to X and Y respectively.

Proof: Since UXn(k) ≤RE U
Y
n(k), we have Hα

(
UXn(k)

)
≤ Hα

(
UYn(k)

)
. This

implies

Hα

(
UX∗n(k)

)
E
[
fα−1

(
F−1(1− e−Vn)

)]
≤ Hα

(
UY ∗n(k)

)
E
[
gα−1

(
G−1(1− e−Vn)

)]
,(4.3)
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where Vn ∼ Gamma(α(n− 1) + 1, α(k − 1) + 1). Then, from (4.2), we have

Hα

(
ψ
(
UXn(k)

))
−Hα

(
ψ
(
UYn(k)

))
= Hα

(
UX∗n(k)

)
−Hα

(
UY ∗n(k)

)
+

1
1−α ln

E

[
f(F−1(1−e−Vn ))

ψ
′
(F−1(1−e−Vn ))

]α−1

E

[
g(G−1(1−e−Vn ))

ψ
′
(G−1(1−e−Vn ))

]α−1

 .

Since ψ
′
(0) ≥ 1 and from (4.3), we obtain Hα

(
ψ
(
UXn(k)

))
−Hα

(
ψ
(
UYn(k)

))
≤ 0.

Hence, ψ
(
UXn(k)

)
≤RE ψ

(
UYn(k)

)
.

Therefore, we can observe that the Rényi entropy ordering of two random vari-
ables determine the Rényi entropy ordering of their respective k-records and the
Rényi entropy ordering of the respective convex function of k-records are deter-
mined by the Rényi entropy ordering of their respective k-records. The following
example discusses the same.

Example 4.2. Consider a convex function ψ(x) = βx, where β ≥ 1.
Hence ψ be a strictly increasing convex function with ψ(0) = 0, ψ(∞) =∞, ψ

′
(x)

exists and is continuous with ψ
′
(0) ≥ 1. From Example 4.1, we have UXn(k) ≤RE

UYn(k). Thus, the assumptions of Theorem 4.7 are satisfied and therefore, we

can directly obtain ψ
(
UXn(k)

)
≤RE ψ

(
UYn(k)

)
in which X and Y have common

exponential distribution with different scale parameters σ and λ respectively,
where σ > λ.

We will now study another property regarding the bound of Rényi entropy
of k-records. Through the following theorem, we present a lower bound for the
Rényi entropy of upper k-records arising from any continuous distribution.

Theorem 4.8. Let {Xi, i ≥ 1} be a sequence of iid random variables
with a common distribution function F (x) and density function f(x). LetHα

(
Un(k)

)
denote the Rényi entropy of nth upper k-record value arising from the sequence

and Hα

(
U∗n(k)

)
denote the Rényi entropy of nth upper k-record value arising

from U(0, 1). Suppose that M = f(m) exists, where M is the mode of X, then
for α > 0

Hα

(
Un(k)

)
≥ Hα

(
U∗n(k)

)
− lnM.(4.4)

Proof: Since M is the mode of X, we have

f(F−1(y)) ≤M.

Using the transformation y = 1− e−V , we get

f(F−1(1− e−U )) ≤ M

fα−1(F−1(1− e−U )) ≤ Mα−1.



14 Jitto Jose and E. I. Abdul Sathar

Taking expectations on both sides, we obtain

E
[
fα−1(F−1(1− e−U ))

]
≤ Mα−1.(4.5)

Similarly, for 0 < α < 1

E
[
fα−1(F−1(1− e−U ))

]
≥ Mα−1.(4.6)

From (4.5) and (4.6), for α > 0, we have

1

1− α
lnE

[
fα−1(F−1(1− e−U ))

]
≥ − lnM.(4.7)

Using (3.3) in (4.7), we get

Hα

(
Un(k)

)
)−Hα

(
U∗n(k)

)
≥ − lnM

Hα

(
Un(k)

)
≥ Hα

(
U∗n(k)

)
− lnM.

Hence the theorem.

