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1. INTRODUCTION

The integer-valued autoregressive (INAR) processes are introduced by
McKenzie ([9]) and Al-Osh and Alzaid ([2]). They were the subject of research of
many scientists, so there are a lot of different models which all intend to better
describe the data obtained from some natural processes. The most of them are
stationary, since this property gives some simplifications. Some of the models
which investigate different thinning operators are given in [3], [8], [17, 18] and
[14]. Models with various marginal distributions can be found in [10], [1], [5] and
[6]. Weiß ([16]) and Nastić and Ristić ([11]) considered mixed processes. The
first combined INAR(p) process is introduced in [16] and the combined process
which is important for this paper is CGINAR(p) from [12]. It is combined in the
sense that in every step recursive formula for an element of the process has one
of the p possible forms (which match with formulas for INAR process) with some
given probabilities.

We can say that stationary processes are rigid, because some of their pro-
perties are conserved in time. However, the real data are not often like that. One
of the models which improves this weakness is RrNGINAR(1), defined in [13].
This is achieved by letting elements of the process to have varying distribution.
Namely, quantitative properties observed from the nature depend on the envi-
ronment. Since these values are represented by the elements of the process, it
is natural to expect mentioned distribution to depend on the environment, too.
It is supposed that environment conditions can be divided into r different types,
which are called states, and each state is associated with a fixed distribution, so
element of the process has the distribution of its state.

The main idea of this article is to make CGINAR(p) process more flexible,
using the idea from RrNGINAR(1) process. Therefore, the aim is to construct a
CGINAR(p) process with random states. So, in the second section of this article
two different ways of constructing such a process which overcome problems that
occur in classical (the most intuitive) way of defining this kind of model are
discussed. Its correlation structure is analyzed in the third section. The fourth
section is about Yule-Walker (YW) estimators of the parameters of the defined
models. The quality of YW estimators is examined on the simulated data in
Section 5. In the final section the introduced processes are applied to the real
data and the results are compared for different models.

2. MODELS DEFINITIONS AND PROPERTIES

As mentioned earlier, our aim in this paper is to introduce the combined
RrNGINAR process, where RrNGINAR process of order one is introduced in [13].
An attempt to construct this kind of combined process in the classical way, as
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it was done in [16], [12] and [15] will bring some difficulties, so new approaches
will be used. In this section we will define two processes, which overcome this
problem. Discussion about some of their properties will be given.

Let Er = {1, 2, . . . , r} be the set of all possible states, where r ∈ N and
let {zn}, n ∈ N0, be a realization of an r states random environment process
{Zn} (we use Definition of the r random environment process given in [13]). For
i, j ∈ Er, let {εn(i, j)}, n ∈ N, be sequences of independent identically distributed
(i.i.d.) random variables. We will use notation Xn(zn) for an element of the new
process, where zn (which represents realized value of the random environment
process in the moment n ≥ 0) determines the distribution of that element. Let
α∗ be the negative binomial thinning operator, for α ∈ (0, 1), with a counting
sequence {Ui, i ≥ 1} of i.i.d. random variables with probability mass function
(pmf) given by

P (Ui = u) =
αu

(1 + α)u+1
, u = 0, 1, 2, . . .

As it was noted, it would be natural to introduce the combined random environ-
ment NGINAR process of order p in the following (classical) way

(2.1) Xn(zn) =





α ∗Xn−1(zn−1) + εn(zn−1, zn), w.p. φ1,
α ∗Xn−2(zn−2) + εn(zn−2, zn), w.p. φ2,

...
...

α ∗Xn−p(zn−p) + εn(zn−p, zn), w.p. φp,

for arbitrary n ≥ p and fixed p ∈ N, where φi ≥ 0, i ∈ {1, 2, . . . , p},
∑p

i=1 φi = 1,
where distribution of Xn(zn) is given by

P (Xn(zn) = x) =
µx
zn

(1 + µzn)
x+1

, x = 0, 1, 2, . . . , n = 0, 1, 2, . . . ,

µzn ∈ {µ1, µ2, . . . , µr} is the parameter determined by the value zn, µi > 0, i ∈
{1, 2, . . . , r} and where the next conditions are satisfied

(A1) {Zn}, {εn(1, 1)}, {εn(1, 2)}, . . . , {εn(r, r)}, are mutually independent for
all n ≥ 1,

(A2) Xn(l) is independent of Zm and εm(i, j), for 0 ≤ n < m and any i, j, l ∈ Er.

If we try to derive the distribution of εn(i, j), i, j ∈ Er, using procedure
similar to the one of CGINAR(p) process, it wouldn’t be so easy. Actually, it
is not necessary that zn−j for all j = 1, 2, . . . , p are the same, so, consequently,
εn(zn−j , zn) do not have to be identically distributed for all j = 1, 2, . . . , p. This
leads to a complex expression for the distribution of εn(i, j), where i and j are
arbitrary values from Er.

The first method for avoiding this problem is to define Xn(zn) using (2.1),
but substituting p with pn, where pn is the maximal number less or equal to
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the given value p (p ∈ N is a fixed number, not depending on n), which satisfies
zn−1 = · · · = zn−pn . Then εn(zn−j, zn) for j = 1, 2, . . . , pn are the same, and
obviously all have the same distribution. Let’s define this more precisely.

Definition 2.1. Let zn be the realization of the random environment
process {Zn} in the moment n ≥ 0. We say that {Xn(zn)}n∈N0 is an INAR
process with r-states random environment guided geometric marginals based on
the negative binomial thinning operator of maximal order p (RrNGINARmax(p)),
p ∈ N, if the random variable Xn(zn) is defined as

(2.2) Xn(zn) =





α ∗Xn−1(zn−1) + εn(zn−1, zn), w.p. φ
(pn)
1 ,

α ∗Xn−2(zn−2) + εn(zn−2, zn), w.p. φ
(pn)
2 ,

...
...

α ∗Xn−pn(zn−pn) + εn(zn−pn , zn), w.p. φ
(pn)
pn ,

for n ≥ 1, where

pn =

{
p, p∗n ≥ p,
p∗n, p

∗
n < p,

p∗n = max {i ∈ {1, 2, . . . , n} : zn−1 = zn−2 = · · · = zn−i} and the following condi-
tions are satisfied:

1. φ
(pn)
i ≥ 0, i ∈ {1, 2, . . . , pn},

∑pn
i=1 φ

(pn)
i = 1,

2. α ∈ (0, 1) and the counting sequence {Ui}i∈N of the negative binomial
thinning operator α∗ has pmf P (Ui = u) = αu

(1+α)u+1 , u ∈ {0, 1, 2, . . . },

3. P (Xn(zn) = x) =
µx
zn

(1+µzn )
x+1 , x ∈ {0, 1, 2, . . . }, where µzn ∈ {µ1, µ2, . . . ,

µr}, µi > 0, i ∈ {1, 2, . . . , r} and r ∈ N is the number of states of the random
environment process {Zn},

4. for fixed i, j ∈ Er = {1, 2, .., r}, {εn(i, j)}n∈N is a sequence of i.i.d.
random variables,

5. {Zn}, {εn(1, 1)}, {εn(1, 2)}, . . . , {εn(r, r)} are mutually independent se-
quences of random variables,

6. Xn(l) is independent of Zm and εm(i, j), for 0 ≤ n < m and any
i, j, l ∈ Er.

We want to emphasize that this model contains p different sets of the pro-

bability parameters Ψi = {φ
(i)
1 , φ

(i)
2 , . . . , φ

(i)
i }, for i ∈ {1, 2, . . . , p}. Set Ψi has i

elements, so the total number of the probability parameters is 1 + 2 + · · · + p =
p(p+1)

