
REVSTAT – Statistical Journal
Volume 0, Number 0, Month 0000, 000-000

RANDOM FORESTS FOR TIME SERIES

Authors: Benjamin Goehry �*

– Laboratoire de Mathématiques d’Orsay, CNRS, Université Paris-Saclay,
Faculté des Sciences d’Orsay, Bâtiment 307, 91405 Orsay, France
(benjamin.goehry@gmail.com)

Hui Yan
– EDF Lab, 7 bd Gaspard Monge, 91120 Palaiseau, France (hui.yan@edf.fr)

Yannig Goude
– EDF Lab & Laboratoire de Mathématiques d’Orsay, CNRS,

Université Paris-Saclay, Orsay, France (yannig.goude@edf.fr)

PascalMassart
– Laboratoire de Mathématiques d’Orsay, CNRS, Université Paris-Saclay,

Orsay, France (pascal.massart@math.u-psud.fr)

Jean-Michel Poggi
– University Paris & Laboratoire de Mathématiques d’Orsay, CNRS,

Université Paris-Saclay, Orsay, France (jean-michel.poggi@math.u-psud.fr)

Received: Month 0000 Revised: Month 0000 Accepted: Month 0000

Abstract:

• Random forests are a powerful learning algorithm. However, when dealing with time series,
the time-dependent structure is lost, assuming the observations are independent. We propose
some variants of random forests for time series. The idea is to replace standard bootstrap with
a dependent block bootstrap to subsample time series during tree construction. We present
numerical experiments on electricity load forecasting. The first, at a disaggregated level and
the second at a national level focusing on atypical periods. For both, we explore a heuristic
for the choice of the block size. Additional experiments with generic time series data are also
available.

Key-Words:

• Block bootstrap, Random forests, Regression, Time series.

AMS Subject Classification:

• 62M10, 62P30.

*Corresponding author

https://orcid.org/0000-0001-7513-1820
https://orcid.org/0000-0003-2896-6483
https://orcid.org/0000-0003-2028-5536
https://orcid.org/0000-0002-9860-7868
https://orcid.org/0000-0002-8222-1653

2 Benjamin Goehry, Hui Yan, Yannig Goude, Pascal Massart and Jean-Michel Poggi

1. INTRODUCTION

Random forests were introduced in 2001 by Breiman in [1] and are since then
one of the most popular algorithms in machine learning [2]. The popularity comes from
the wide range of applications in which they are known to perform well on even high
dimensional, are fast to compute and easy to tune. Successful applications can be cited:
chemo-informatics [3], ecology [4, 5], 3D object recognition [6] and time series predic-
tion [7, 8, 9, 10, 11].

Suppose that we have a random sequence (Xt, Yt)t∈Z ∈ X ×Y such that

(1.1) Yt = f (Xt) + ϵt

and the error ϵt is such thatE [ϵt|Xt] = 0. The purpose of random forests is to esti-
mate, by only observing a training sampleDn = ((X1, Y1), . . . , (Xn, Yn) , the regression
function

∀x ∈ X, f (x) = E [Yt|Xt = x] .

Random forests can be related to two main sources, regression trees [12] and
bagging [13]. Regression trees are constructed by a recursive partitioning of the input
space based on some criterion to estimate the regression function f . At each step of the
tree construction, a split is selected (a variable and a location on the variable) based on
the evaluation of the criterion among all the admissible splits based on all the variables.
The cell is cut in two on the selected split and the previous step is reiterated on the
new cells. A tree is then a piecewise constant decomposition of the input space. A
binary tree can be associated to the input space partitioning. Each node corresponds
to a test matching how the input space was cut. An illustration is given in fig. 1 of a
partitioning in the two-dimensional space and its associated binary tree. The principle
of bagging (short form of bootstrap aggregating) is to create M randomly generated
training sets by randomly sampling αn observations with or without replacement from
the set Dn and to construct on each set a predictor. Once the predictors are constructed,
the bagging prediction for a new observation x is an aggregation, generally the empirical
mean, of the predictions given by the M predictors for the point x. This procedure aims
to improve stability and accuracy of the base predictor. In the context of random forests
the predictors are regression trees. In order to explain the random forest procedure we
then have to explicit the construction of one tree.

The first step is the bootstrap/subsampling: αn points are selected with or without
replacement among the n realisations. Then a tree is constructed based on these αn

selected points. At each node of the tree the best split (the variable and the location on
this variable) is determined by minimising the intra-node variance. This is commonly
called the CART criterion introduced in [12]. Instead of minimising this criterion among
all the admissible splits based on all the variables the choice of inputs is restricted to a
random subset of fixed size mtry. This procedure is then iterated on each node produced
after binary splitting until stopping conditions are met. The first stopping rule is when

Random Forests for Time Series 3

X(1)

X(2)
◦

◦ ◦

◦
◦

◦

y33

◦
◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦◦

◦ ◦

◦

◦

◦

t1

t2

X(1) < t1

X(2) < t2

673

5

Figure 1: A partitioning of [0, 1]2 and the associated binary tree.

the variance in a node is equal to zero. Since this is rarely the case a second condition is
that the number of observations in a node must be greater than a given threshold.