In the following example, we make use of Theorem 4.8 to obtain bound for
Rényi entropy of upper k-record value arising from Gompertz distribution.

Example 4.3. The pdf of Gompertz distribution with shape parameter
λ and scale parameter β is given by

f(x) = βλeβx+λ(1−e
βx), x > 0, β, λ > 0.

We know that mode of this distribution is 1
β ln 1

λ . Thus, from (4.4) we have

Hα

(
Un(k)

)
≥ 1

1− α
ln

[
kαnβ

lnλΓα(n)

Γ(α(n− 1) + 1)

(α(k − 1) + 1)α(n−1)+1

]
.

In the following theorem, similar to Theorem 4.8, we obtain lower bound
for Rényi entropy of lower k-records arising from any continuous distribution.

Theorem 4.9. Let {Xi, i ≥ 1} be a sequence of iid random variables
with a common distribution function F (x) and density function f(x). LetHα

(
Ln(k)

)
denote the Rényi entropy of nth lower k-record value arising from the sequence

and Hα

(
L∗n(k)

)
denote the Rényi entropy of nth lower k-record value arising

from U(0, 1). Suppose that M = f(m) exists, where M is the mode of X, then
for α > 0

Hα

(
Ln(k)

)
≥ Hα

(
L∗n(k)

)
− lnM.(4.8)

In the following example, we make use of Theorem 4.9 to obtain lower
bound for Rényi entropy of lower k-records arising from Fréchet distribution.
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Example 4.4. The density function of Frechet distribution with shape
parameter a and scale parameter s is given by

f(x) =
a

s

(x
s

)−1−a
e−(xs )

−a
, x > 0; a, s > 0.

We know that mode of this distribution is s
(

a
1+a

) 1
a
. Thus, from (4.8), we get

Hα

(
Un(k)

)
≥ 1

1− α
ln

{[
a

a+ 1

]a kαn

s Γα(n)

Γ(α(n− 1) + 1)

(α(k − 1) + 1)α(n−1)+1

}
.

5. APPLICATIONS OF RÉNYI ENTROPY OF k-RECORDS

This section deals with the applications of Rényi entropy of k-records. One
application of Rényi entropy of k-records is that it can be used to characterize a
class of distributions of non-negative random variables. Another application of
Rényi entropy of k-records is that it determines Rényi divergence between the
distribution of k-record values and its parent distribution.

5.1. Characterization of exponential distribution

Ebrahimi [14] suggested that maximum entropy paradigm can be used to
produce a model for the data generating distribution. In the maximum entropy
procedure, a model that best approximates the unknown distribution is derived
based on the partial knowledge about this distribution in terms of a set of infor-
mation constraints. Then, the inference is based on the model that maximizes the
entropy of the random variables subject to the information constraints. In this
subsection, we derive exponential distribution as the distribution that maximizes
the Rényi entropy of k-records under some information constraints.

Let ξ be a class of distributions F (x) of non-negative random variables X
with F (0) = 0 such that

(i) r(x, θ) = a(θ)b(x),

(ii) b(x) ≥ β, β > 0,

where b(x) = B′(x) is a non-negative function of x and a(θ) is a non-negative
function of θ.

Abbasnejad and Arghami [2] derived exponential distribution as the distri-
bution that maximizes the Rényi entropy of classical record values under some
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information constraints. In the following theorem we characterize ξ using the
Rényi entropy of nth upper k-record value.

Theorem 5.1. Let Un(k) be the nth upper k-record value of F (x; θ),
where F (x; θ) is in class ξ. Then, the nth upper k-record value of the distribution
F (x; θ) has maximum Rényi entropy in ξ if and only if F (x; θ) = 1− e−a(θ)βx.

Proof: The proof follows similar steps to that of Theorem 4.1 in Abbas-
nejad and Arghami [2].

