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1. INTRODUCTION

A diagnostic test is a medical test that is applied to an individual in order to deter-
mine the presence or absence of a disease. When the result of a diagnostic test is positive or
negative, the diagnostic test is called a binary diagnostic test (BDT). A stress test for the
diagnosis of coronary disease is an example of BDT. The effectiveness of a BDT is measured
in terms of two fundamental parameters: sensitivity and specificity. The sensitivity (Se)
is the probability of the BDT being positive when the individual has the disease, and the
specificity (Sp) is the probability of the BDT being negative when the individual does not
have it. The Se and the Sp of a BDT are estimated in relation to a gold standard (GS),
which is a medical test which objectively determines whether or not an individual has the
disease or not. An angiography for coronary disease is an example of GS. Other parameters
that are used to assess the effectiveness of a BDT are the likelihood ratios (LRs) ([10, 17]).
When the BDT is positive, the likelihood ratio, called the positive likelihood ratio (LR+),
is the ratio between the probability of correctly classifying an individual with the disease
and the probability of incorrectly classifying an individual who does not have it. When the
BDT is negative, the likelihood ratio, called the negative likelihood ratio (LR−), is the ratio
between the probability of incorrectly classifying an individual who has the disease and the
probability of correctly classifying an individual who does not have it. The LRs only depend
on the sensitivity and the specificity of the BDT and do not depend on the disease preva-
lence, and therefore the LRs are superior parameters of the accuracy of a BDT ([10, 17]).
The comparison of the parameters of two BDTs has been the subject of numerous studies in
Statistical literature. When the two BDTs and the GS are applied to all of the individuals in
a random sample sized n (paired design), the comparison of the two sensitivities (specificities)
is made by applying a comparison test of two paired binomial proportions. Subject to this
same sample design, the comparison of the LRs of two BDTs is more complex. Leisenring and
Pepe [6] studied the estimation of the LRs of a BDT through a regression model. Pepe [10]
adapted this model to compare the LRs of two BDTs, for which in the regression model a
variable dummy is considered to compare a BDT in relation to another. Moreover, Pepe [10]
proposed a confidence interval for the ratio of the two positive (negative) LRs estimating the
variance of the ratios subject to the null hypothesis of equality of the two LRs. Section 3.1
summarizes the method of Pepe [10]. Biggerstaff [1] proposed a graphical method to compare
the LRs of two (or more) BDTs. Nevertheless, this method is not inferential and can only
be applied to the estimators. Roldán-Nofuentes and Luna [12] studied hypothesis tests to
compare the LRs individually and simultaneously, and they also studied the same problem for
the case of ordinal diagnostic tests. The hypothesis tests proposed by Roldán-Nofuentes and
Luna [12] are based on the logarithmic transformation of the ratio of the positive (negative)
LRs, and therefore by inverting the test statistics of the individual tests, confidence intervals
are obtained for the ratio of the two LRs (in Section 3.2 we summarize this method). Dolgun
et al. [3] extended the method of Leisenring and Pepe [6] to compare the LRs simultaneously.
Comparing the sensitivities (specificities) of two BDTs, we compare the intrinsic accuracy of
both BDTs, and we determined which BDT is more accurate for an individual who has the dis-
ease (which BDT has the greatest sensitivity) or for an individual who does not have the dis-
ease (which BDT has the greatest specificity). Comparing the positive (negative) LRs of two
BDTs it is possible to quantify with which BDT it is more likely to obtain a positive (negative)
result for the BDT for an individual who has the disease than for an individual who does not.
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In this manuscript we study the comparison of the LRs of two BDTs through confidence
intervals (CIs), making the following contributions: a) four intervals to compare the LRs,
and b) a method to calculate the sample size to compare the LRs through CIs. Section 2
presents the LRs and their properties. Section 3 presents the CIs studied by Pepe [10], by
Roldán-Nofuentes and Luna [12], and four new CIs are proposed: a Wald type interval, an
interval based on the Fieller method, a Bootstrap interval based on the bias-corrected interval,
and a Bayesian interval based on non-informative beta distributions and on the application
of the Monte Carlo method. In Section 4, simulation experiments are carried out to study the
coverage probabilities and the average lengths of the CIs presented in Section 3. Section 5
presents a method to calculate the sample size to compare the LRs through CIs. In Section 6,
the results are applied to two real examples, and in Section 7 the results obtained are discussed.

2. LIKELIHOOD RATIOS

Let us consider a BDT that is assessed in relation to a GS. Let T be the variable that
models the result of the BDT: T =1 when the BDT is positive and T =0 when it is negative.
Let D be the variable that models the result of the GS: D =1 when the individual has the
disease and D =0 when this is not the case. Let π = P (D=1) be the disease prevalence in
the population studied, and π̄ = 1− π. The positive LR ([10, 17]) is defined as

(2.1) LR+ =
P
(
T =1 | D=1

)
P
(
T =1 | D=0

) =
Se

1−Sp
,

and the negative LR as

(2.2) LR− =
P
(
T =0 | D=1

)
P
(
T =0 | D=0

) =
1−Se

Sp
.

The LRs vary between 0 and infinity, and have the following properties:

a) If the BDT and the GS are independent then LR+ = LR− = 1.

b) If the BDT correctly classifies all of the individuals then LR+ = ∞ and LR− = 0.

c) If LR+ > 1 then a positive result of the BDT is more probable for an individual
who has the disease than for an individual who does not.

d) If LR− < 1 then a negative result of the BDT is more probable for an individual
who does not have the disease than for an individual who does.

e) The LRs quantify the increase in knowledge of the presence of the disease through
the application of the BDT. Before applying the BDT, the odds of an individual
having the disease are

pre-test odds =
π

1− π
,

where π is the disease prevalence. After applying the BDT, the odds are

post-test odds =
P
(
D=1 | T = i

)
P
(
D=0 | T = i

) , i = 0, 1 .
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The LRs relate the pre-test odds and the post-test odds:

post-test odds (T =1) = LR+ × pre-test odds ,

post-test odds (T =0) = LR− × pre-test odds .

Therefore, the likelihood ratios quantify the change in the odds of the disease
obtained by knowledge of the application of the BDT.

We then study the comparison of the LRs of two BDTs subject to a paired design
through CIs.

3. CONFIDENCE INTERVALS

Let us consider two BDTs that are assessed in relation to the same GS. Let Th be the
variable that models the result of the h-th BDT, with h = 1, 2, defined in a similar way to
the variable T given in Section 2. Let Seh and Sph be the sensitivity and the specificity of
the h-th BDT, and LR+

h and LR−h the positive and negative likelihood ratios respectively.
Table 1 shows the frequencies and the theoretical probabilities obtained when comparing two
BDTs in relation to a GS subject to a paired design. In the observed frequencies given in
Table 1, the only value set by the researcher is the sample size n.