2 . For each i there is a condition
∑i

j=1 φ
(i)
j = 1, so there are p(p+1)

2 − p =
p(p−1)

2 unknown probability parameters. Specially, for i = 1, we have φ
(1)
1 = 1.
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Remark 2.1. Important feature of the introduced process is a variable
order. Actually, {Xn(zn)} is defined like a process of order pn, where pn is
not fixed and depends on n. But, pn is not a random variable due to the fact
that it could be calculated for given {zn}, using its building mechanism given in
Definition 2.1 and the fact that our process is defined for the realized random
environment process {zn}. Once pn reaches p, process takes shape of the model
of fixed order, p, and this lasts as long as the state does not change. When
it changes (zn 6= zn−1), then order (pn+1) becomes equal 1. The order further
continues to grow until the state changes again or until it reaches p. Therefore, we
consider process which is mostly of order p, but it has some transitional periods
of variable and ascending order, which begin when the state changes and end
when the process reaches order p, or when state changes again.

This is similar to the idea of the Variable-Order Markov (VOM) model,
which was investigated in [7]. As it is known a random variable in the Markov
chain model depends on a fixed number of previous conditioning elements. Ho-
wever, in VOM models the number of conditioning random variables (which is
called the context) depends on the specific observed realization and may vary
over time.

Now, we will describe one more combined random environment NGINAR
process. It is similar to the previous one, but differs during the transitional period
(for p∗n < p), where the process of variable order is replaced with the process of
order one.

Definition 2.2. Let zn be the realization of the random environment
process {Zn} in the moment n ≥ 0. We say that {Xn(zn)}n∈N0 is an INAR
process with r-states random environment guided geometric marginals based on
the negative binomial thinning operator of order p (RrNGINAR1(p)) if random
variable Xn(zn) is defined as

Xn(zn) =





α ∗Xn−1(zn−1) + εn(zn−1, zn), w.p. φ
(pn)
1 ,

α ∗Xn−2(zn−2) + εn(zn−2, zn), w.p. φ
(pn)
2 ,

...
...

α ∗Xn−pn(zn−pn) + εn(zn−pn , zn), w.p. φ
(pn)
pn ,

(2.3)

for n ≥ 1, where

pn =

{
p, p∗n ≥ p,
1, p∗n < p,

p∗n = max {i ∈ {1, 2, . . . , n} : zn−1 = zn−2 = · · · = zn−i} and conditions 1−6 from
Definition 2.1 are satisfied.

For pn = 1 we have only one probability parameter φ
(1)
1 and from the con-

dition
∑pn

i=1 φ
(pn)
i = 1 it follows φ

(1)
1 = 1, so only φ

(p)
1 , . . . , φ

(p)
p are unknown, but
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related via one equation. Therefore, it is sufficient to determine p− 1 probability
parameters.

Remark 2.2. For the process given by Definition 2.2, pn is not a random
variable as well. Now, pn takes one of the two possible values. Every time when
state changes (zn 6= zn−1), order (pn+1) becomes 1 and it remains the same until
there is a series of enough (p) previous elements corresponding to the same state.
So, we can divide this process into the series which can be represented as parts of
the processes of order 1 and order p. In the series of order 1 state can be changed,
so this series has the same form as RrNGINAR(1) process. For the series of order
p it is necessary to stay in the same state, so they are whole in the one state and
have the same form as CGINAR(p) process. There are as much different (by their
marginals) CGINAR(p) processes as much different states we have.

Our next step is derivation of the distribution of the random variable
εn(i, j).

Theorem 2.1. Let {Xn(zn)} be the RrNGINARmax(p) time series pro-

cess or the RrNGINAR1(p) process, and let µ1 > 0, µ2 > 0, . . . , µr > 0. If

0 ≤ α ≤ min
{

µl

1+µk
, k, l ∈ Er

}
, then if zn = j and zn−1 = i, for i, j ∈ Er, the

distribution of the random variable εn(i, j) can be written as a mixture of two

geometric distributions

(2.4) εn(i, j)
d
=





Geom
(

µj

1+µj

)
, w.p. 1− αµi

µj−α
,

Geom
(

α
1+α

)
, w.p. αµi

µj−α
,

for n ≥ 1.

Proof: Consider the probability generating function (pgf) of a random
variable Xn(zn) in the case when {Xn(zn)} is the RrNGINARmax(p) process.
Due to the properties of the pgf and the definition of the negative binomial
thinning operator, it holds

ΦXn(zn)(s) =

pn∑

l=1

φ
(pn)
l E(sα∗Xn−l(zn−l))E(sεn(zn−l,zn))

=

pn∑

l=1

φ
(pn)
l ΦXn−l(zn−l)(ΦU (s))Φεn(zn−l,zn)(s).

We used notation ΦU for ΦUm , m ≥ 1, since Um have all the same distribu-
tion. Because zn−1 = zn−2 = · · · = zn−pn = i, it holds Φεn(zn−1,zn)(s) =
Φεn(zn−2,zn)(s) = · · · = Φεn(zn−pn ,zn)(s) = Φεn(i,j)(s) and ΦXn−1(zn−1)(s) =
ΦXn−2(zn−2)(s) = · · · = ΦXn−pn(zn−pn )

(s) = ΦXn−1(i)(s), so

ΦXn(j)(s) =

pn∑

l=1

φ
(pn)
l ΦXn−1(i)(ΦU (s))Φεn(i,j)(s) = ΦXn−1(i)(ΦU (s))Φεn(i,j)(s).
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The last equation is equivalent to

1

1 + µj − µjs
= Φεn(i,j)(s)

1

1 + µi −
µi

1+α−αs

,

because Xn(j) has Geom
(

µj

1+µj

)
distribution, Xn−1(i) has Geom

(
µi

1+µi

)
distri-

bution and Um has Geom
(

α
1+α

)
distribution. Calculation of Φεn(i,j)(s) gives

Φεn(i,j)(s) =
αµi

µj − α
·

1

1 + α− αs
+

(
1−

αµi

µj − α

)
·

1

1 + µj − µjs
,

which implies (2.4).

Suppose now that {Xn(zn)} is the RrNGINAR1(p) process. Let fix n ∈ N.
If p∗n ≥ p, thenXn(zn) is generated in the same way as RrNGINARmax(p) process
and it holds pn = p. So, applying the same procedure as before, substituting pn
with p we get (2.4). If the previous condition doesn’t hold, Xn(zn) has the
form like in the RrNGINAR(1) process, for which we know that εn(i, j) has the
required distribution. ✷

Now, we derive conditional expectation and variance of the introduced pro-
cesses.

Theorem 2.2. Let {Xn(zn)} be RrNGINARmax(p) or RrNGINAR1(p)

time series process, and let µ1 > 0, µ2 > 0, . . . , µr > 0. If 0 ≤ α ≤ min
{

µl

1+µk
,

k, l ∈ Er}, zn+1 = j and zn = i, for i, j ∈ Er, then the conditional expectation

and the conditional variance of this process are given by

E(Xn+1|Hn) = µj − αµi + α

pn+1∑

l=1

φ
(pn+1)
l Xn+1−l,

V ar(Xn+1|Hn) = µj(µj + 1)− αµi(1 + 2α+ αµi) + α(1 + α)

pn+k∑

l=1

φ
(pn+1)
l Xn+1−l

+α2

pn+1∑

l=1

φ
(pn+1)
l X2

n+1−l − α2

(
pn+k∑

l=1

φ
(pn+1)
l Xn+1−l

)2

,

where Hn = σ(Xn,Xn−1, . . . ,Xn−pn+1) represents the σ-field generated by {Xn,

Xn−1, . . . ,Xn−pn+1}.