Even if the theoretical settings of random forests was until recently restricted to
the i.i.d case, a theoretical study extending it to the time-dependent case is proposed
in [14]. In addition, applications on time series could be found, as previously cited, in
[7, 10], in electricity load forecasting [8], [9], [11].

The bootstrap step determines which observations are chosen to construct a tree.
The original bootstrap which we call standard (or i.i.d) bootstrap from [15] consists
of randomly drawing αn observations among the n with or without replacement. Note
that we use here an abuse of language, the bootstrap is standardly defined as drawing n
observations among the n observations with replacement. The goal of this bootstrap is
to replicate the distribution of Dn. However, this is adapted to the case of independent
and identically distributed observations. When the data has an underlying dependence
structure as for time series the i.i.d hypothesis is not verified anymore and using the
standard bootstrap destroys the dependence structure. We illustrate this phenomenon for
a dataset from [16] which is described in Section 3.1. We observe in fig. 2 the original
load over the month of January. Using the standard bootstrap we obtain the series in
fig. 3 and immediately note that the structure we had in the original series is all gone. By
contrast, using a moving block bootstrap, described in Section 2, using a block length of
24 hours we recover similar patterns as in the original series of fig. 4.

We list here a few papers using blocks bootstrap in the forecasting literature. The
first one is [17] in which they use a sieve bootstrap to perform bagging with exponential
smoothing models. They use exponential smoothing to decompose the data, then fit an
autoregressive model to the residuals, and generate new residuals from this AR process.
Finally, they fit the exponential smoothing model that was used for decomposition to all
bootstrapped series. Another work is from [18] who propose a method of bagging which
is as follows. After applying a Box-Cox transformation to the data, the series is de-
composed into trend, seasonal and remainder components. The remainder component is
then bootstrapped using the moving block bootstrap, defined in Section 2, the trend and
seasonal components are added back, and the Box-Cox transformation is inverted. For
each one of these bootstrapped time series, a model among several exponential smooth-

4 Benjamin Goehry, Hui Yan, Yannig Goude, Pascal Massart and Jean-Michel Poggi

350

400

450

0 200 400 600

Instant

Lo
ad

Figure 2: Original load hourly sampled.

360

380

400

420

440

460

0 200 400 600

Instant

Lo
ad

Figure 3: Bootstrapped load

350

400

450

0 200 400 600

Instant

Lo
ad

Figure 4: Block bootstrapped load with
block size of 24h

ing models is chosen, using the bias-corrected AIC. Then, point forecasts are calculated
using all the different models and the resulting forecasts are combined using the median.
A companion paper [19] explores experimentally the value of bagging for time series
forecasting. More generally, we refer to the special issue presented in [20] for more
details about the recent developments in bootstraps methods for dependent data.

Random Forests for Time Series 5

Our strategy is mainly motivated by the results on random forests in the time-
dependent case in [14], proven using a block decomposition on the entries (Xi, Yi)1≤i≤n .
The proofs rely on a lemma from [21] that shows that the blocks are close to being inde-
pendent, under the condition that the block length is well-chosen. But it should be noted
that after obtaining the bootstrap sample, the procedure to build a tree is unchanged
and flipping the data after bootstrap will not change the resulting tree. The data are, in
that sense and at this stage, considered to be exchangeable since the splitting criterion
is unchanged and since it does not take into account the time dependence between the
observations. We then try to make the data, before this stage, as much compatible with
the underlying independence hypothesis. A typical example of weak dependence is the
m-dependent case, for which considering block bootstrap of length at least m allows to
recover exchangeability. In the general weak dependence case, it is reasonable to con-
sider that performing block bootstrap with a suitably chosen block-length could make
the data more compatible with the exchangeable hypothesis. The aim of this work is to
show that, based on the theoretical work in [14], the forecasting performance could be
improved by replacing the bootstrap step by what we call block bootstrap variants, to
subsample time series during the tree construction phase and thereby keep the depen-
dence structure. This intuition is supported by the experiment reported in Appendix 2
(with time shuffling) illustrating that preserving the temporal structure is, at least empir-
ically, beneficial.

Since random forests were already introduced in this introduction. The next sec-
tion presents the different block bootstrap variants, the new algorithm and a new way
to compute the variable importance. We then present two numerical experiments. The
first one is based on an application to load forecasting of a building from the dataset
described in [16] and see how the variants may perform. The second one on the French
national forecasting problem and explore a heuristic on the choice of the new parameter.

2. RANDOM FORESTS FOR TIME SERIES

2.1. Block bootstrap variants

Non-overlapping block bootstrap A first variant is found in [22]: the non-overlapping
block bootstrap. The idea is to construct a number of non-overlapping blocks and then
to draw uniformly, with replacement, among the constructed blocks. More precisely, let
ln be the size of a block and B ≥ 1 the greatest integer such that lnB ≤ n. The blocks are
then constructed in the following way

Bb =
((

X(b−1)ln+1, Y(b−1)ln+1

)
, . . . , (Xbln , Ybln)

)
b = 1, . . . , B.