Table 1: Frequencies and probabilities subject to a paired design.

Frequencies

T1 = 1 T1 = 0

T2 = 1 T2 = 0 T2 = 1 T2 = 0
Total

D = 1 s11 s10 s01 s00 s
D = 0 r11 r10 r01 r00 r

Total s11 + r11 s10 + r10 s01 + r01 s00 + r00 n

Probabilities

T1 = 1 T1 = 0

T2 = 1 T2 = 0 T2 = 1 T2 = 0
Total

D = 1 p11 p10 p01 p00 π
D = 0 q11 q10 q01 q00 π̄

Total p11 + q11 p10 + q10 p01 + q01 p00 + q00 1

Applying the model of conditional dependence of Vacek [14], the theoretical probabili-
ties are expressed as

pij = π
[
Sei

1(1−Se1)1−i Sej
2(1−Se2)1−j + δij ε1

]
(3.1)

and

qij = π̄
[
Sp1−i

1 (1−Sp1)
i Sp1−j

2 (1−Sp2)
j + δij ε0

]
,(3.2)
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where δij =1 if i= j and δij =−1 if i 6= j, with i, j = 0,1, and verifying that π =
∑

ij pij

and π̄ =
∑

ij qij . The parameters ε1 and ε0 are the dependence factors between the two
BDTs when D = 1 and when D = 0 respectively, verifying that

0 ≤ ε1 ≤ Min
{
Se1(1−Se2), Se2(1−Se1)

}
and

0 ≤ ε0 ≤ Min
{
Sp1(1−Sp2), Sp2(1−Sp1)

}
.

If ε1 = ε0 = 0 then the two BDTs are conditionally independent on the disease, which is not
normally a realistic one. In practice, the BDTs are conditionally dependent on the disease,
so that ε1 > 0 and/or ε0 > 0. The frequencies of Table 1 are the product of a multinomial
distribution whose vector of probabilities is ψ =

(
p11, p10, p01, p00, q11, q10, q01, q00

)>. The
maximum likelihood estimators of these probabilities are p̂ij = sij/n and q̂ij = rij/n, those
of π and π̄ are π̂ = s/n and ̂̄π = r/n, and the variance-covariance matrix of ψ̂ is Σ

bψ
={

diag(ψ)−ψψ>
}/

n.

In terms of the probabilities of the vector ψ, the sensitivity and the specificity of
each BDT are written as Se1 = (p10+p11)/π, Sp1 = (q00+ q01)/π̄, Se2 = (p01+p11)/π and
Sp2 = (q00+ q10)/π̄. The estimators of the sensitivities and the specificities are Ŝe1 = s11+s10

s ,
Ŝe2 = s11+s01

s , Ŝp1 = r01+r00
r and Ŝp2 = r10+r00

r , and those of the dependence factors are
ε̂1 = bp11

bπ − Ŝe1 Ŝe2 = s11s00−s10s01
s and ε̂0 = bq00

bπ̄
− Ŝp1 Ŝp2 = r11r00−r10r01

r . Applying the delta

method, it holds that the variances-covariances of Ŝeh and Ŝph are

(3.3)
Var
(
Ŝeh

)
≈ Seh(1−Seh)

nπ
, Var

(
Ŝph

)
≈ Sph(1−Sph)

nπ̄
,

Cov
(
Ŝe1, Ŝe2

)
≈ ε1

nπ
, Cov

(
Ŝp1, Ŝp2

)
≈ ε0

nπ̄
.

The rest of the covariances are zero. Regarding the LRs, applying the delta method again,
their variances-covariances (the proof can be seen in Appendix A) are

(3.4)

Var
(
L̂R

+

h

)
≈

Se2
h Var

(
Ŝph

)
+ (1−Sph)2 Var

(
Ŝeh

)
(1−Sph)4

,

Var
(
L̂R

−
h

)
≈

(1−Seh)2 Var
(
Sph

)
+ Sp2

h Var
(
Ŝeh

)
Sp4

h

,

Cov
(
L̂R

+

1 , L̂R
+

1

)
≈

Se1Se2 Cov
(
Ŝp1, Ŝp2

)
+ (1−Sp1) (1−Sp2) Cov

(
Ŝe1, Ŝe2

)
(1−Sp1)2 (1−Sp2)2

,

Cov
(
L̂R

−
1 , L̂R

−
1

)
≈

(1−Se1) (1−Se2) Cov
(
Ŝp1, Ŝp2

)
+ Sp1Sp2 Cov

(
Ŝe1, Ŝe2

)
Sp2

1 Sp2
2

.

Substituting in the previous expressions the parameters with their estimators, we obtain the
expressions of the estimators of the variances-covariances. Pepe [10] studied the comparison
of the LRs considering the ratio between them, i.e. ω+ = LR+

1 /LR+
2 and ω− = LR−1 /LR−2 .

Roldán-Nofuentes and Luna [12] considered the Napierian logarithm of ω. In this study, we
are going to follow the same criteria as Pepe, and therefore we are going to compare the LRs
through CIs for ω+ and ω−. From here onwards, we are going to consider that LRh is LR+

h

or LR−h , and that ω is ω+ or ω−, depending on whether we compare the positive LRs or the
negative LRs. If the CI for ω contains the value one, then we do not reject the equality of
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the LRs of both BDTs; in the opposite case, the LR of a BDT is significantly higher than
that of the other BDT. Applying the delta method (see Appendix A), the variance of ω̂ is

(3.5) Var(ω̂) ≈ ω2

[
Var
(
L̂R1

)
LR2

1

+
Var
(
L̂R2

)
LR2

2

−
2 Cov

(
L̂R1, L̂R2

)
LR1LR2

]
.

Then six CIs are presented for each ratio ω+ and ω−. The first interval was proposed by
Pepe [10], the second is deduced from the study by Roldán-Nofuentes and Luna [12], and the
rest of the intervals are contributions made by this manuscript.