5.2. Rényi divergence of k-records

Several applications of entropy divergence measures in formulating test
statistics for testing of hypotheses and goodness-of-fit tests are available in liter-
ature. Gil et al. [16] presented closed form expressions of Rényi divergence for
nineteen commonly used univariate continuous distributions as well as those for
multivariate Gaussian and Dirichlet distributions. Salicrú et al. [31] suggested
test statistics using some families of divergence like φ-divergence. Vasicek [35]
used the sample Shannon entropy estimate to test normality. Abbasnejad [1]
obtained a test statistic for exponentiality based on Rényi divergence. Abbasne-
jad and Arghami [2] studied Rényi divergence between parent distribution and
distribution of classical record value as well. Through the following theorem,
we study Rényi divergence between parent distribution and distribution of nth
upper k-record value.

Theorem 5.2. The Rényi divergence between distribution of nth upper
k-record value and its parent distribution is given by

Dα(fn(k), f) = −Hα

(
U∗n(k)

)
,

where fn(k) is the pdf of Un(k) and U∗n(k) is the nth upper k-record value arising

from U(0, 1). Moreover, Dα(fn(k), f) is increasing in n.

Proof: Using (2.1) in (1.2) and by the transformation u = − ln F̄ (x),
we get

Dα(fn(k), f) =
1

α− 1
ln

∫ ∞
0

kαn

Γα(n)
uα(n−1)e−u(α(k−1)+1)du,

= −Hα

(
U∗n(k)

)
.

Hence, the Rényi divergence between the distribution of the nth upper k-record
value and the parent distribution is distribution free. Moreover, taking the deriva-

tive of Hα

(
U∗n(k)

)
with respect to n, we get

dHα

(
U∗n(k)

)
dn

=
α

α− 1
(1− ln k)− 1

α− 1
ξ(α(n− 1) + 1) +

α

α− 1
ξ(n),
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where ξ(u) =
d ln Γ(u)

du
. For every u, the function ξ(u) is non-decreasing and

therefore Hα

(
U∗n(k)

)
is non-increasing in n. Thus the result follows.

Thus, by increasing n, we expect that the divergence between the distribution of
the nth upper k-record value and the parent distribution increases.

5.3. Numerical illustration

In this subsection, we propose a simple estimator for the Rényi entropy
of the nth upper k-record value and discuss the merit of k-records over classical
records and parent random variable in terms of uncertainty. To estimate the
Rényi entropy based on nth upper k-record value, kernel density has been ap-
plied to estimate the density function and empirical distribution has been used as
an estimator for the distribution function. The estimator is proposed for Rényi
entropy obtained by replacing the density of the parent random variable by the
density of nth upper k-record value and hence much complexities arises while de-
riving the properties of the proposed estimator directly. Therefore, the proposed
simple estimator for Rényi entropy based on nth upper k-record value can be
analysed numerically by evaluating the average bias and MSE for different sam-
ple sizes which examines the bias and consistency characteristics of the proposed
estimator. A numerical illustration has been presented with an intention to de-
scribe the benefit of applying Rényi entropy based on nth k-record in comparison
to that of the parent random variable. Using (2.1) in (3.1), the Rényi entropy of
the nth upper k-record can be expressed as

Hα

(
Un(k)

)
=

1

1− α
ln

∞∫
0

kαn

Γα(n)

[
− ln F̄ (x)

]α(n−1) [
F̄ (x)

]α(k−1)
fα(x)dx.(5.1)

A simple estimator for the Rényi entropy of the nth upper k-records value based
on a random sample of size n is given by

Ĥα

(
Un(k)

)
=

1

1− α
ln

∞∫
0

kαn

Γα(n)

[
− ln ˆ̄F (x)

]α(n−1) [
ˆ̄F (x)

]α(k−1)
f̂α(x)dx,(5.2)

where f̂(x) = 1
nbn

n∑
j=1

K
(
x−Xj
bn

)
, denotes the kernel density estimator with the

bandwidth bn. AlsoK(·) is a kernel function satisfying the condition
∫∞
−∞K(x)dx =

1 and is usually a symmetric pdf. Also, ˆ̄F (x) = 1
n

n∑
i=1

I(Xi ≥ x) is the empirical

survival function and I(Xi ≥ x) is the indicator function.