Proof: For the simplicity of notation, we will use Xn instead of Xn(zn),
for n ≥ 0 and εn instead of εn(zn−1, zn), for n ≥ 1. From the definition of the
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negative binomial thinning and the properties of the conditional expectation, the
conditional probability generating function is

ΦXn+1|Hn
(s) ≡ E

(
sXn+1 |Hn

)
= Φεn+1(s)

pn+1∑

l=1

φ
(pn+1)
l E

(
sα∗Xn+1−l |Hn

)

= Φεn+1(s)

pn+1∑

l=1

φ
(pn+1)
l Φ

Xn+1−l

U (s),

where ΦU (s) =
1

1+α−αs
. It holds

E(Xn+1|Hn) = Φ′
Xn+1|Hn

(1)

and
V ar(Xn+1|Hn) = Φ′′

Xn+1|Hn
(1) + Φ′

Xn+1|Hn
(1) − (Φ′

Xn+1|Hn
(1))2.

Derivating function ΦXn+1|Hn
(s) with respect to s and using results

ΦU (1) = 1, Φ′
U(1) = α, Φ′′

U (1) = 2α2

and

Φεn+1(1) = 1, Φ′
εn+1

(1) = µj − αµi, Φ′′
εn+1

(1) = 2µ2
j − 2αµi(µj + α)

gives

Φ′
Xn+1|Hn

(1) = µj − αµi + α

pn+k∑

l=1

φ
(pn+1)
l Xn+1−l

and

Φ′′
Xn+1|Hn

(1) = 2µ2
j − 2αµi(µj + α) + α2

pn+1∑

l=1

φ
(pn+1)
l X2

n+1−l

+α(2µj − 2αµi + α)

pn+1∑

l=1

φ
(pn+1)
l Xn+1−l.

The requested formulas directly follow from here. ✷

The conditional expectation and the conditional variance of higher order
can be calculated using following recurrent relations:

E(Xn+k|Hn) = µj − αµi + α

[
k−1∑

l=1

φ
(pn+1)
l E(Xn+k−l|Hn) +

pn+k∑

l=k

φ
(pn+1)
l Xn+k−l

]

for 2 ≤ k ≤ pn+k,

E(Xn+k|Hn) = µj − αµi + α

pn+k∑

l=1

φ
(pn+1)
l E(Xn+k−l|Hn), k > pn+k,
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V ar(Xn+k|Hn) = µj(µj + 1)− αµi(1 + 2α+ αµi)

+α2
k−1∑

l=1

φ
(pn+1)
l V ar(Xn+k−l|Hn)

+α(1 + α)

(
k−1∑

l=1

φ
(pn+1)
l E(Xn+k−l|Hn) +

pn+k∑

l=k

φ
(pn+1)
l Xn+k−l

)

+α2

(
k−1∑

l=1

φ
(pn+1)
l [E(Xn+k−l|Hn)]

2 +

pn+k∑

l=1

φ
(pn+1)
l X2

n+k−l

)

−α2

(
k−1∑

l=1

φ
(pn+1)
l E(Xn+k−l|Hn) +

pn+k∑

l=k

φ
(pn+1)
l Xn+k−l

)2

for 2 ≤ k ≤ pn+k,

V ar(Xn+k|Hn) = µj(µj + 1)− αµi(1 + 2α + αµi)

+α2

pn+k∑

l=1

φ
(pn+1)
l V ar(Xn+k−l|Hn)

+α(1 + α)

(
pn+k∑

l=1

φ
(pn+1)
l E(Xn+k−l|Hn)

)

+α2

pn+k∑

l=1

φ
(pn+1)
l [E(Xn+k−l|Hn)]

2

−α2

(
pn+k∑

l=1

φ
(pn+1)
l E(Xn+k−l|Hn)

)2

for k > pn+k.

3. CORRELATION STRUCTURE

Let’s now investigate the correlation structure of the defined processes.
First, we will examine the RrNGINARmax(p) process. From (2.2), it follows

Cov(Xn,Xn−1) = α

pn∑

i=1

φ
(pn)
i Cov(Xn−i,Xn−1),

Cov(Xn,Xn−2) = α

pn∑

i=1

φ
(pn)
i Cov(Xn−i,Xn−2),

...

Cov(Xn,Xn−pn) = α

pn∑

i=1

φ
(pn)
i Cov(Xn−i,Xn−pn),
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where we have used Xn instead of Xn(zn) for the simplicity of notation. Denote

Cov(Xn,Xn−h) as γ
(h)
n , for h ≥ 0. This system can be represented in the matrix

form

(3.1)




γ
(1)
n

γ
(2)
n

...

γ
(pn)
n



=




γ
(0)
n−1 γ

(1)
n−1 . . . γ

(pn−1)
n−1

γ
(1)
n−1 γ

(0)
n−2 . . . γ

(pn−2)
n−2

...
...

. . .
...

γ
(pn−1)
n−1 γ

(pn−2)
n−2 . . . γ

(0)
n−pn



·




θ
(pn)
1

θ
(pn)
2
...

θ
(pn)
pn



,

where θ
(pn)
i = αφ

(pn)
i , for i ∈ {1, 2, . . . , pn}. More simple form is of course ob-

tained by matrix notation, i.e.

γn = Γn · θn,

where we denoted the corresponding vectors with γn and θn, and Γn is the
covariance matrix of the vector (Xn−pn ,Xn−pn−1, ...,Xn−1)

′.

In accordance with the definition of pn random variables Xn−1,Xn−2, . . . ,
Xn−pn have the same distribution, so it holds

Cov(Xn−1,Xn−1) = Cov(Xn−2,Xn−2) = · · · = Cov(Xn−pn ,Xn−pn) = σ2
Xn−1

.

Now, it is possible to divide covariance matrix Γn with σ2
Xn−1

and the result is
the correlation matrix

(3.2) R
(n−1)
pn×pn

=




1 ρ
(1)
n−1 . . . ρ

(pn−1)
n−1

ρ
(1)
n−1 1 . . . ρ

(pn−2)
n−2

...
...

. . .
...

ρ
(pn−1)
n−1 ρ

(pn−2)
n−2 . . . 1



.

However, dividing the left side of the equation (3.1) with σ2
Xn−1

will not give the
vector of the correlations, because zn 6= zn−1 in general. Actually, the equation
which is satisfied by the correlation matrix is

(3.3)




1 ρ
(1)
n−1 . . . ρ

(pn−1)
n−1

ρ
(1)
n−1 1 . . . ρ

(pn−2)
n−2

...
...

. . .
...

ρ
(pn−1)
n−1 ρ

(pn−2)
n−2 . . . 1



·




θ
(pn)
1

θ
(pn)
2
...

θ
(pn)
pn



=

σXn

σXn−1




ρ
(1)
n

ρ
(2)
n

...

ρ
(pn)
n



.