3.1. Regression model

Leisenring and Pepe [6] studied the estimation of the LRs of a BDT in presence
of covariates through a regression model. For the positive LR, the regression model with

p covariates is ln
(
LR+(X1)

)
= β0 +

p∑
i=1

βiX1p, where βi are the parameters of the model and

X1 = (X11, ..., X1p) is the matrix of covariates. This model can be used to compare two
BDTs ([10]), i.e. ln

[
LR+(XT )

]
= β0 + β1XT , where XT is a variable dummy to compare

a BDT in relation to another. The regression model to compare the two negative LRs is
ln
[
LR−(XT )

]
= α0 + α1XT . In these models, the ratio ω+ is estimated as e

bβ1 and the ratio
ω− as ebα1 . The confidence interval for ω+ is

(3.6) ω̂+ × exp
{
± z1−α/2

√
V̂ar0

[
ln(ω̂+)

]}
,

where z1−α/2 is the 100(1−α/2)-th percentile of the standard normal distribution and

V̂ar0
[
ln(ω̂+)

]
≈ 1− Ŝe1

s Ŝe1

+
Ŝp1

r
(
1− Ŝp1

) +
1− Ŝe2

s Ŝe2

+
Ŝp2

r
(
1− Ŝp2

)
is the estimated variance of ω̂+ subject to the null hypothesis H0 : LR+

1 =LR+
2 . The confidence

interval for ω− is similar to the previous one, where

V̂ar0
[
ln(ω̂−)

]
≈ Ŝe1

s
(
1− Ŝe1

) +
1− Ŝp1

r Ŝp1

+
Ŝe1

s
(
1− Ŝe1

) +
1− Ŝp1

r Ŝp1

.

The book by Pepe [10] discusses the confidence interval obtained from the regression model.

3.2. Logarithmic interval

Roldán-Nofuentes and Luna [12] studied a hypothesis test to compare the positive
(negative) LRs of two BDTs subject to a paired design. These hypothesis tests are based on
the transformation of the Napierian logarithm of the ratio between the two positive (negative)
LRs, i.e., H0: ln(ω) = 0 vs H1: ln(ω) 6= 0, where ω is ω+ = LR+

1 /LR+
2 or ω−= LR−1 /LR−2 , and

the test statistic is

(3.7)
ln(ω̂)√

V̂ar
[
ln(ω̂)

] → N(0,1) ,
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where V̂ar
[
ln(ω̂)

]
is an unrestricted estimator of the variance and is calculated applying the

delta method (see Appendix A), i.e.

(3.8) Var
[
ln(ω̂)

]
≈

Var
(
L̂R1

)
LR2

1

+
Var
(
L̂R2

)
LR2

2

−
2 Cov

(
L̂R1, L̂R2

)
LR1LR2

,

and substituting in this expression each parameter with its estimator. Inverting the test

statistic (3.7), it holds that the CI for ln(ω) is ln(ω̂)± z1−α/2

√
V̂ar
[
ln(ω̂)

]
. Finally, the

logarithmic CI for ω is

(3.9) ω̂ × exp
{
± z1−α/2

√
V̂ar
[
ln(ω̂)

]}
.

Roldán-Nofuentes and Luna studied the size (and the power) of the test H0 : ln(ω) = 0 through
simulation experiments. As the logarithmic interval (3.9) is obtained by inverting the test
statistic (3.7), the coverage probability of this interval is equal to 1 minus the type I error
obtained in the simulations carried out by Roldán-Nofuentes and Luna, and therefore the
results are equivalent.

3.3. Wald CI

The Wald interval ([15]) is a classic interval for a parameter. Assuming the asymptotic
normality of ω̂, i.e. ω̂ −−−→

n→∞
N
[
ω, Var(ω)

]
, the Wald CI for ω is

(3.10) ω̂

1 ± z1−α/2

√√√√V̂ar
(
L̂R1

)
L̂R

2

1

+
V̂ar
(
L̂R2

)
L̂R

2

2

−
2 Ĉov

(
L̂R1, L̂R2

)
L̂R1 L̂R2

 .

3.4. Fieller CI

The Fieller method ([5]) is a classic method used to calculate a CI for the ratio
of two parameters, and requires us to assume that the estimators are distributed accord-
ing to a bivariate normal distribution. Therefore, assuming the bivariate normality, i.e.(
L̂R1, L̂R2

)>−−−→
n→∞

N
[
(LR1,LR2)>,ΣLR

]
, where

ΣLR =

(
Var(LR1) Cov(LR1,LR2)

Cov(LR1,LR2) Var(LR2)

)
,

and, applying the Fieller method, it is verified that

L̂R1 − ω L̂R2 −−−→
n→∞

N
(
0, Var(LR1)− 2 ω Cov(LR1,LR2) + ω2 Var(LR2)

)
.

The Fieller CI is obtained by searching for the set of values for ω that satisfy the inequality(
L̂R1 − ω L̂R2

)2
V̂ar
(
L̂R1

)
− 2 ω Ĉov

(
L̂R1, L̂R2

)
+ ω2 V̂ar

(
L̂R2

) < z2
1−α/2 .
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Solving this inequation, the Fieller CI for ω is
(3.11)

L̂R1L̂R2− σ̂12 z2
1−α/2 ±

√(
L̂R1L̂R2 − σ̂12 z2

1−α/2

)2
−
(
L̂R

2

1− σ̂11 z2
1−α/2

)(
L̂R

2

2− σ̂22 z2
1−α/2

)
(
L̂R

2

2− σ̂22 z2
1−α/2

) ,

where σ̂ii = V̂ar
(
L̂Ri

)
and σ̂12 = Ĉov

(
L̂R1, L̂R2

)
. This interval is valid when

(
L̂R1L̂R2−

σ̂12 z2
1−α/2

)2
>
(
L̂R

2

1− σ̂11 z2
1−α/2

)(
L̂R

2

2− σ̂22 z2
1−α/2

)
and L̂R

2

2− σ̂22 z2
1−α/2 6= 0.

3.5. Bootstrap CI

The Bootstrap method is one which is widely used for the estimation of parameters.
The Bootstrap CI is calculated generating B random samples with replacement from the sam-
ple sized n, and then a CI is calculated. For the interval, we considered the bias-corrected
Bootstrap CI ([4]). For each one of the B samples with replacement, we calculate the esti-
mators of the LRs and of ω, i.e. L̂R1Bi, L̂R2Bi and ω̂Bi, with i = 1, ..., B. The parameter ω is
estimated as the average of the B Bootstrap estimations, i.e.

̂̄ωB =
1
B

B∑
i=1

ω̂Bi .

Let A = #(ω̂Bi < ω̂) be the number of samples in which the Bootstrap estimator ω̂Bi is lower
than the maximum likelihood estimator ω̂. Let ẑ0 = Φ−1(A/B), where Φ−1(·) is the inverse
function of the standard normal cumulative distribution function. Let q1 = Φ(2 ẑ0 − z1−α/2)
and q2 = Φ(2 ẑ0 + z1−α/2), then the bias-corrected Bootstrap CI is

(3.12)
(
ω̂

(q1)
B , ω̂

(q2)
B

)
,

where ω̂
(q)
B is the q-th quantile of the distribution of the B Bootstrap estimations of ω.