The bootstrap set D⋆n is then obtained by drawing K blocks,
(
B⋆1 , . . . , B⋆K

)
, uniformly

with replacement in the collection of non-overlapping blocks(Bb)1≤b≤B for a suitably
chosen K.

6 Benjamin Goehry, Hui Yan, Yannig Goude, Pascal Massart and Jean-Michel Poggi

Moving block bootstrap [23] and [24] introduced the so-called moving block boot-
strap. The idea is, instead of picking randomly one observation among the n observa-
tions as for the standard bootstrap, the moving block bootstrap pick randomly a block
of ln consecutive observations. Repeating this step and concatenating all the selected
blocks, we get a new time series with a preserved structure at least in each block. More
precisely, let us denote by Bi,ln = ((Xi, Yi) , . . . , (Xi+ln−1, Yi+ln−1)) the block of size ln
beginning with the observation (Xi, Yi) for i ∈ {1, . . . , n − l + 1} . The procedure then
consists to draw randomly K indices (I j)1≤k≤K uniformly on the set {1, . . . , n − ln + 1}
and associate one block to each index, (BIk)1≤k≤K . The bootstrap set is then defined as
D⋆n = (BI1 , . . . , BIK) .

Circular block bootstrap When studying the moving block bootstrap we can note that
less weight is given to the endpoints of the time series which also leads in theory to non
negligible bias when computing the mean. A way to correct this issue is given in [25]
introducing the so-called circular block bootstrap. The idea is to wrap the time series
writing Xi := Xin where in = i mod n, X0 := Xn and then use the same procedure as
in the moving block bootstrap where the index I is drawn uniformly on the set {1, . . . , n}
instead.

Note that in each above variant, taking ln = 1 we recover the standard bootstrap of
[15]. For a given number of selected observations in each tree αn the number of blocks
K is such that K = αn

ln
.

2.2. Proposed random forest for time series

Our proposition in order to incorporate the dependence structure is by replacing
the first step for the construction of a random tree in the random forest building pro-
cedure, namely replacing the standard bootstrap step with one of the block bootstrap
variants recalled in Section 2.1.

Note that the proposed algorithm only considers the dependence during the boot-
strapping phase, directly on the entries (Xi, Yi)1≤i≤n . Once the bootstrap sample is drawn
the splitting is done as in the independent case. The adapted algorithm is found in al-
gorithm 1 underlining the modification with respect to the original random forest proce-
dure.

Note that here, we consider the bootstrap directly on the entries (Xi, Yi)1≤i≤n , and
thus keeping the black box design of the random forests. Even if the time series nature of
the data is forgotten after the bootstrap step, it should be noted that to include the time as
a dependent variable could provide an indirect way to weakly take into account, at some
extent, the temporal nature of the data. Works on blocks bootstraps in the forecasting
literature presented in Section 1 use generally the block bootstrap on the residuals after
removing trends and seasonality. However, using such a procedure in our experiments
(by bootstrapping the residuals of a pilot random forest) led to worse performance and

Random Forests for Time Series 7

input: ((X1, Y1), . . . , (Xn, Yn))
parameters: M,αn, mtry, τn, ln
stopping criteria: the variance in the node is zero or the number of
observations in a node is below the threshold τn

for j← 1 to M do
Construct the jth tree:

• Draw αn ≤ n observations using a block bootstrap variant with parameter ln.

• Repeat recursively on each resulting node the following steps until a stopping
criterion is met:

– At each node, select randomly mtry variables

– Select the best split using the variance criterion among the previously
chosen variables.

– Cut according to the chosen split.

end
output for a new observation x : mean of the M predictions given by the
trees for x.

Algorithm 1: Random forest for time series

further explain our approach.

2.3. Block permutation importance

Random forests can be used to rank with respect to a decreasing order of im-
portance the variables. One way to measure the significance of a variable is the Mean
Decrease Accuracy introduced in [1] which stems from the idea that if a variable is not
important, then permuting its value should not change the prediction accuracy.

For each tree, we have access to the so-called out-of-bag observations denoted
by OOBm, composed of the observations not included in the bootstrap sample Dm

n used
to construct the mth tree. The OOBm sample can then be used to estimate the out-
of-bag error denoted by errOOBm. In order to compute the importance of the variable
X(j), the values of the jth variable are randomly permuted in the OOB sample and we
compute for each tree an out-of-bag error estimation for the permuted observations. The
importance of the variable X(j) is then obtained by averaging the difference between the
out-of-bag error before and after permutation. More formally, if, for the mth tree, we

denote by ˜errOOB j
m the OOBm sample’s error when the jth variable is permuted, then

the importance of the variable X(j) is defined by

VI
(
X(j)
)
=

1
M

M∑
m=1

(
˜errOOB j

m − errOOBm

)
.

8 Benjamin Goehry, Hui Yan, Yannig Goude, Pascal Massart and Jean-Michel Poggi

The higher the increase in the prediction error after the permutation of the jth variable
in the out-of-bag observations, the more important the variable is. However, if the per-
mutation of X(j) does not change much the error prediction then the importance of the
considered variable is small.