Remark 3.1. In the special case when zn = zn−1, we have that σXn =
σXn−1 , so the equation for the correlation matrix takes the same form as the
equation for the covariance matrix. It is important to notice that the subsample
Xn−1,Xn−2, . . .,Xn−pn of the RrNGINARmax(p) process cannot be seen as a
subsample of a stationary process in general. Really, it is possible to be pi 6=
pj , for i, j ∈ {n − 1, n − 2, . . ., n − pn} (for example, if zn−pn−1 6= zn−pn , then
pn−pn+1 = 1, pn−pn+2 = 2, . . ., pn−1 = pn − 1), so we deal with a process of
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variable order, which does not have to be stationary. However, if pn−pn = p
and zn−pn = zn−pn−1 then elements of the subsample Xn−1,Xn−2, . . .,Xn−pn all
have the same distribution and are defined based on the p previous elements, so
it is possible to consider this subsample as a subsample of CGINAR(p) process,
which is stationary. Really, from the definition of pm it holds zm−1 = zm−2 =
. . . = zm−pm for arbitrary m. For m = n we have zn−1 = zn−2 = . . . = zn−pn

and for m = n − pn it holds zn−pn−1 = zn−pn−2 = . . . = zn−pn−p, where we
used relation pn−pn = p. Combining these results with equation zn−pn = zn−pn−1

gives zn−pn−max p = . . . = zn−pn−1 = zn−pn = . . . = zn−1 and consequently,
pn−pn+1 = pn−pn+2 = . . . = pn = p. If zn = zn−1, additionally, then the same
conclusion holds for the subsample Xn,Xn−1, . . .,Xn−pn .

Now, let’s consider the RrNGINAR1(p) process. It can be partitioned into
samples of CGINAR(p) or RrNGINAR(1) processes. So, correlation structure is
determined by the correlation structure of the mentioned processes. For pn = 1
we have

γ(1)n = αγ
(0)
n−1,

and for pn = p it holds




γ
(1)
n

γ
(2)
n

...

γ
(p)
n



=




γ
(0)
n−1 γ

(1)
n−1 . . . γ

(p−1)
n−1

γ
(1)
n−1 γ

(0)
n−2 . . . γ

(p−2)
n−2

...
...

. . .
...

γ
(p−1)
n−1 γ

(p−2)
n−2 . . . γ

(0)
n−p



·




θ1
θ2
...
θp


,

where θi = αφi, for i ∈ {1, 2, . . . , p}. These equations can be represented by (3.1),
substituting pn with 1 and p. It also holds (3.2) and (3.3). RrNGINARmax(p)
cannot have series parts with two or more successive elements of order one in
the same state. However, for RrNGINAR1(p) process the maximal length of
such a series is p. The Theorem 3, from [13], holds for n and k which satisfy
zn = · · · = zn−k and pn = 1. Therefore, based on this theorem, the maximal
value that k can take is p.

Remark 3.2. For RrNGINAR1(p) process, subsample Xn−1,Xn−2, . . . ,
Xn−pn can always be viewed as a sample of a stationary process. The case
pn = 1 is trivial since it gives subsample of only one element. If pn = p and
pn−pn = p, then directly from the definition of this process it follows that
Xn−1,Xn−2, . . . ,Xn−pn are all in the same state and of the same order. If
zn = zn−1 then the same holds for Xn,Xn−1, . . . ,Xn−pn .

4. YULE-WALKER ESTIMATION OF THE PARAMETERS

In the proof of Theorem 5 from [13] stationarity of the processes attached
to the maximal subsamples provided the strong consistency of the estimators. If
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we want here to prove the same, it would be useful to define estimators only on
the part of the process to which we can attach a stationary process.

In accordance with Remark 3.1 let pn = pn−pn = p, zn−pn = zn−pn−1 and
zn = zn−1 = k ∈ Er for RrNGINARmax(p) process. Then pi = p and zi = k, for
all i ∈ {n − pn, n − pn + 1, . . . , n}. Because of stationarity it is possible to write

γ|i−j| instead of γ
(i)
j , for i ∈ {0, 1, . . . , pn}, j ∈ {n− pn, n− pn+1, . . . , n} without

loss of generality. Then, we introduce γ
(k)
|i−j| as a more informative and adequate

notation, where index k indicates the random state. Applying this to the system

(3.1), using analogously θp,i instead of θ
(pn)
i we obtain

(4.1)




γ
(k)
1

γ
(k)
2
...

γ
(k)
p



=




γ
(k)
0 γ

(k)
1 . . . γ

(k)
p−1

γ
(k)
1 γ

(k)
0 . . . γ

(k)
p−2

...
...

. . .
...

γ
(k)
p−1 γ

(k)
p−2 . . . γ

(k)
0



·




θp,1
θp,2
...

θp,p


.

Notice that pn equals p, as it is assumed above. We estimate µk and

γ
(k)
h , h ∈ {0, 1, 2, . . . , p − 1} as in [13], but only based on the part of a sample.

Precisely, estimators for state k ∈ {1, 2, . . . , r} are based on the sets V
(k)
0,p =

{i ∈ {1, 2, . . . , N}|zi = k, pi = p} and V
(k)
h,p =

{
i ∈ V

(k)
0,p |i+ h ∈ V

(k)
0,p

}
, for h ≥ 1,

where N is the size of the sample, and are given by

(4.2) µ̂k =
1

n
(k)
0,p

∑

i∈V
(k)
0,p

Xi(k), γ̂
(k)
h,p =

1

n
(k)
h,p

∑

i∈V
(k)
h,p

(Xi+h(k)− µ̂k)(Xi(k)− µ̂k),

for h ≥ 0, k ∈ {1, 2, . . . , r} and where n
(k)
h,p =

∣∣∣V (k)
h,p

∣∣∣, for h ≥ 0.

Substituting the theoretical moments in (4.1) with the empirical ones and
then expressing the vector of the unknown parameters, we get




θ̂
(k)
p,1

θ̂
(k)
p,2
...

θ̂
(k)
p,p



=




γ̂
(k)
0,p γ̂

(k)
1,p . . . γ̂

(k)
p−1,p

γ̂
(k)
1,p γ̂

(k)
0,p . . . γ̂

(k)
p−2,p

...
...

. . .
...

γ̂
(k)
p−1,p γ̂

(k)
p−2,p . . . γ̂

(k)
0,p




−1

·




γ̂
k)
1,p

γ̂
(k)
2,p
...

γ̂
(k)
p,p



.

Now, it is possible to estimate α and φ
(p)
i . First we obtain, respectively

α̂(k) =

p∑

i=1

θ̂
(k)
p,i , φ̂

(k)
p,i =

θ̂
(k)
p,i

α̂(k)
, i ∈ {1, 2, . . . , p}, k ∈ {1, 2, . . . , r},

where (k), as above, indicates that the estimators are based on the subsample
with state equal k. At last, taking into account all states and their frequencies
of occurrence, the final Yule-Walker estimators are

(4.3) α̂Y W =

r∑

k=1

n(k)

N
α̂(k), φ̂Y W

p,i =

r∑

k=1

n(k)

N
φ̂
(k)
p,i , µ̂YW

k = µ̂k.
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Now, we move our attention to RrNGINAR1(p) process. Let zn = zn−1.
Estimators of the process covariances are based on the maximal union (in the
sense of number of elements) of the samples which can be treated as the samples
of stationary processes. Estimators are given by

(4.4) µ̂k,j =
1

n
(k)
0,j

∑

i∈V
(k)
0,j

Xi(k), γ̂
(k)
h,j =

1

n
(k)
h,j

∑

i∈V
(k)
h,j

(Xi+h(k)− µ̂k,j)(Xi(k)− µ̂k,j),

where h ≥ 0, k ∈ {1, 2, . . . , r}, j ∈ {1, p}, and they are based on the sets V
(k)
0,1 =

{i ∈ {1, 2, . . . , N}| zi = k, pi = 1}, V
(k)
h,1 =

{
i ∈ V

(k)
0,1 |i+ h ∈ V

(k)
0,1

}
, n

(k)
h,1 =

∣∣∣V (k)
h,1

∣∣∣,
for h ≥ 1 and V

(k)
h,p and n

(k)
h,p, for h ≥ 0 are defined as before. Let α

(k)
j represents

the autocorrelation parameter corresponding to the process subsamples of state
k and order j, where j ∈ {1, p}.