The bias-corrected bootstrap CI is consistent, as it verifies ([13]) that P
[√

n (ω̂n−ω) ≤ x
]
−

PB

[√
n (ω̂B,n− ω̂n) ≤ x

]
converges in probability to zero when the sample size is very large

(n →∞) for every value x, where PB is the bootstrap distribution and ω̂B,n is the upper
(lower) limit of the bootstrap CI.

3.6. Bayesian CI

The previous CIs are all frequentists, the problem can also be addressed from a Bayesian
perspective. Conditioning on D = 1, i.e. on the individuals who have the disease, it is verified
that s11+ s10 → B(s,Se1) and that s11+ s01 → B(s,Se2). Conditioning on D = 0 it is verified
that r01+ r00 → B(r,Sp1) and that r10 + r00 → B(r,Sp2). Considering the distribution of the
BDT 1, the estimators of its sensitivity and specificity are Ŝe1 = s11+s10

s and Ŝp1 = r01+r00
r ,

which are estimators of binomial proportions. In a similar way, the estimators Ŝe2 = s11+s01
s
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and Ŝp2 = r10+r00
r are also estimators of binomial proportions. Therefore, for these estimators,

conjugate beta prior distributions are proposed, i.e.

(3.13) Ŝeh → Beta(αSeh
, βSeh

) and Ŝph → Beta(αSph
, βSph

) ,

with h = 1, 2. Let n = (s11, s10, s01, s00, r11, r10, r01, r00) be the vector of observed frequencies,
then the posteriori distributions for the estimators of the sensitivity and the specificity of the
BDT 1 are

Ŝe1 |n → Beta
(
s11+ s10 +αSe1 , s01+ s00 +βSe1

)
(3.14)

and

Ŝp1 |n → Beta
(
r01+ r00 +αSp1

, r11+ r10 +βSp1

)
.(3.15)

In a similar way, the posteriori distributions for the estimators of the sensitivity and the
specificity of the BDT 2 are

Ŝe2 |n → Beta
(
s11+ s01+αSe2 , s10 + s00 +βSe2

)
(3.16)

and

Ŝp2 |n → Beta
(
r10 + r00 +αSp2

, r11+ r01+βSp2

)
.(3.17)

Once all the distributions have been defined, the posteriori distribution for the LRs of each
BDT, and for ω+ and ω−, can be approximated by applying the Monte Carlo method ([2]).
This method consists of generating M random values of the posteriori distributions given
in equations (3.13) to (3.17). In each interaction the generated values of sensitivities (Ŝehi)
and specificities (Ŝphi) are plugged in the equations L̂R

+

hi =
cSehi

1−cSphi

and L̂R
−
hi = 1−cSehi

cSphi

, and

from these each ratio ω̂i is calculated. As an estimator of each ratio, the average of the

M Bayesian estimations is calculated, i.e. ̂̄ωBa = 1
M

M∑
i=1

ω̂i. Finally, from the M values ω̂i

a CI based on the quantiles is calculated, i.e. the 100×(1−α)% CI for ω is

(3.18)
(
ω̂

(α/2)
Ba , ω̂

(1−α/2)
Ba

)
,

where ω̂
(q)
Ba is the q-th quantile of the distribution of the M Bayesian estimations ω̂i.

All of the CIs presented are for ω = LR1/LR2. If we want to calculate the CI for
LR2/LR1 (= ω′ = 1/ω), the regression, logarithmic, Fieller, Bootstrap and Bayesian intervals
are obtained by calculating the inverse of each boundary of the corresponding interval for ω.
Nevertheless, the Wald CI for ω′ is obtained from the Wald CI for ω dividing each boundary
by ω̂2, i.e. if (Lω, Uω) is the Wald CI for ω then the Wald CI for ω′ = 1/ω is

(
Lω/ω̂2, Uω/ω̂2

)
.

4. SIMULATION EXPERIMENTS

Monte Carlo simulation experiments were carried out to study the coverage probabil-
ity (CP) and the average length (AL) of each one of the CIs presented in the Section 3.
For this purpose, N = 10,000 random samples of multinomial distributions with sizes n =
{50, 100, 200, 300, 400, 500, 1000} were generated, and their probabilities were calculated from
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equations (3.1) and (3.2). As sensitivity and specificity of each BDT, the values Seh,Sph =
{0.70, 0.75, ..., 0.90, 0.95} were taken, which are realistic values in clinical practice, and the
LRs were calculated with the equations LR+

h = Seh/(1−Sph) and LR−h = (1−Seh)/Sph with
h = 1, 2. For the disease prevalence, π = {10%, 25%, 50%} was considered, and for the de-
pendence factors ε1 and ε0 intermediate values (50% of the maximum value of each εi) and
high values (80% of the maximum value of each εi) were taken, i.e.

ε1 = k ×Min
{
Se1(1−Se2), Se2(1−Se1)

}
and

ε0 = k ×Min
{
Sp1(1−Sp2), Sp2(1−Sp1)

}
,

where k = {0.50, 0.80}. Once the value of the parameters in each scenario was set, the
probabilities of each multinomial distribution were calculated by substituting the value of the
parameters in equations (3.1) and (3.2).

For the Bootstrap interval, for each one of the N random samples generated, B = 2, 000
replacement samples were generated in turn, and from the B replacement samples the bias-
corrected bootstrap CI was calculated through the method described in Section 3.5.

Regarding the Bayesian CI, for the estimators of the two sensitivities and of the two
specificities, the Beta(1,1) distribution was considered as prior distribution. The choice of
this distribution is justified by the fact that it is a non-informative distribution, which is flat
for every possible value of the sensitivities and the specificities, and it has a minimum impact
on the posteriori distributions. Moreover, for each one of the N generated random samples,
M = 10,000 random samples were generated in turn, and from the M samples the Bayesian
CI was been calculated by applying the method described in Section 3.6.

The simulation experiments were designed so that in every random sample generated,
it is possible to estimate all the parameters and their variances-covariances. Therefore, if a
parameter could not be estimated in a sample (for example, Ŝeh = 0) then that sample was
discarded and another one was generated in its place. This problem mainly occurred in the
samples with n = 50. In each one of the scenarios considered (values set for Seh, Sph, π, ε1

and ε0) the CP and the AL were calculated for each one of the six CIs for ω+ and ω−. The CP
of each CI was calculated as the quotient between the number of intervals that contained the
parameter (ω+ or ω−, depending on the case) and the number of samples generated N , and
the AL was calculated adding the length of the N intervals and dividing this number by N .
As the confidence level we took 95%.