In the case of dependent observations we are faced with the same issue as in the
construction of the random forests, namely the permutation of variable in the out-of-
bag observations does not preserve the dependence structure. In the case where block
instead of standard bootstrap is used in the random forest we introduce a new variable
importance computation: the block (permutation) variable importance. However, using
a block bootstrap variant does not necessarily lead to a out-of-bag observations with
constant number of consecutive observations but we solve this issue in the following.
Let us first suppose that the out-of-bag observations can be separated in blocks of size
ln and denote by B∗m the blocks in the out-of-observations for the mth tree. In order to
compute the importance of the jth variable, the permutation of the considered variable
is done by only permuting the blocks in B∗m and preserving the structure in each block.
We can then compute a block permuted out-of-bag error estimation for the jth variable

denoted by errOOB j
m. The block variable importance for the jth variable is then defined

by

VI
(
X(j)
)
=

1
M

M∑
m=1

(
errOOB j

m − errOOBm

)
.

The out-of-bag observations stemming from the block bootstrap with parameter ln
are not necessarily composed of blocks of the size ln. In order to obtain an OOB sample
which has the same block size as in the construction of the random forest we adapt the
obtained out-of-bag observations to get a new set of blocks of out-of-bag observations
as follows. The three following cases are exclusive. First, if a block of consecutive
observations in the out-of-bag observations is of the right length ln we add it to the
block out-of-bag observations. Second, if the length is larger than ln and less than 2ln
we draw a random subset of consecutive observations of length ln. Finally, if a block
of consecutive observations in the out-of-observations has a length less than ln then the
block is not kept. Then the block out-of-bag observations is composed of the kept block
observations of length ln and satisfies the conditions to compute the block permutation
variable importance as previously defined.

3. NUMERICAL EXPERIMENTS

We consider two experiments in this work. One regarding the performance the
variants may attain on a real world application of load forecasting, at a disaggregated
level, on one of the building dataset from [16], which is composed of different building
loads with hourly observations. The other regarding the choice of the block length pa-
rameter, this time on the French national load forecasting problem, at a more aggregated
level but focusing on atypical periods.

Random Forests for Time Series 9

In the following experiments, the results are obtained over 50 runs. The parame-
ters of the random forest are set to default except for the mtry parameter which is opti-
mised on a validation set and the block size parameter for which we carry out an in-depth
analysis in Section 3.2.

We run the experiments by implementing the extra features we propose in this
paper as an extension of the R package ranger [26], and thus inherit the availability in
both C++ and R. Our R package rangerts is freely available from the github repository
https://github.com/hyanworkspace/rangerts. Additional experiments with time
series data are performed and the results can be found in the same github repository as
our modified R package, omitted here for brevity reasons.

3.1. First load forecasting application: On the performance and variable impor-
tance

This experiment is based on the so-called building loads, a collection of 507 whole
buildings electrical meters made publicly available. We refer to the paper [16] for a com-
plete description of the collection. We consider one specific building in the building data
genome project called UnivLab Patrick. This building belongs to the college labora-
tory category located in the New York time zone and has an area of around 7054 square
meters. We have access to its electricity load from the 1st January 2015 to the 31th
December 2015 with a sampling rate of one observation per hour. The weekly profile
is found in fig. 5. We see a clear daily trend as well as a clear distinction between the
week and the end of the week due to less activity. We also have access to exogenous
variables: the temperature as well as to the schedule of the building, indicating if a day
is ordinary, a break or a holiday. We decompose the year in three parts: the training set
is composed of the observations from the 1st January to the 31st October, the validation
set corresponds to the month of November and the test set corresponds to the month of
December.

Let us denote by Yt the system load of the building at hour t. In this experiment,
we aim to forecast at a horizon of 24 hours. Based on the weekly profile, having hourly
sampled observations, the chosen model is inspired by [27] in which they also considered
random forests with a similar model for the same kind of problem. This results in the
model described in eq. (1.1) with Xt of the form

(3.1) Xt = (Yt−24, Yt−168, Tempt, Schedulet, Hourt, InstantWeekt, DayTypet, Timet)

where

• Tempt corresponds to the temperature at instant t;

• Schedulet take three values: Regular, Break, Holiday;

• Hourt corresponds to the hour of the day at instant t;

https://github.com/hyanworkspace/rangerts

10 Benjamin Goehry, Hui Yan, Yannig Goude, Pascal Massart and Jean-Michel Poggi

400

410

420

430

440

450

Sun Mon Tue Wed Thu Fri Sat

Time

Lo
ad

Figure 5: Weekly profile hourly sampled of the UnivLab Patrick dataset.

• InstantWeekt corresponds to the hour in the month;

• DayTypet corresponds to the day of the week;

• Timet corresponds to the day of the year divided by 366.