Similarly as for RrNGINARmax(p) process we get

α̂
(k)
1 =

γ̂
(k)
1,1

γ̂
(k)
0,1

and

(4.5)




θ̂
(k)
1

θ̂
(k)
2
...

θ̂
(k)
p



=




γ̂
(k)
0,p γ̂

(k)
1,p . . . γ̂

(k)
p−1,p

γ̂
(k)
1,p γ̂

(k)
0,p . . . γ̂

(k)
p−2,p

...
...

. . .
...

γ̂
(k)
p−1,p γ̂

(k)
p−2,p . . . γ̂

(k)
0,p




−1

·




γ̂
k)
1,p

γ̂
(k)
2,p
...

γ̂
(k)
p,p



.

From (4.5) we obtain the estimators as

α̂(k)
p =

p∑

i=1

θ̂
(k)
i , φ̂

(k)
i =

θ̂
(k)
i

α̂
(k)
p

, i ∈ {1, 2, . . . , p}, k ∈ {1, 2, . . . , r}.

Now, we get

α̂(k) =
n
(k)
1 α̂

(k)
1 + n

(k)
p α̂

(k)
p

n
(k)
1 + n

(k)
p

, µ̂k =
n
(k)
1 µ̂k,1 + n

(k)
p µ̂k,p

n
(k)
1 + n

(k)
p

,

and finally, using preceding results for all states, we obtain YW estimators as

(4.6) α̂Y W =
r∑

k=1

n
(k)
1 + n

(k)
p

N
α̂(k), φ̂Y W

i =
r∑

k=1

n
(k)
p

N
φ̂
(k)
i , µ̂YW

k = µ̂k.

Theorem 4.1. Estimators given by (4.2) and (4.4) are strongly consis-

tent.
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Proof: The general idea is to divide the process subsample, indexed,

i.e. determined by V
(k)
0,p , into maximal subsamples and then use the proof of

Theorem 5 from [13]. It is easy to notice that this theorem can be expanded
so that applies for h > 1. Really, if in the expression for γ1 we replace i + 1
by i + h, it becomes γh. Further procedure is the same. If Xi,Xi+1, . . . ,Xj

is a subsample such that {i, i + 1, . . . , j} ⊆ V
(k)
0,p , we say that it is maximal if

zi = zi+1 = · · · = zj = k, zj+1 6= k, pi = p and pi−1 6= p. Based on Remark 3.1,
Xi,Xi+1, . . . ,Xj represents a sample of CGINAR(p) process, so it is stationary.
The rest of the proof is the same as the proof of Theorem 5. The same procedure
is applied to the RrNGINAR1(p) process. ✷

Since the quotient of linear combinations of the strongly consistent statistics
is also strongly consistent, we have the following corollary.

Corollary 4.1. Estimators given in (4.3) and (4.6) are strongly consis-

tent.

If we want to estimate the probabilities φ
(pn)
i , where 1 < pn < p and 1 ≤

i ≤ pn, given in (2.2) for the definition of RrNGINARmax(p) process, preceding
approach cannot be used. The problem is that elements Xn, for 1 < pn < p are
isolated in the sense that the both of their neighbors have different order, so it is
impossible to form the subsample containing Xn (to define the estimators) with
two or more successive elements of the same order.

This problem is worked out by defining new modified YW estimators which
have less restrictive conditions in using the corresponding subsamples of the pro-
cess. These modified estimators are obtained from the strongly consistent YW

estimators, discussed above, by substituting their corresponding sets V
(k)
h,p , for

h ≥ 1, with V
(k)
0,p . In other words, if the corresponding sets of the modified

YW estimators are denoted by Ṽ
(k)
h,p , then Ṽ

(k)
h,p = V

(k)
0,p , for h ≥ 1. Note that

Ṽ
(k)
h,p ⊇ V

(k)
h,p . However, because of these modifications, we cannot claim the

modified YW strong consistence, but their goodness may be verified in the appli-
cation on the simulated process values. In this regard, the results obtained in the
next section show that the corresponding estimates gradually converge towards
parameter values when the size of the sample increases.

5. SIMULATIONS

In this section we investigate the correctness of the modified Yule-Walker
estimators. For this purpose we have simulated realizations of the processes
RrNGINARmax(p) and RrNGINAR1(p), and estimated unknown parameters in
both cases. There are 100 replicates, each of size 10000. Both of the processes
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are considered in parallel. We choose the parameters α, p, r,µ,pmat and φ. The
random environment process transition probability matrix is noted by pmat, and
µ is a vector of means. In the case of RrNGINARmax(p) process, the pnth row,
pn ∈ {2, . . . , p}, of the matrix φ contains (up to the pnth column) probabilities

φ
(pn)
i , i ∈ {1, 2, . . . , pn}, from (2.2). In the case of RrNGINAR1(p) process,

the last row represents probabilities in (2.3). Matrix pmat controls changing of
the states, where diagonal elements represents the probabilities of staying in the
same state. When its diagonal values are high, it is expected for the random
environment process to stay in the same state more often than to change the

state. This is a preferable situation since it makes the sets V
(k)
h,p , for h ≥ 1, to be

bigger and in this way relatively less different from Ṽ
(k)
h,p . Consequently, modified

estimators became approximately equal (at least being close) to the strongly
consistent YW estimators.

The simulation of the random environment process {Zn} represents the
first step in the simulation of the defined processes. After the generation of the
observed values {zn}, we can easily evaluate the process of orders {pn} for both
processes by using their definitions. Finally, we can simulate the values of both
defined processes by using the observed values {zn} and {pn}, and definitions of
the defined processes.

We considered six different cases. In each case we obtained the modified
YW estimators of the unknown parameters for both of the processes. All the
results are given in the appropriate tables. Comparison of the results is based on
the relative errors, since values of the parameters are different.

1) In the first case vector of means is µ = (1, 2). For these values maximal
value for α is 1/3 and we chose α = 0.3. The random state process transition

probability matrix we used is pmat =

[
0.8 0.2
0.2 0.8

]
. Diagonal elements are

equal 0.8, so, based on the discussion above, good estimates are expected.

Matrix of probabilities is φ =

[
1 0
0.6 0.4

]
.

2) Here we investigate what happens when α, from case 1), reduces to α =

0.15, where φ =

[
1 0
0.5 0.5

]
. Since lower value of α contributes to less

correlation, it is natural to expect that estimates for φ are worse than
in the case 1 and this is confirmed by the results. Estimates for α and µ

are almost the same, but slightly better.

3) This case differs from the first by the probabilities of changing state. We

used pmat =

[
0.5 0.5
0.5 0.5

]
. Now, there is equal probability to stay in the same

state as it is to change it. As we discussed earlier, this is not favorably,
so worse estimates for φ are expected and this conclusion is confirmed by
the results. However, our sample is big enough, so difference is very small.
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Estimates for α and µ are again slightly better then the estimates of case
1).