The comparison of the asymptotic behaviour of the CIs was made following the criterion
based on whether the CI“fails”or“does not fail” for a confidence of 95%. This criterion, which
has been used by other authors [11, 7, 8, 9], establishes that a CI fails (or does not fail) if
its coverage probability is ≤ 93% (> 93%). The selection of the CI with the best asymptotic
behaviour was made through the following steps:

1) Choose the CIs with the fewest failures;

2) Choose the CIs which are the most accurate, i.e. those with least AL, and among
these those which have a CP closest to 95%.

This method is justified in Appendix B.



Comparison of the Likelihood Ratios of Two Diagnostic Tests Subject to a Paired Design... 585

4.1. Positive LRs

Tables 2 and 3 show some of the results obtained for the intervals of ω+, considering
two different scenarios of sensitivities and specificities. In these tables, failures are indicated
in bold type. From the results of the experiments, the following conclusions are reached:

a) Regression CI. The CI obtained applying the regression method does not fail, and
it has a CP of 100% or very close to this value. In general terms, its AL is larger
than that of the rest of the intervals.

b) Logarithmic CI. The logarithmic CI does not fail. In very general terms, when the
sample size is small (n = 50) or moderate (n = 100) its CP is 100% or very near to
this value. When the sample size is large (n = 200− 400) or very large (n ≥ 500)
its CP fluctuates around 95%. The AL of this interval is lower than that of the
interval calculated through regression.

c) Wald CI. When ω+ 6= 1, this interval may fail if n ≤ 100 and the prevalence is
moderate (π = 25%) or large (π = 50%), whereas if n ≥ 200 the interval does not
fail. When ω+ = 1 the interval does not fail. In situations in which the Wald CI
does not fail, its CP and AL are very similar to those of the logarithmic CI.

d) Fieller CI. The Fieller CI does not fail. In general terms, its CP is 100% or
very close to this value when n ≤ 100. When n ≥ 200 its CP behaves in a very
similar way to the CP of the logarithmic and Wald intervals (and the ALs are very
similar). Therefore, when n ≥ 200, the behaviour of the Fieller CI is very similar
to the logarithmic and Wald intervals.

e) Bootstrap CI. In very general terms, when n≤ 100 this interval may fail if ω+ 6= 1
or its CP is equal (or very near) to 100% if ω+ = 1. When n ≥ 200, the Bootstrap
CI does not fail, its CP fluctuates around 95% and its AL is very similar to that of
the logarithmic, Wald and Fieller intervals. Therefore, when n ≥ 200 the Bootstrap
interval has an asymptotic behaviour which is very similar to that of logarithmic,
Wald and Fieller intervals.

f) Bayesian CI. The Bayesian CI does not fail and has a CP and an AL which are
very similar to those of the interval obtained by regression. The CP and the AL of
the Bayesian interval are almost always higher than those of the logarithmic, Wald,
Fieller and Bootstrap intervals.
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Table 2: Coverage probabilities (%) and average lengths of the CIs
for the ratio of the two positive LRs (I).

LR+
1 = 9.5, LR+

2 = 4.5, LR−1 = 0.056, LR−2 = 0.125, ω+ = 2.111, ω− = 0.444,
Se1 = 0.95, Sp1 = 0.90, Se2 = 0.90, Sp2 = 0.80

Regression Logarithmic Wald Fieller Bootstrap Bayesian
n

CP AL CP AL CP AL CP AL CP AL CP AL

π = 10%, ε1 = 0.0225, ε0 = 0.0400

50 99.95 7.06 99.40 5.72 97.20 4.53 100 8.93 98.30 3.69 99.90 5.90
100 99.25 5.73 97.90 4.75 97.40 4.16 99.80 5.64 98.50 3.09 99.10 5.42
200 99.40 3.04 96.85 2.49 96.60 2.38 97.90 2.61 96.90 2.52 99.30 3.04
300 98.90 2.26 96.15 1.86 96.10 1.81 96.85 1.90 95.60 1.89 99.00 2.27
400 99.10 1.86 95.90 1.53 95.85 1.50 96.10 1.55 95.80 1.55 99.15 1.86
500 98.50 1.61 95.55 1.33 95.45 1.31 95.90 1.35 95.05 1.34 98.35 1.62

1000 98.20 1.07 95.45 0.89 95.30 0.88 95.65 0.89 95.35 0.90 98.20 1.08

π = 10%, ε1 = 0.0360, ε0 = 0.0640

50 99.95 6.54 99.10 4.78 95.50 3.93 99.95 7.74 91.80 2.72 99.95 5.48
100 99.90 5.15 98.60 3.76 96.55 3.39 99.45 4.57 95.60 2.51 99.90 4.91
200 99.60 2.93 96.90 2.09 96.00 2.01 98.15 2.19 96.35 1.95 99.55 2.93
300 99.65 2.21 96.30 1.57 95.90 1.53 97.25 1.61 96.00 1.53 99.60 2.22
400 99.80 1.82 95.90 1.30 95.95 1.28 97.10 1.32 96.30 1.28 99.85 1.83
500 99.75 1.59 95.80 1.13 95.75 1.12 96.35 1.15 95.65 1.13 99.80 1.60

1000 99.55 1.07 95.45 0.76 95.35 0.76 95.70 0.77 95.50 0.76 99.60 1.08

π = 25%, ε1 = 0.0225, ε0 = 0.0400

50 99.85 6.04 97.80 4.89 91.30 3.95 99.90 6.38 93.60 3.28 99.65 5.49
100 99.50 5.19 97.90 4.28 95.05 3.74 99.40 4.52 97.45 2.72 99.35 4.90
200 98.45 2.96 95.60 2.44 94.75 2.32 97.30 2.50 95.90 2.62 98.40 2.91
300 98.45 2.28 95.45 1.88 95.25 1.83 97.05 1.91 94.95 2.03 98.30 2.25
400 99.00 1.91 96.10 1.59 95.95 1.55 96.65 1.60 95.60 1.68 98.85 1.90
500 98.55 1.65 95.60 1.37 95.25 1.35 96.15 1.38 95.55 1.43 98.55 1.65