The selected value for mtry according to the best performance on the validation set
for the standard random forest is mtry = 2. For this parameter we computed the different
variants varying the block size parameters multiple of 6 hours up to 90 hours. We first
optimise the performances on the validation set, looking for the best block size value
minimising the RMSE and then plug it in for the test set. The performance are resumed
in fig. 6. For the sake of comparison, the baseline Yt = Yt−24 has a RMSE of 19.43 on
the test set. We observe an improvement for the three variants with an improvement up
to 11% for the mean RMSE compared to the standard random forest. We also show the
evolution of the performance according to the block size parameter in fig. 7. We can find
the same kind of figures for each mtry from 1 to 8 in Appendix 1 from figs. 15 to 22.
We observe for the three variants a similar pattern in the evolution of the performance,
namely a decrease for which the three variants performs better than the standard random
forest and then an increase. We note that, even if the performance get worse when the
block size is large, we also have a large window for which the performance is far better
for these three variants with an optimal block size parameter of around 24 hours also
corresponding to the forecasting horizon and the main seasonality of the data.

One may wonder if the block bootstrap mechanism really helps to take into ac-
count time dependence or if it is another underlying mechanism. In order to illustrate

Random Forests for Time Series 11

18

19

20

21

22

I.I.D Circular Moving Non−overlapping

Variant

R
M

S
E

Figure 6: Performance of the different
variants for mtry = 2, evaluated on
the month of December of the UnivLab
Patrick dataset.

20

22

24

26

28

30

20 40 60 80

Block size

R
M

S
E Variant

I.I.D
Circular
Moving
Non−overlapping

Figure 7: Performance of the variants for
mtry = 2 when the block size changes,
evaluated on the month of December of
the UnivLab Patrick dataset.

this point, we shuffled the instances in the training set. If it was another mechanism at
play, we would have the same results as before. The results after shuffling the training
set can be found in Appendix 2. We can clearly see that once the training set does not
have the dependence structure, using the block bootstrap variants has basically the same
behaviour as the standard random forests, regardless of the block length, and thus fur-
ther confirms that the block bootstrap random forests take into account the dependence
structure.

Computing the variable importance for blocks of size 24 hours we obtain figs. 8
to 11. We observe that the difference between the standard variable importance and
the block variable importance is essentially noticeable for the non-overlapping block
bootstrap variant. The most evident difference is for the variable Hour for which the
importance is set to zero using the block variable importance. Since the blocks are of
length 24 hours and always beginning at the same time, permuting the blocks will not
change the out-of-bag error since each permutation is replaced by an identical copy and
thus the output from this procedure for the variable Hour.

12 Benjamin Goehry, Hui Yan, Yannig Goude, Pascal Massart and Jean-Michel Poggi

DayType

Hour

InstantWeek

Load_168

Load_24

Schedule

Temperature

Time

50 100 150 200 250

Importance

V
ar

ia
bl

e

Figure 8: Variable importance moving
bootstrap variant under the standard per-
mutation on the UnivLab Patrick dataset.

DayType

Hour

InstantWeek

Load_168

Load_24

Schedule

Temperature

Time

50 100 150 200

Importance

V
ar

ia
bl

e

Figure 9: Block moving bootstrap variant
importance with block size of 24h on the
UnivLab Patrick dataset.

3.2. Second load forecasting application: On the block length choice

We discuss here the choice of the block length parameter, found in every block
bootstrap variant. In the previous experiment, we notice that the optimal choice for the
block length was 24 hours, corresponding to the daily step and seasonality in the dataset.
However, the last experiment is done by optimising the block length on the validation
set error. It would be interesting to choose this parameter more wisely in order to avoid
unnecessary computations and we think that it should be proportional to the (minimal)
seasonality in the dataset. The block bootstrap aims to build blocks that preserve the
dependency in them but that the blocks are independent to a certain extent. In the case of
seasonal trends, the intuition would consequently be to choose blocks correlated to basic
seasonal components. We illustrate this with another dataset, on the French national load
with goal to forecast at a 24 hours horizon as well, having a longer span of time and thus
having more stable results.

We consider the French electricity load of the year 2015 as the training set with
a sampling rate of one observation per day at noon. The test set for this experiment are
the months April and October of the year 2016, corresponding to the transition between
summer and winter season, a particularly difficult period to forecast. We observed in
various experiments that the random forests for time series variants work the best when
it is "difficult" to forecast. This typically corresponds to the shoulder seasons in the

Random Forests for Time Series 13

DayType

Hour

InstantWeek

Load_168

Load_24

Schedule

Temperature

Time

50 100 150 200

Importance

V
ar

ia
bl

e

Figure 10: Variable importance non-
overlapping variant under the standard
permutation on the UnivLab Patrick
dataset.

DayType

Hour

InstantWeek

Load_168

Load_24

Schedule

Temperature

Time

0 50 100 150 200

Importance

V
ar

ia
bl

e

Figure 11: Block non-overlapping variant
importance with block size of 24h on the
UnivLab Patrick dataset.

load forecasting field. We use here the model described in eq. (3.1) as well without
the variables Hour and InstantWeek. Since the observations are daily occurrences, the
minimal seasonality would be the week. Hence, we consider three values for the block
length parameter: 7, 14 and 21 days. The selected value for mtry is 3 corresponding to
the worst case scenario, in the sense that for another value of mtry the block bootstrap
variants are doing better than shown in this example. Note that for this example we
removed the non-overlapping block bootstrap variant. We have found that this variant
needs more observations to get consistent results, providing less diversity in the trees
due to its construction.