In the following illustration, we use a real life data set to compute Rényi
entropy of the nth upper k-record value and make a comparison with that of
classical records and parent random variable.

Dataset 1: Let the random variable X represents the brain weight (in
grams) of 237 adults discussed in Gladstone [17]. The brain weight of an adult
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is not so easy to obtain and hence for more reliable inferences on the random
variable X, the distribution of X should possess less uncertainty. The study
focus on the uncertainty contained in the distribution of the random variable X.
Initial study on distribution of X suggests the normal distribution with location
parameter µ = 1282.87 and scale parameter σ = 120.86 is a good fit for the data
set with Kolmogrove-Smirnov (K-S) statistic = 0.03914 and p-value = 0.9755.
Since the normal distribution is a good fit for the proposed data, a Gaussian
kernel can be chosen for estimation procedure using the given data set. The fit
of normal distribution to data is depicted in Figure 3.
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(a) Histogram and Normal Curve
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(b) Normal and Empirical CDF.

Figure 3: Modelling Brain Weight Data using Normal Distribution.

To estimate Rényi entropy of the nth upper k-record value the Gaussian
kernel with bn = 120. is applied in (5.2). The closeness of the estimators of R’enyi
entropy based on nth upper k-record value and the parent random variable with
the theoretical value of R’enyi entropy which has been obtained by assuming
normal distribution for the random variable with parameter values µ = 1282.87
and σ = 120.86 (ML estimates) for different choices of α are presented in Table
2.

Table 2: Comparison of theoretical values and estimates of Rényi entropy based
on X and Un(k) where k = 1, 2, 5, 7, 9 and 10 .

α Hα(X) Ĥα(X) Ĥα

(
Un(1)

)
Ĥα

(
Un(2)

)
Ĥα

(
Un(5)

)
Ĥα

(
Un(7)

)
Ĥα

(
Un(9)

)
Ĥα

(
Un(10)

)
0.10 6.9885 8.9341 7.2943 6.4240 6.3835 6.2870 5.9981 5.8530
0.30 6.5692 9.5116 8.8650 8.7573 8.7103 8.6019 8.1354 7.5349
0.50 6.4024 11.1967 10.3061 10.2393 9.7591 9.6735 9.6341 9.5618
0.70 6.2846 20.6588 13.7849 13.7476 12.6784 12.6646 12.6296 12.5986
1.15 6.1556 17.3662 12.4395 12.3814 12.3616 12.2889 11.8381 11.7295
1.40 6.1147 10.8954 10.0227 9.2979 9.2531 9.1823 9.1673 9.1643
1.75 6.0823 3.7508 7.7072 7.5870 7.8013 7.8826 7.5907 7.6997
2.00 6.0558 3.1864 6.8005 6.7703 6.7178 6.7033 6.5973 6.5817
2.25 6.0336 2.2530 6.4741 6.1328 6.0768 6.0333 5.9477 5.8533
2.50 6.0147 1.6343 5.0568 4.9876 4.7800 4.6415 4.5031 4.4339
3.25 5.9839 0.8677 3.9306 3.8767 3.7152 3.6076 3.4999 3.4460
3.50 5.9598 0.4133 3.3674 3.3213 3.1828 3.0906 2.9983 2.9521

From Table 2, we can observe that the estimates of Rényi entropy based
on nth upper k-record value is closer to its theoretical value than the estimate
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of Rényi entropy based parent random variable. Also, when k = 1, k-records be-
comes classical records. In terms of uncertainty, we have compared three different
estimates (based on parent random variable, classical records and k-records) for
Rényi entropy which can be obtained from a random sample. Hence, from Table
2, one may conclude that there are situations where construction of k-records
or classical records from random sample gives closer estimate than the estimate
obtained based on random variable. Moreover, the k-records or classical records
are ordered random variables which carry an additional information about their
ranks when compared to the parent random variable.