1000 98.30 1.14 95.15 0.95 94.90 0.94 95.30 0.95 94.65 0.97 98.35 1.14

π = 25%, ε1 = 0.0360, ε0 = 0.0640

50 100 5.77 96.80 4.21 91.50 3.50 99.65 5.56 83.55 2.31 100 5.25
100 99.85 4.45 95.40 3.19 91.85 2.88 97.15 3.45 89.15 2.20 99.80 4.25
200 99.60 2.85 96.15 2.02 94.00 1.95 96.40 2.08 94.85 1.93 99.60 2.80
300 99.40 2.23 94.15 1.59 94.10 1.55 95.15 1.62 94.10 1.60 99.40 2.21
400 99.55 1.87 94.95 1.32 94.85 1.30 95.15 1.34 94.65 1.35 99.50 1.85
500 99.15 1.66 94.85 1.18 94.75 1.16 95.70 1.19 95.05 1.21 99.15 1.65

1000 99.50 1.14 95.00 0.81 95.15 0.81 95.70 0.82 94.90 0.83 99.30 1.14

π = 50%, ε1 = 0.0225, ε0 = 0.0400

50 99.75 5.98 96.75 4.88 89.35 3.97 99.75 6.11 86.45 4.31 99.55 5.39
100 99.60 5.91 96.35 4.87 92.20 3.80 98.90 5.22 94.45 3.81 99.40 5.38
200 98.85 3.78 95.90 3.13 94.15 2.89 97.70 3.21 96.85 3.10 98.70 3.65
300 98.50 2.87 95.00 2.38 94.70 2.26 96.40 2.41 95.40 2.61 98.30 2.82
400 98.50 2.40 95.35 1.99 95.05 1.92 96.80 2.02 94.65 2.20 98.25 2.37
500 98.35 2.08 95.80 1.72 95.45 1.68 95.25 1.74 95.25 1.88 98.20 2.06

1000 97.50 1.41 94.55 1.17 94.80 1.15 95.50 1.17 93.80 1.22 97.60 1.40

π = 50%, ε1 = 0.0360, ε0 = 0.0640

50 99.90 5.47 94.15 4.03 88.70 3.28 99.20 5.26 67.35 2.89 99.80 4.97
100 99.85 5.20 93.80 3.80 91.40 3.22 96.65 4.24 78.55 2.43 99.75 4.79
200 99.70 3.45 93.75 2.47 93.65 2.32 93.70 2.56 89.75 2.15 99.45 3.34
300 99.55 2.72 94.65 1.93 94.45 1.86 94.65 1.98 94.10 1.90 99.55 2.67
400 99.65 2.33 95.15 1.66 94.90 1.62 95.45 1.69 95.35 1.69 99.65 2.31
500 99.45 2.06 95.55 1.46 95.15 1.43 95.25 1.48 96.00 1.51 99.20 2.04

1000 99.20 1.40 94.75 1.00 94.80 0.99 94.85 1.00 94.80 1.03 99.25 1.40
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Table 3: Coverage probabilities (%) and average lengths of the CIs
for the ratio of the two positive LRs (II).

LR+
1 = 6, LR+

2 = 6, LR−1 = 0.118, LR−2 = 0.118, ω+ = 1, ω− = 1,
Se1 = 0.90, Sp1 = 0.85, Se2 = 0.90, Sp2 = 0.85

Regression Logarithmic Wald Fieller Bootstrap Bayesian
n

CP AL CP AL CP AL CP AL CP AL CP AL

π = 10%, ε1 = 0.0450, ε0 = 0.0638

50 99.95 3.61 99.50 2.51 99.85 2.18 100 4.67 100 1.96 99.95 3.16
100 99.80 2.38 97.75 1.65 97.90 1.52 98.85 2.37 98.60 1.51 99.75 2.33
200 99.65 1.33 96.40 0.92 96.90 0.89 97.65 1.02 97.00 0.91 99.60 1.35
300 99.65 1.00 96.25 0.70 96.45 0.68 97.90 0.74 96.75 0.69 99.70 1.01
400 99.65 0.84 95.60 0.58 96.00 0.58 96.95 0.61 96.10 0.58 99.65 0.84
500 99.50 0.72 95.30 0.51 95.70 0.50 96.35 0.52 95.70 0.51 99.60 0.73

1000 99.25 0.48 94.65 0.34 94.30 0.34 95.15 0.35 94.80 0.34 99.25 0.49

π = 10%, ε1 = 0.0720, ε0 = 0.1020

50 100 3.18 100 1.79 99.90 1.62 100 3.65 100 1.43 100 2.77
100 100 2.19 99.85 1.11 99.75 1.06 100 1.58 99.95 0.99 100 2.15
200 100 1.28 98.15 0.60 98.20 0.59 98.75 0.67 98.55 0.57 100 1.29
300 100 0.98 97.05 0.45 97.15 0.45 97.45 0.48 97.95 0.43 100 0.98
400 100 0.82 96.85 0.37 96.90 0.37 97.05 0.39 97.15 0.37 100 0.82
500 100 0.71 96.30 0.33 96.40 0.32 96.80 0.34 96.65 0.32 100 0.72

1000 100 0.49 95.80 0.22 95.80 0.22 96.15 0.22 96.32 0.22 100 0.49

π = 25%, ε1 = 0.0450, ε0 = 0.0638

50 99.90 3.24 99.35 2.25 99.55 1.97 100 3.58 99.95 1.81 99.85 3.06
100 99.65 2.05 96.95 1.39 96.95 1.30 100 1.78 99.15 1.38 99.75 2.00
200 99.30 1.24 95.00 0.86 94.85 0.84 98.45 0.94 95.00 0.90 99.15 1.23
300 99.70 0.97 94.45 0.68 94.10 0.66 97.35 0.71 94.20 0.70 99.65 0.96
400 99.45 0.82 95.55 0.57 94.85 0.57 97.10 0.60 95.05 0.59 99.35 0.82
500 99.45 0.73 94.70 0.51 94.15 0.50 96.15 0.53 94.25 0.52 99.40 0.72

1000 99.60 0.51 95.45 0.36 95.25 0.36 95.85 0.36 95.15 0.36 99.50 0.51

π = 25%, ε1 = 0.0720, ε0 = 0.1020

50 100 2.80 100 1.49 99.85 1.38 100 2.51 100 1.27 100 2.66
100 100 1.93 99.30 0.89 99.25 0.86 100 1.15 100 0.82 100 1.89
200 100 1.21 96.95 0.53 96.50 0.53 98.70 0.59 98.30 0.53 100 1.20
300 100 0.96 95.85 0.42 95.65 0.42 96.75 0.45 97.65 0.42 100 0.95
400 100 0.82 95.35 0.36 94.95 0.36 96.30 0.38 96.35 0.37 100 0.82
500 100 0.73 95.25 0.32 95.25 0.32 95.90 0.33 95.80 0.33 100 0.73