The results are found, respectively for April and October 2016, in figs. 12 and 13.
We observe that, for both month, we have a consistent improvement of the performance
in comparison to the standard random forest for each choice of block length. We even
note significant improvement in the performance when taking twice or thrice the sea-
sonality for April. However, taking larger values than these would lead to a diversity
problem in the trees as mentioned before and thus have less consistent performance.
This concludes that the heuristic for the block length parameter choice would be to take
the smallest seasonality up to a multiplying factor of two or three.

14 Benjamin Goehry, Hui Yan, Yannig Goude, Pascal Massart and Jean-Michel Poggi

1800

1900

2000

7 14 21

Block size

R
M

S
E Variant

Circ

Independent

Moving

Figure 12: Performances evaluated on
April 2016 on the French load forecasting
problem of the different variants for three
block length values.

1500

1550

1600

1650

7 14 21

Block size

R
M

S
E Variant

Circ

Independent

Moving

Figure 13: Performances evaluated on Oc-
tober 2016 on the French load forecasting
problem of the different variants for three
block length values.

3.3. Supplementary experiments

Further experiments are carried out with two forecasting competition data sets:
quarterly and monthly series from M3 [28] (2184 series, 756 quarterly data and 1428
monthly data) and M4 [29] (4151 series, 402 quarterly data and 3749 monthly data)
competitions to assess the performance of the proposed variants. Our main objective
here is to compare the performance of the standard random forest and the block-bootstrap
variants extensively on general time series data, instead of accessing how competitive the
random forest algorithm itself is for these two data sets. Note that both stationary and
non-stationary data are included in the data set whereas random forest cannot extrapolate
and thus performs poorly on non-stationary data comparing to other baseline time series
methods in the literature such as ARIMA models. The metrics we use for evaluation
here are the normalized RMSE (NRMSE = RMS E

σ(serietrain)
, where σ is the standard deviation

of the training part of the series), and the normalized difference in MAPE (NdMAPE =
∆(MAPE)
MAPEi.i.d.

) where ∆(MAPE) = MAPEi.i.d. −MAPEvariant. Higher values indicate better
results with variants.

As described in eq. (1.1), let us denote by Yt the series to be predicted at step t.
Unlike the load forecasting application, only the frequency and time features are used.
For monthly data, the frequency feature ranges from 1 to 12, which corresponds to the

Random Forests for Time Series 15

month. For quarterly, this feature is thus 1 to 4, and 1 stands for the first quarter. By
regressing on time, we aim at estimating the trend and the seasonality components of
each series. Including lags as explanatory variable would be a natural choice in time
series forecasting tasks, here we choose not to do that to stay as far as possible from the
exchangeability of the data.

We keep all other hyper parameters of the random forest identical to the stan-
dard i.i.d. version to compare the obtained results with those from the block bootstrap
variants. The only hyper parameter remains to be tuned is thus the block size. To be
able to choose the block size automatically, we propose to set a general auto-correlation
threshold for all series, to determine for each of them, the largest lag as the block length.

Figure 14: Difference in NRMSE of the
standard random forest (i.i.d) and the mov-
ing block variant (moving), for monthly
and quarterly data, with different auto-
correlation threshold values from 0.5 to 0.9,
from the M3 data set.

acf_coef M3 M4
0.5 0.581 0.488
0.6 0.567 0.496
0.7 0.589 0.505
0.8 0.586 0.515
0.9 0.572 0.515

Table 1: The percentage of
cases where the block boot-
strap variant outperforms the
i.i.d. in terms of NdMAPE.

Better performance is achieved as shown in fig. 14 with the moving block variant
on the monthly series (the same for the M4 data set). A Wilcoxon signed rank test
confirms the gain with respect to the standard i.i.d forest. We also observe in table 1 that
in general, higher auto-correlation thresholds lead to better results.

We choose to present our major results with a restricted number of graphs and
statistics to conserve space. All the codes and other supporting materials can be found in
the same GitHub repository as our implemented variants under the sub-directory bench-
mark_Mcomp.

4. CONCLUSION AND PERSPECTIVES

We introduced a new variant of random forests taking into account the temporal
dependency of the observations and showed that we can improve significantly the per-

16 Benjamin Goehry, Hui Yan, Yannig Goude, Pascal Massart and Jean-Michel Poggi

formance on forecasting tasks when choosing the right block length. A variant of the
variable importance based on the block bootstrap mechanism is also introduced. The
non-overlapping variant seems to be mistaken regarding the importance of the variables,
forgetting some variables fundamental to the forecasting problem as the hour variable in
our first application, and thus we do not advise to use this variant for this purpose. How-
ever, both moving and circular variants seem to perform much better than the standard
random forests when the block length is well-chosen, and we showed that a good heuris-
tic for the block length choice is correlated to a multiple of the smallest seasonality.

This work is mainly methodological, a first perspective would be to prove theoret-
ical results on the random forests variants under time-dependent observations hypothe-
ses. Consistency of random forests is proven under stationary and β−mixing hypotheses
in [14] when trees are not fully grown and the observations are subsampled. The previ-
ously cited works regarding the block bootstrap as [22, 23, 24, 25] also show consistency
of some estimators, generally under less restrictive hypotheses. It would be interesting
to prove similar results on the variants by adapting and combining the previous proof
techniques.