4) Vector of means is now µ = (4, 5) and probabilities on the diagonal of the

transition matrix of random states are 0.7, i.e. pmat =

[
0.7 0.3
0.3 0.7

]
. Estimates

are almost the same as in the first case. Thereby, RrNGINARmax(p) pro-
cess provides better results, while the RrNGINAR1(p) process gives worse
results than in the first case.

These preceding four cases refer to the processes based on the environment process
with two random states. The corresponding results are presented in Table 1.

5) Here we consider what happens when, in case 1), maximal order p increases
to 3. The estimates of α are slightly better, but the estimates of φ are worse,
because the probabilities for the order 2 (in case of RrNGINARmax(p) pro-
cess) are estimated using very small sample. However, they are significantly
improved when sample size increases to 10000. These results are presented
in Table 2.

6) In the last case we have simulated process with three possible states (r = 3).
Parameters, as well as the results, are given in Table 3. The greater number
of states contributes to the smaller probability of staying in the same state,
so for the small sample sizes, estimates are not so good, but increasing the

size of the simulated sample gives much better results. Estimates for φ
(2)
1

and φ
(2)
2 are not so good, which is reasonable because elements xn of the

simulated sample, such that pn = 2, have neighbors with order different
from 2.

In the cases 1), 5) and 6) the RrNGINAR1(p) process provides better estimates,
while in cases 2) and 4) the RrNGINARmax(p) process is better choice. In the
third case they are almost equally good. It is important to notice that in each
case results are better when the size of the sample increases.

6. APPLICATION

Quality of the processes introduced in this paper will be investigated by
comparing the results obtained in the application of the various models to the
same data. For this purpose, here we use two data sets of counts. Since the
processes introduced in this article are not stationary, we expect them to per-
form well on the data chosen in [13]. So, in the first case, we choose this time
series, which was created by counting drug offenses per month registered in the
27th police car beat in Pittsburg from January 1990 to December 2001. It has a
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Table 1: Estimates for p = 2, r = 2

n1 µ̂Y W
1

µ̂Y W
2

α̂Y W φ̂Y W
2,1 φ̂Y W

2,2 α̂Y W φ̂Y W
2,1 φ̂Y W

2,2

1) True values µ = (1, 2), α = 0.3, φ =

[
1 0
0.6 0.4

]
, pmat =

[
0.8 0.2
0.2 0.8

]

500 0.9924 1.9782 0.3226 0.6389 0.3611 0.318 0.624 0.376

SE 0.1200 0.2097 0.1474 0.2009 0.2009 0.1477 0.2338 0.2338

1000 0.9912 2.0064 0.3185 0.6198 0.3802 0.3188 0.6084 0.3916

SE 0.0872 0.1487 0.1071 0.1371 0.1371 0.1066 0.1282 0.1282

5000 0.9953 1.9952 0.3048 0.6074 0.3926 0.2984 0.6089 0.3911

SE 0.0375 0.0539 0.0525 0.0578 0.0578 0.0466 0.057 0.057

10000 0.9978 1.9999 0.3049 0.6038 0.3962 0.2993 0.5971 0.4029

SE 0.0288 0.0407 0.0388 0.0381 0.0381 0.0318 0.0409 0.0409

2) True values µ = (1, 2), α = 0.15, φ =

[
1 0

0.5 0.5

]
, pmat =

[
0.8 0.2
0.2 0.8

]

500 0.9988 2.0047 0.1568 0.688 0.312 0.1781 2.2577 -1.2577

SE 0.0939 0.1965 0.13 0.8714 0.8714 0.1438 15.5205 15.5205

1000 0.9933 2.0136 0.1532 0.4913 0.5087 0.1636 0.4655 0.5345

SE 0.0745 0.1312 0.0983 1.2527 1.2527 0.1038 0.7767 0.7767

5000 1.0011 1.9999 0.1526 0.5068 0.4932 0.1547 0.4921 0.5079

SE 0.0349 0.0562 0.0442 0.0984 0.0984 0.0459 0.0992 0.0992

10000 1.0031 1.9995 0.1543 0.5008 0.4992 0.1523 0.4951 0.5049

SE 0.0252 0.0368 0.0284 0.0649 0.0649 0.0309 0.0647 0.0647

3) True values µ = (1, 2), α = 0.3, φ =

[
1 0

0.6 0.4

]
, pmat =

[
0.5 0.5
0.5 0.5

]

500 1.0044 1.9879 0.3201 0.5478 0.4522 0.3279 0.5864 0.4136

SE 0.1082 0.2065 0.1306 0.9084 0.9084 0.1501 1.2909 1.2909

1000 1.0069 1.9916 0.3132 0.7188 0.2812 0.3095 0.6959 0.3041

SE 0.0783 0.1413 0.0888 0.7523 0.7523 0.0955 0.6136 0.6136

5000 0.9995 1.9948 0.3047 0.5965 0.4035 0.3024 0.5946 0.4054

SE 0.0293 0.0618 0.043 0.0892 0.0892 0.0415 0.0926 0.0926

10000 0.9997 1.9922 0.3032 0.5847 0.4153 0.3018 0.5991 0.4009

SE 0.0197 0.0430 0.0283 0.0624 0.0624 0.0274 0.0657 0.0657

4) True values µ = (4, 5), α = 0.5, φ =

[
1 0

0.6 0.4

]
, pmat =

[
0.7 0.3
0.3 0.7

]

500 4.0397 4.9501 0.5506 0.3952 0.6048 0.5466 0.4286 0.5714

SE 0.4132 0.4852 0.1469 0.1352 0.1352 0.1489 0.2029 0.2029

1000 4.0295 4.9785 0.5259 0.4237 0.5763 0.526 0.4309 0.5691

SE 0.3016 0.3590 0.105 0.0819 0.7523 0.1162 0.0945 0.0945

5000 4.0046 5.0008 0.5037 0.4163 0.5837 0.514 0.411 0.589

SE 0.1286 0.1601 0.0522 0.0408 0.0408 0.0492 0.0396 0.0396

10000 3.9947 4.9978 0.4982 0.4132 0.5868 0.5054 0.4135 0.5865

SE 0.0900 0.1173 0.0366 0.0278 0.0278 0.0354 0.0279 0.0279

length of 144 realizations and is downloaded from a website Forecasting Princi-
ples (http://www.forecastingprinciples.com). The plots of the given series and its
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Table 2: Estimates for p = 3, r = 2

n1 µ̂Y W
1

µ̂Y W
2

α̂Y W φ̂Y W
2,1 φ̂Y W

2,2 φ̂Y W
3,1 φ̂Y W

3,2 φ̂Y W
3,3

5) True values µ = (1, 2), α = 0.3, φ =




1 0 0

0.6 0.4 0
0.5 0.3 0.2



, pmat =

[
0.8 0.2
0.2 0.8

]