1000 100 0.50 95.25 0.22 95.25 0.22 95.70 0.23 95.40 0.23 100 0.50

π = 50%, ε1 = 0.0450, ε0 = 0.0638

50 99.95 3.27 99.95 2.27 99.60 1.97 100 3.54 100 1.67 99.95 3.06
100 100 2.51 98.90 1.69 97.65 1.52 100 2.39 99.85 1.50 99.85 2.39
200 99.55 1.54 95.60 1.06 94.30 1.01 98.80 1.22 96.45 1.12 99.35 1.51
300 99.35 1.20 96.00 0.83 95.10 0.81 97.70 0.90 95.65 0.86 99.25 1.19
400 99.55 1.02 95.40 0.71 95.40 0.69 96.10 0.75 95.55 0.74 99.50 1.01
500 99.55 0.89 95.20 0.62 94.75 0.61 96.20 0.65 94.15 0.64 99.50 0.89

1000 99.55 0.61 94.40 0.43 94.75 0.43 95.75 0.44 94.25 0.44 99.50 0.61

π = 50%, ε1 = 0.0720, ε0 = 0.1020

50 100 2.81 100 1.50 99.95 1.38 100 2.58 100 1.24 100 2.66
100 100 2.25 99.90 1.05 99.70 1.00 100 1.51 100 0.94 100 2.16
200 100 1.49 99.20 0.66 98.45 0.65 99.95 0.77 99.95 0.64 100 1.47
300 100 1.17 97.70 0.51 97.05 0.50 99.50 0.56 99.45 0.51 100 1.16
400 100 1.00 96.50 0.43 96.40 0.43 98.55 0.46 97.95 0.44 100 0.99
500 100 0.89 95.75 0.39 95.35 0.38 97.55 0.40 96.80 0.39 100 0.88

1000 99.95 0.61 95.55 0.27 95.25 0.27 96.65 0.28 95.60 0.27 99.95 0.61
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4.2. Negative LRs

Tables 4 and 5 show some of the results obtained for ω− considering the same scenarios
as for ω+. Failures are indicated in bold type. From the results, the following conclusions
are obtained:

a) Regression CI. This interval has an asymptotic behaviour which is very similar to
that of the same interval for ω+.

b) Logarithmic CI. In general terms, this interval can fail when ω+ 6= 1 and the
dependence factors are high, whatever the sample size may be. This interval does
not fail when ω+ = 1, and its CP is 100% or very near to this value when n ≤ 100,
and even with n ≥ 200 if the prevalence is small. When this interval does not fail,
its AL is lower than that of the interval obtained through regression.

c) Wald CI. The Wald CI does not fail, and its CP is 100% (or very near) when
n ≤ 100, and its CP fluctuates around 95% when n ≥ 200. The AL of the Wald CI
is slightly lower than that of the logarithmic CI (when this does not fail), and its
CP shows better fluctuations around 95% than that of the logarithmic interval.

d) Fieller CI. This interval does not show any failures. In very general terms, the
Fieller CI has a very similar CP to that of the Wald CI when ω+ 6= 1. When
ω+ = 1, the CP of the Fieller CI is 100% (or near) when n ≤ 100, and fluctuates
around 95% if n ≥ 200. Its AL is greater than that of the Wald CI, especially when
n ≤ 500.

e) Bootstrap CI. This interval has many failures when ω+ 6= 1, especially when the
prevalence is small or moderate, and regardless of the sample size. When ω+ = 1,
the interval does not fail, and its CP is greater than that of the Wald CI or the
logarithmic CI, especially when the prevalence is small or moderate. Regarding the
Fieller CI, the CP of the Bootstrap interval is very similar to that of the Fieller
interval, and its AL is slightly lower than that of the Fieller CI, especially for
n ≤ 500.

f) Bayesian CI. The same as for ω+, the Bayesian CI for ω− does not fail and has
a CP and an AL which are very similar to those of the interval obtained through
regression. The same as for ω+, the CP and the AL of the Bayesian interval are
higher than those of the logarithmic, Wald, Fieller and Bootstrap intervals.
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Table 4: Coverage probabilities (%) and average lengths of the CIs
for the ratio of the two negative LRs (I).

LR+
1 = 9.5, LR+

2 = 4.5, LR−1 = 0.056, LR−2 = 0.125, ω+ = 2.111, ω− = 0.444,
Se1 = 0.95, Sp1 = 0.90, Se2 = 0.90, Sp2 = 0.80

Regression Logarithmic Wald Fieller Bootstrap Bayesian
n

CP AL CP AL CP AL CP AL CP AL CP AL

π = 10%, ε1 = 0.0225, ε0 = 0.0400

50 99.95 2.07 97.30 1.65 96.85 1.27 99.50 2.71 14.80 1.79 99.75 1.90
100 99.90 2.02 96.60 1.59 96.05 1.17 99.60 2.49 35.50 1.83 99.85 1.81
200 99.95 1.99 96.15 1.42 95.90 1.09 99.55 2.40 53.70 1.68 99.85 1.79
300 99.85 1.81 95.45 1.30 95.15 1.03 99.05 1.99 75.95 1.59 99.75 1.65
400 99.85 1.67 96.55 1.23 95.55 0.97 99.10 1.75 86.05 1.55 99.75 1.54
500 99.80 1.62 96.95 1.20 95.95 0.96 98.80 1.70 88.80 1.48 99.60 1.50

1000 99.55 1.22 96.90 0.93 95.90 0.81 97.85 1.16 95.80 1.05 99.45 1.16

π = 10%, ε1 = 0.0360, ε0 = 0.0640

50 100 2.18 92.60 1.63 99.95 1.31 99.50 2.83 5.50 1.70 100 2.01
100 100 2.11 90.85 1.53 98.90 1.19 99.25 2.57 17.25 1.66 100 1.96
200 100 2.16 91.15 1.38 98.35 1.12 99.25 2.48 33.00 1.53 100 1.91
300 99.95 1.94 90.20 1.21 97.60 1.01 98.10 2.02 54.45 1.43 99.90 1.78
400 99.95 1.76 92.40 1.13 97.10 0.95 97.65 1.64 65.25 1.39 99.90 1.63
500 99.90 1.68 92.80 1.09 96.10 0.91 97.85 1.55 70.45 1.35 99.85 1.56