To study the effect of the estimator suggested for Rényi entropy of the
nth upper k-record value denoted as Hα

(
Un(k)

)
, we have obtained average bias

and mean square error (MSE) of the estimator using bootstrapping procedure.
The bias and MSE of the estimates are evaluated from value of Rényi entropy of
the nth upper k-record obtained using the parameter estimates µ = 1282.87 and
scale parameter σ = 120.86 in (5.1) which we have considered as the true value
of Hα

(
Un(k)

)
. The average bias and MSE of Hα

(
Un(k)

)
based on 100 bootstrap

estimates from samples of sizes 20, 60 and 100 are presented in Table 3. It can
be observed that the average bias and MSE of the estimator of Rényi entropy of
the nth upper k-record value diminishes as sample size becomes large.

Table 3: Average Bias and MSE of the estimate of Rényi entropy of the nth
upper k-record value for different choices of α.

n k
α = 0.25 α = 0.75 α = 1.50 α = 3.0

Bias MSE Bias MSE Bias MSE Bias MSE

20

1 1.14072 1.09495 1.12052 1.06003 1.11085 1.03190 1.09435 1.03083
3 1.07479 1.00485 1.07209 0.99914 1.06225 0.92091 1.05467 0.90367
6 1.00195 0.89941 0.99823 0.85221 0.96188 0.81123 0.94057 0.80224
8 0.92137 0.79354 0.91658 0.77677 0.91307 0.77391 0.89728 0.75497
10 0.85722 0.74954 0.83132 0.73397 0.81957 0.71637 0.80547 0.68588

60

1 0.93818 0.84330 0.90040 0.84103 0.88101 0.82568 0.87493 0.82497
3 0.85666 0.81577 0.83509 0.80718 0.82274 0.74541 0.79530 0.73895
6 0.79185 0.73802 0.78635 0.73201 0.78544 0.71686 0.76749 0.70849
8 0.76585 0.65507 0.75573 0.61861 0.72946 0.57439 0.70244 0.57347
10 0.68611 0.53900 0.67284 0.50139 0.66842 0.49361 0.65933 0.44052

100

1 0.76797 0.69524 0.76709 0.68935 0.75349 0.68063 0.75052 0.68010
3 0.74507 0.59512 0.73545 0.59152 0.72329 0.56915 0.71883 0.55927
6 0.71429 0.53813 0.70983 0.52673 0.69858 0.51378 0.65525 0.48069
8 0.64116 0.46515 0.63902 0.43912 0.62873 0.43155 0.61199 0.42260
10 0.58717 0.41116 0.57277 0.40205 0.57109 0.38755 0.56469 0.37685

6. CONCLUSION

The study explains the relevance of k-records in measuring uncertainty us-
ing Rényi entropy after comparing it with Rényi entropy of classical records as
well as with Rényi entropy of original random variable. Fashandi and Ahmadi [15]
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have expressed Rényi entropy for k-records arising from any continuous distribu-
tion in terms of Rényi entropy of k-records arising from uniform distribution and
we have used that representation to derive some important properties of Rényi
entropy of k-records. The monotone behaviour of Rényi entropy of k-records have
been derived. We have shown that the Rényi entropy ordering of random vari-
ables determines the Rényi entropy ordering of their respective k-record values.
The Renyi entropy ordering of k-records determines the Renyi entropy ordering
of their respective linear transformations of k-records as well as their convex func-
tion of k-records. A lower bound for the Rényi entropy of k-records have been
obtained in this work. We have applied Rényi entropy of k-records to character-
ize exponential distribution by maximization of Rényi entropy based on certain
information constraints. The study also establishes that the Rényi divergence
between the distribution of k-records and its parent distribution is distribution
free and the divergence increases with increase in n. A simple estimator for Rényi
entropy of k-records has been proposed and compared estimates of Renyi entropy
of k-records, classical records and parent random variable using a real life data
set.
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tions. Sankhyā: The Indian Journal of Statistics, Series A, pages 236–243.

[15] Fashandi, M. and Ahmadi, J. (2012). Characterizations of symmetric
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