500 1.0167 1.9948 0.3185 2.1388 -1.1388 0.4742 0.2559 0.2699

SE 0.1181 0.2203 0.1656 8.6452 8.6452 0.9294 0.4239 0.6798

1000 1.0076 1.9915 0.2954 0.6158 0.3842 0.5373 0.2636 0.199

SE 0.0813 0.1452 0.1052 1.0074 1.0074 0.2578 0.2562 0.2199

5000 0.9994 2.0023 0.2956 0.6182 0.3818 0.4983 0.2893 0.2124

SE 0.0416 0.0717 0.0435 0.1311 0.1311 0.0659 0.0651 0.0686

10000 0.9978 1.9983 0.2956 0.6115 0.3885 0.5001 0.2964 0.2035

SE 0.0254 0.0509 0.0345 0.0935 0.0935 0.0437 0.0413 0.0489

α̂Y W φ̂Y W
3,1 φ̂Y W

3,2 φ̂Y W
3,3

500 0.2949 0.4969 0.3206 0.1825

SE 0.109 1.136 0.572 0.6893

1000 0.3052 0.4992 0.2923 0.2085

SE 0.0853 0.1857 0.1793 0.1791

5000 0.2966 0.491 0.3073 0.2017

SE 0.0378 0.0809 0.0661 0.0735

10000 0.2998 0.4916 0.3121 0.1963

SE 0.0241 0.0522 0.0496 0.0482

autocorrelation and partial autocorrelation function are given in Figures 1, 3 and
5. Here, we might have used two different approaches for choosing the model
order p. The first one, which is more intuitive, is based on choosing p as the num-
ber of first p significant values of the partial autocorrelation functions observed
from the diagram (in this case Figure 5). The other approach is defining p as the
value from {1, 2, . . . , q} for which the smallest RMS value is obtained (RMS is the
quality criterion explained later in this paragraph), where q is some reasonably
large integer value. However, to make things easier to follow, we have decided
to use the compromise of these two approaches. Namely, we choose the maximal
considered model order p as the larger of the two numbers obtained by the first
(intuitive) approach used for both data sets, increased by one. Since, these values
for both data sets are 2 (for the 27th police car station) and 3 (for the second
data set considered later in this section), we choose 4 as a maximal order of the
INAR models considered for both of the observed counting time series. Therefore,
INAR(p) models, for p ∈ {1, 2, 3, 4}, might be the reasonable choice. Considering
the referent models of order 1, we chose INAR(1) model with Poisson marginals
(PoINAR(1)) given in [2], quasi-binomial INAR(1) model with generalized Pois-
son marginals (GPQINAR(1)) from [5], geometric INAR(1) model (GINAR(1))
introduced in [4], new geometric INAR(1) (NGINAR(1)) defined in [14], nega-
tive binomial INAR(1) (NBINAR(1)) introduced in [19, 20], iterated INAR(1)
model (NBIINAR(1)) with negative binomial marginals given in [1] and random
coefficient INAR(1) model with negative binomial marginals (NBRCINAR(1))
constructed in [18]. Since our models, which quality we want to verify, are com-
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Table 3: Estimates for p = 3, r = 3

n1 µ̂Y W
1

µ̂Y W
2

µ̂Y W
3

α̂Y W φ̂Y W
2,1 φ̂Y W

2,2 φ̂Y W
3,1 φ̂Y W

3,2 φ̂Y W
3,3

6) True values µ = (1, 1.5, 2), α = 0.3, φ =




1 0 0
0.6 0.4 0
0.5 0.3 0.2



, pmat =




0.7 0.2 0.1
0.1 0.7 0.2
0.1 0.2 0.7





500 1.0068 1.4991 1.9849 0.3228 4.9236 -3.9236 -2.3274 5.6962 -2.3688

SE 0.1617 0.1734 0.2385 0.1181 25.8252 25.8252 26.8363 53.7332 26.9268

1000 1.0084 1.5031 1.9742 0.3156 0.6707 0.3293 0.5876 0.2652 0.1472

SE 0.1130 0.1321 0.1704 0.0946 1.447 1.447 0.4793 0.3186 0.3543

5000 0.9976 1.5018 1.9981 0.3092 0.6306 0.3694 0.4833 0.302 0.2147

SE 0.0465 0.0544 0.0679 0.0435 0.1296 0.1296 0.0884 0.098 0.0854

10000 0.9970 1.5024 1.9983 0.3058 0.5994 0.4006 0.4743 0.3106 0.2151

SE 0.0329 0.0328 0.0510 0.0297 0.0796 0.0796 0.0492 0.0538 0.054

α̂Y W φ̂Y W
3,1 φ̂Y W

3,2 φ̂Y W
3,3

500 0.3205 0.4554 0.4348 0.1098

SE 0.1042 0.7894 0.8933 1.2224

1000 0.3096 0.5513 0.333 0.1157

SE 0.0804 0.3914 0.4626 0.4641

5000 0.2957 0.5002 0.3123 0.1875

SE 0.0322 0.0951 0.0986 0.0918

10000 0.2955 0.4876 0.3158 0.1967

SE 0.0232 0.0705 0.0659 0.0639

binations of the RrNGINAR(1) process from [13] and CGINAR(p) process from
[12] in some way, it is natural to include them in consideration, too. For this
purpose we used R2NGINAR(1), R3NGINAR(1), CGINAR(2), CGINAR(3) and
CGINAR(4) models. Another process of higher order which is included in this
section, because of the completeness of the comparison, is PoINAR(p) ([16]), pre-
cisely, PoINAR(2), PoINAR(3) and PoINAR(4). The root mean squares (RMS)
of differences between the observations and predicted values (using maximum
likelihood estimation) are calculated and all the results are given in Table 4.
The lower values of RMS indicate the better and more appropriate models. The
values of the maximum likelihood parameter estimates and RMS statistics are
also calculated in case of application of our processes RrNGINARmax(p) and
RrNGINAR1(p) of appropriate orders 2, 3 and 4, taking into account the cases
with two or three possible random states. (see Tables 5 and 6).

The same procedure of comparison of our processes to all the INAR models
used above is also conducted in the second case of counting time series, i.e. on the
drugs offenses counting data which were registered in the 58th police car beat in
Pittsburg. The corresponding results are given by Figures 2, 4 and 6 and Tables
7, 8 and 9.

In both cases of the observed offenses data the realization of the random
environment process {zn} is determined in the same way as in [13], by clustering
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the data. Each cluster is assigned to a state. Then the corresponding sequence
{pn} is calculated using the definitions of the models. The plots of the clusterings
(Figures 7, 8, 9 and 10 ) show big difference between the data recorded by the
police stations in the way of the environment state changing. For the data from
the 27th police station probability of staying in the same state is much higher
than for the observations from the 58th station. Analysis of the results lead us to
a conclusion that in both cases of the selected data, the models introduced in this
paper are better then the others which we applied. Namely, in the case of the
27th car beat drug offenses, R3NGINARmax(4) is the most appropriate model,
while in the case of the data recorded by the 58th police station, R3NGINAR1(3)
process shows the best performance. It is interesting to note that the optimal
order 3 obtained for the 58th police station data is in accordance with the value
obtained by the graphical intuitive (the first one) approach for choosing order p.
However, in the case of the 27th police station this is not the case (where graphical
approach gives p = 2), which justify the usage of our compromise approach for
choosing order of the model.

Successful performance of our Random Environment INAR models in both
of the cases show that they might be very appropriate for the processes which
quite often change their marginal distribution (58th car beat data counting), as
well as for the processes which are, on the other hand, much more passive (27th
police car beat data), i.e. which only rarely shift from one set of environment
circumstances to another. Increase of the number of random states contributes
to the improving of the results for both models in each case of the observed data.
However, optimal order depends on the data. Thus, for the 27th station the
more appropriate Random Environment INAR models are mostly the ones with
the higher order, while for the 58th police station we have the opposite situation.
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22 Nastić, A.S., Laketa, P.N., Ristić, M.M.
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Figure 3: ACF for the data from the 27th police station.
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Figure 4: ACF for the data from the 58th police station.
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Figure 5: PACF for the data from the 27th police station.
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Figure 6: PACF for the data from the 58th police station.

autoregressive (INAR) models, Statist. Probab. Lett., 82, 805–811.
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Figure 10: Clusters for three states for the 58th police station.