We have performed a detailed study on one specific field of application and an
automatic extensive study was conducted on the time series of the M3 and M4 competi-
tions. We illustrated the potential value of the random forests variants. We also showed
that it could be useful to develop an adaptive and automatic way to choose the block
length parameter. Finally, it could be interesting to explore more deeply under which
conditions (input variables, etc.) the variants work, going well beyond the scope of this
paper.

ACKNOWLEDGMENTS

The authors would like to thank the reviewer for their helpful comments and sug-
gestions.

Appendix 1

Performance of the variants for each given mtry from 1 to 8, when the block size
changes, evaluated on the month of December of the UnivLab Patrick dataset can be
found from figs. 15 to 22.

Random Forests for Time Series 17

28

30

32

34

36

38

40

20 40 60 80

Block size

R
M

S
E Variant

I.I.D
Circular
Moving
Non−overlapping

Figure 15: Performance of the variants for
mtry = 1 when the block size changes,
evaluated on the month of December of
the UnivLab Patrick dataset.

20

22

24

26

28

30

20 40 60 80

Block size

R
M

S
E Variant

I.I.D
Circular
Moving
Non−overlapping

Figure 16: Performance of the variants for
mtry = 2 when the block size changes,
evaluated on the month of December of
the UnivLab Patrick dataset.

Appendix 2

Performance of the variants, when the observations in the training set are shuffled
beforehand, for mtry equal to 1 and 2, when the block size changes, evaluated on the
month of December of the UnivLab Patrick dataset can be found from figs. 23 to 24. We
have similar results for mtry from 3 to 8.

REFERENCES

[1] L. Breiman, Random forests, Machine learning 45 (1) (2001) 5–32.

[2] M. Fernández-Delgado, E. Cernadas, S. Barro, D. Amorim, Do we need hundreds of
classifiers to solve real world classification problems?, The Journal of Machine Learning
Research 15 (1) (2014) 3133–3181.

[3] V. Svetnik, A. Liaw, C. Tong, J. C. Culberson, R. P. Sheridan, B. P. Feuston, Random for-
est: a classification and regression tool for compound classification and qsar modeling,
Journal of chemical information and computer sciences 43 (6) (2003) 1947–1958.

18 Benjamin Goehry, Hui Yan, Yannig Goude, Pascal Massart and Jean-Michel Poggi

18

20

22

24

26

20 40 60 80

Block size

R
M

S
E Variant

I.I.D
Circular
Moving
Non−overlapping

Figure 17: Performance of the variants for
mtry = 3 when the block size changes,
evaluated on the month of December of
the UnivLab Patrick dataset.

18

20

22

24

20 40 60 80

Block size

R
M

S
E Variant

I.I.D
Circular
Moving
Non−overlapping

Figure 18: Performance of the variants for
mtry = 4 when the block size changes,
evaluated on the month of December of
the UnivLab Patrick dataset.

18

20

22

24

20 40 60 80

Block size

R
M

S
E Variant

I.I.D
Circular
Moving
Non−overlapping

Figure 19: Performance of the variants for
mtry = 5 when the block size changes,
evaluated on the month of December of
the UnivLab Patrick dataset.

18

20

22

24

26

20 40 60 80

Block size

R
M

S
E Variant

I.I.D
Circular
Moving
Non−overlapping

Figure 20: Performance of the variants for
mtry = 6 when the block size changes,
evaluated on the month of December of
the UnivLab Patrick dataset.

Random Forests for Time Series 19

18

20

22

24

26

20 40 60 80

Block size

R
M

S
E Variant

I.I.D
Circular
Moving
Non−overlapping

Figure 21: Performance of the variants for
mtry = 7 when the block size changes,
evaluated on the month of December of
the UnivLab Patrick dataset.

18

20

22

24

26

20 40 60 80

Block size

R
M

S
E Variant

I.I.D
Circular
Moving
Non−overlapping

Figure 22: Performance of the variants for
mtry = 8 when the block size changes,
evaluated on the month of December of
the UnivLab Patrick dataset.

[4] D. R. Cutler, T. C. Edwards, K. H. Beard, A. Cutler, K. T. Hess, J. Gibson, J. J. Lawler,
Random forests for classification in ecology, Ecology 88 (11) (2007) 2783–2792.

[5] A. M. Prasad, L. R. Iverson, A. Liaw, Newer classification and regression tree tech-
niques: bagging and random forests for ecological prediction, Ecosystems 9 (2) (2006)
181–199.

[6] J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio, A. Blake, M. Cook,
R. Moore, Real-time human pose recognition in parts from single depth images, Com-
munications of the ACM 56 (1) (2013) 116–124.

[7] M. J. Kane, N. Price, M. Scotch, P. Rabinowitz, Comparison of arima and random forest
time series models for prediction of avian influenza h5n1 outbreaks, BMC bioinformat-
ics 15 (1) (2014) 276.

[8] G. Dudek, Short-term load forecasting using random forests, in: Intelligent Systems’
2014, Springer, 2015, pp. 821–828.

[9] A. Lahouar, J. Ben Hadj Slama, Random forests model for one day ahead load fore-
casting, in: IREC2015 The Sixth International Renewable Energy Congress, 2015, pp.
1–6.

[10] A. Fischer, L. Montuelle, M. Mougeot, D. Picard, Statistical learning for wind power:
a modeling and stability study towards forecasting, Wind Energy 20 (12) (2017) 2037–
2047.

[11] J. Moon, Y. Kim, M. Son, E. Hwang, Hybrid short-term load forecasting scheme using
random forest and multilayer perceptron, Energies 11 (2018).

[12] L. Breiman, J. Friedman, C. Stone, R. Olshen, Classification and Regression Trees, The
Wadsworth and Brooks-Cole statistics-probability series, Taylor & Francis, 1984.

20 Benjamin Goehry, Hui Yan, Yannig Goude, Pascal Massart and Jean-Michel Poggi

26

28

30

32

20 40 60 80

Block size

R
M

S
E Variant

I.I.D
Circular
Moving
Non−overlapping

Figure 23: Performance of the variants
when training set is shuffled for mtry = 1
when the block size changes, evaluated on
the month of December of the UnivLab
Patrick dataset.

18

20

22

24

20 40 60 80

Block size

R
M

S
E Variant

I.I.D
Circular
Moving
Non−overlapping

Figure 24: Performance of the variants
when training set is shuffled for mtry = 2
when the block size changes, evaluated on
the month of December of the UnivLab
Patrick dataset.

[13] L. Breiman, Bagging predictors, Machine Learning 24 (2) (1996) 123–140.

[14] B. Goehry, Random forests for time-dependent processes, ESAIM: PS 24 (2020) 801–
826.

[15] B. Efron, Bootstrap methods: Another look at the jackknife, Ann. Statist. 7 (1) (1979)
1–26.

[16] C. Miller, F. Meggers, The building data genome project: An open, public data set from
non-residential building electrical meters, Energy Procedia 122 (2017) 439 – 444.

[17] C. Cordeiro, M. Neves, Forecasting time series with boot. expos procedure, REVSTAT-
Statistical Journal 7 (2) (2009) 135–149.

[18] C. Bergmeir, R. J. Hyndman, J. M. Benítez, Bagging exponential smoothing methods
using stl decomposition and box–cox transformation, International journal of forecasting
32 (2) (2016) 303–312.

[19] F. Petropoulos, R. J. Hyndman, C. Bergmeir, Exploring the sources of uncertainty: Why
does bagging for time series forecasting work?, European Journal of Operational Re-
search 268 (2) (2018) 545–554.

[20] G. Cavaliere, D. N. Politis, A. Rahbek, Recent developments in bootstrap methods for
dependent data, Journal of Time Series Analysis 36 (3) (2015) 269–271.

[21] B. Yu, Rates of convergence for empirical processes of stationary mixing sequences, The
Annals of Probability (1994) 94–116.

Random Forests for Time Series 21

[22] E. Carlstein, The use of subseries values for estimating the variance of a general statistic
from a stationary sequence, Ann. Statist. 14 (3) (1986) 1171–1179.

[23] H. R. Kunsch, The jackknife and the bootstrap for general stationary observations, Ann.
Statist. 17 (3) (1989) 1217–1241.

[24] R. Y. Liu, K. Singh, Moving blocks jackknife and bootstrap capture weak dependence,
in: Exploring the limits of bootstrap (East Lansing, MI, 1990), Wiley Ser. Probab. Math.
Statist. Probab. Math. Statist., Wiley, New York, 1992, pp. 225–248.

[25] D. N. Politis, J. P. Romano, A circular block-resampling procedure for stationary data,
in: Exploring the limits of bootstrap (East Lansing, MI, 1990), Wiley Ser. Probab. Math.
Statist. Probab. Math. Statist., Wiley, New York, 1992, pp. 263–270.

[26] M. Wright, A. Ziegler, ranger: A fast implementation of random forests for high dimen-
sional data in c++ and r, Journal of Statistical Software, Articles 77 (2017) 1–17.

[27] B. Goehry, Y. Goude, P. Massart, J.-M. Poggi, Aggregation of multi-scale experts for
bottom-up load forecasting, IEEE Transactions on Smart Grid 11 (3) (2019) 1895–1904.

[28] S. Makridakis, M. Hibon, The m3-competition: results, conclusions and implications,
International Journal of Forecasting (6) (2000) 451–476.

[29] S. Makridakis, E. Spiliotis, V. Assimakopoulos, The m4 competition: Results, findings,
conclusion and way forward, International Journal of Forecasting (34) (2018) 802–808.

	INTRODUCTION
	RANDOM FORESTS FOR TIME SERIES
	Block bootstrap variants
	Proposed random forest for time series
	Block permutation importance

	addedNUMERICAL EXPERIMENTS
	First load forecasting application: On the performance and variable importance
	Second load forecasting application: On the block length choice
	Supplementary experiments

	CONCLUSION AND PERSPECTIVES