[17] Zheng, H.; Basawa, I.V. andDatta, S. (2006). Inference for pth-order random
coefficient integer-valued autoregressive processes, J. Time Ser. Anal., 27, 411–
440.

[18] Zheng, H.; Basawa, I.V. and Datta, S. (2007). First-order random coefficient
integer-valued autoregressive processes, J. Stat. Plann. Inf., 137, 212–229.
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Table 5: ML parameter estimates and RMS for R2NGINARmax(p) and
R3NGINARmax(p) process for the data from the 27th police
station.

r 2 2 2
p 2 3 4
α̂ 0.0368 0.0141 0.0556
µ̂ (12.2357, 0.6728) (15.8556, 0.6226) (19.8312, 1.3864)

φ̂

[
1.0000 0.0000
0.4601 0.5310

] 


1.0000 0.0000 0.0000
1.0000 0.0000 0.0000
0.3395 0.3670 0.2935









1.0000 0.0000 0.0000 0.0000
0.0000 1.0000 0.0000 0.0000
0.3310 0.3315 0.3375 0.0000
0.2384 0.2157 0.2493 0.2966





RMS 3.2154 2.9089 2.8400
r 3 3 3
p 2 3 4
α̂ 0.0296 0.0124 0.0241
µ̂ (23.2410, 9.0586, 0.7170) (23.2500, 9.0570, 0.4382) (23.2500, 9.0585, 0.7009)

φ̂

[
1.0000 0.0000
0.0432 0.9568

] 


1.0000 0.0000 0.0000
0.0000 1.0000 0.0000
0.3391 0.3226 0.3382









1.0000 0.0000 0.0000 0.0000
0.0000 1.0000 0.0000 0.0000
0.3300 0.3300 0.3401 0.0000
0.2477 0.1993 0.2383 0.3146





RMS 1.6528 1.6532 1.6175

Table 6: ML parameter estimates and RMS for R2NGINAR1(p) and
R3NGINAR1(p) process for the data from the 27th police sta-
tion.

r 2 2 2
p 2 3 4
α̂ 0.0368 0.0276 0.0226
µ̂ (12.2357, 0.6728) (13.1349, 0.6075) (13.6046, 0.5570)

φ̂ (0.4601, 0.5400) (0.3958, 0.4267, 0.1775) (0.3399, 0.3956, 0.1292, 0.1353)
RMS 3.2154 3.1079 3.0595

r 3 3 3
p 2 3 4
α̂ 0.0296 0.0090 0.0093
µ̂ (23.2450, 9.0586, 0.7170) (22.8019, 8.0055, 0.2286) (22.7873, 7.9381, 0.2277)

φ̂ (0.0432, 0.9568) (0.3828, 0.4293, 0.1878) (0.3617, 0.4204, 0.1618, 0.0560)
RMS 1.6498 1.7446 1.7271

[19] Zhu, R. and Joe, H. (2006). Modelling count data time series with Markov
processes based on binomial thinning, J. Time Ser. Anal., 27, 727–738.

[20] Zhu, R. and Joe, H. (2010). Negative binomial time series models based on
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Table 7: ML parameter estimates and RMS for different models for the
data from the 58th police station..

Model MLE RMS

PoINAR(1) λ̂ = 2.2349
α̂ = 0.2189 3.4011

GPQINAR(1) λ̂ = 1.0578

θ̂ = 0.541
ρ̂ = 0.17 3.4624

GINAR(1) q̂ = 0.7449
α̂ = 0.1342 3.4629

NGINAR(1) µ̂ = 2.9157
α̂ = 0.1734 3.4315

NBINAR(1) q̂ = 0.2188

θ̂ = 0.8033
α̂ = 0.1155 3.4789

NBIINAR(1) n̂ = 1
p̂ = 0.5
ρ̂ = 0.5 3.4184

NBRCINAR(1) n̂ = 0.8442
p̂ = 0.2327
ρ̂ = 0.1827 3.4247

R2NGINAR(1) µ̂1 = 1.5485
µ̂2 = 9.1053
α̂ = 0.0521 2.0096

R3NGINAR(1) µ̂1 = 0.8719
µ̂2 = 6.0089
µ̂3 = 14.3936
α̂ = 0.3012 1.3361

CGINAR(2) µ̂ = 2.9524
α̂ = 0.3232 3.3403

CGINAR(3) µ̂ = 2.9326
α̂ = 0.395 3.2912

CGINAR(4) µ̂ = 2.9517
α̂ = 0.4241 3.2769

PoINAR(2) λ̂ = 1.8966
α̂ = 0.3534 3.3152

PoINAR(3) λ̂ = 1.5812
α̂ = 0.4779 3.2438

PoINAR(4) λ̂ = 1.4452
α̂ = 0.5521 3.2236
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Table 8: ML parameter estimates and RMS for R2NGINARmax(p) and
R3NGINARmax(p) process for the data from the 58th police
station.

r 2 2 2
p 2 3 4
α̂ 0.1328 0.1322 0.1317
µ̂ (8.3430, 1.2408) (8.3422, 1.2347) (8.3420, 1.2307)

φ̂

[
1.0000 0.0000
0.0967 0.9033

] 


1.0000 0.0000 0.0000
0.0511 0.9489 0.0000
0.3366 0.3414 0.3220









1.0000 0.0000 0.0000 0.0000
0.0574 0.9426 0.0000 0.0000
0.3290 0.3340 0.3371 0.0000
0.2690 0.2194 0.2450 0.2667





RMS 2.0759 2.0785 2.0821
r 3 3 3
p 2 3 4
α̂ 0.0488 0.0488 0.0488
µ̂ (4.6800, 12.8180, 0.6746) (4.6798, 12.8181, 0.6747) (4.6798, 12.8181, 0.6748)

φ̂

[
1.0000 0.0000
0.0483 0.9517

] 


1.0000 0.0000 0.0000
0.0154 0.9846 0.0000
0.3388 0.3363 0.3250









1.0000 0.0000 0.0000 0.0000
0.0070 0.9930 0.0000 0.0000
0.3341 0.3295 0.3364 0.0000
0.2557 0.2094 0.2404 0.2945





RMS 1.1813 1.1764 1.1795

Table 9: ML parameter estimates and RMS for R2NGINAR1(p) and
R3NGINAR1(p) process for the data from the 58th police sta-
tion.

r 2 2 2
p 2 3 4
α̂ 0.1328 0.1321 0.1321
µ̂ (8.3430, 1.2408) (8.3425, 1.2345) (8.3421, 1.2340)

φ̂ (0.0967, 0.9033) (0.3363, 0.4347, 0.2290) (0.3283, 0.3309, 0.2725, 0.0683)
RMS 2.0536 2.0732 2.0784

r 3 3 3
p 2 3 4
α̂ 0.0488 0.0491 0.0491
µ̂ (4.6800, 12.8180, 0.6746) (4.6801, 12.8181, 0.6782) (4.6804, 12.8181, 0.6789)

φ̂ (0.0483, 0.9517) (0.3193, 0.4168, 0.2640) (0.2732, 0.2719, 0.25489, 0.2001)
RMS 1.1889 1.1760 1.1793