1000 99.90 1.22 93.40 0.79 95.60 0.71 97.45 0.97 84.65 0.93 99.80 1.16

π = 25%, ε1 = 0.0225, ε0 = 0.0400

50 100 2.06 97.80 1.56 96.35 1.18 99.30 2.66 34.05 1.86 99.75 1.87
100 100 1.87 96.20 1.34 95.95 1.04 99.65 2.13 64.85 1.67 99.80 1.70
200 99.65 1.64 96.00 1.22 95.80 0.98 98.00 1.77 89.30 1.50 99.60 1.52
300 99.50 1.44 95.95 1.07 95.60 0.90 97.40 1.46 93.15 1.28 99.45 1.35
400 99.10 1.21 95.75 0.93 95.40 0.81 96.55 1.16 95.35 1.05 98.90 1.15
500 99.50 1.06 95.55 0.82 95.45 0.73 96.00 0.97 95.60 0.89 99.20 1.01

1000 98.60 0.65 95.20 0.52 95.15 0.50 94.65 0.55 95.55 0.52 98.45 0.64

π = 25%, ε1 = 0.0360, ε0 = 0.0640

50 100 2.13 91.90 1.48 99.90 1.19 99.30 2.60 18.35 1.71 99.95 1.95
100 100 2.07 90.35 1.29 99.00 1.08 98.45 2.31 37.80 1.53 99.95 1.89
200 99.85 1.71 91.65 1.09 96.55 0.92 97.40 1.58 67.35 1.35 99.80 1.59
300 99.85 1.48 92.25 0.95 96.35 0.82 97.15 1.28 77.20 1.14 99.75 1.39
400 99.85 1.26 91.90 0.81 95.90 0.72 96.85 1.02 82.05 0.94 99.85 1.20
500 99.85 1.06 92.70 0.69 95.70 0.63 96.35 0.80 87.20 0.77 99.65 1.02

1000 99.50 0.65 94.45 0.43 95.35 0.42 96.20 0.45 94.40 0.44 99.55 0.64

π = 50%, ε1 = 0.0225, ε0 = 0.0400

50 99.90 1.82 97.65 1.35 99.90 1.07 99.60 2.13 71.70 1.76 99.85 1.69
100 99.85 1.67 96.35 1.23 99.30 0.98 99.05 1.82 84.60 1.56 99.80 1.55
200 99.70 1.23 97.10 0.94 96.95 0.81 98.00 1.19 96.05 1.07 99.60 1.17
300 98.75 0.92 96.25 0.73 94.40 0.66 95.60 0.81 97.25 0.76 98.50 0.89
400 98.55 0.75 95.45 0.60 94.45 0.56 95.25 0.64 96.80 0.61 98.60 0.73
500 98.15 0.66 94.35 0.53 94.40 0.50 94.10 0.55 95.05 0.53 97.80 0.65

1000 98.65 0.44 95.20 0.35 95.20 0.35 94.80 0.36 94.35 0.36 98.45 0.43

π = 50%, ε1 = 0.0360, ε0 = 0.0640

50 100 1.90 92.35 1.25 99.30 1.04 98.35 2.01 47.90 1.60 99.95 1.77
100 100 1.74 92.05 1.11 97.80 0.93 97.80 1.63 60.20 1.43 99.95 1.62
200 100 1.26 93.55 0.82 96.30 0.73 97.45 1.02 81.85 0.97 99.90 1.20
300 99.65 0.94 94.70 0.62 95.15 0.58 96.65 0.70 90.15 0.67 99.50 0.91
400 99.70 0.77 94.55 0.51 95.30 0.48 95.95 0.54 93.10 0.52 99.50 0.75
500 99.75 0.65 95.30 0.44 95.20 0.42 95.85 0.46 94.80 0.44 99.55 0.64

1000 99.65 0.43 95.75 0.30 94.80 0.29 95.40 0.30 96.30 0.29 99.55 0.43



590 J.A. Roldán-Nofuentes and S.B. Sidaty-Regad

Table 5: Coverage probabilities (%) and average lengths of the CIs
for the ratio of the two negative LRs (II).

LR+
1 = 6, LR+

2 = 6, LR−1 = 0.118, LR−2 = 0.118, ω+ = 1, ω− = 1,
Se1 = 0.90, Sp1 = 0.85, Se2 = 0.90, Sp2 = 0.85

Regression Logarithmic Wald Fieller Bootstrap Bayesian
n

CP AL CP AL CP AL CP AL CP AL CP AL

π = 10%, ε1 = 0.0450, ε0 = 0.0638

50 100 2.55 100 1.84 99.50 1.55 100 3.35 100 1.72 100 2.34
100 100 2.54 100 1.74 98.85 1.44 99.95 3.04 100 1.65 100 2.33
200 100 2.52 100 1.58 95.90 1.36 99.90 3.01 100 1.56 100 2.32
300 100 2.48 100 1.52 93.85 1.34 99.60 2.70 100 1.52 100 2.31
400 100 2.39 99.65 1.51 93.15 1.32 99.20 2.53 100 1.51 99.90 2.26
500 100 2.35 99.65 1.43 94.35 1.31 99.05 2.45 100 1.50 100 2.25

1000 99.85 1.98 97.15 1.33 93.95 1.24 96.85 1.86 98.70 1.38 99.85 1.91

π = 10%, ε1 = 0.0720, ε0 = 0.1020

50 100 2.73 100 1.76 99.90 1.56 100 3.45 100 1.39 100 2.51
100 100 2.68 100 1.56 99.80 1.40 100 2.84 100 1.34 100 2.49
200 100 2.65 100 1.42 99.80 1.30 100 2.78 100 1.23 100 2.40
300 100 2.61 100 1.28 98.60 1.19 99.95 2.62 100 1.12 100 2.33
400 100 2.52 100 1.19 97.70 1.11 98.90 2.05 100 1.07 100 2.27
500 100 2.42 100 1.13 97.10 1.07 97.95 1.85 100 1.03 100 2.18

1000 100 1.91 99.80 0.85 96.80 0.82 97.15 1.16 100 0.80 100 1.85

π = 25%, ε1 = 0.0450, ε0 = 0.0638

50 100 2.56 100 1.72 98.20 1.46 100 3.23 100 1.67 100 2.40
100 100 2.51 100 1.53 95.45 1.35 99.85 2.91 100 1.55 99.95 2.35
200 99.95 2.40 99.50 1.50 93.90 1.31 98.90 2.57 99.95 1.53 99.90 2.20
300 99.85 2.26 98.55 1.48 94.65 1.25 98.00 2.35 99.75 1.47 99.80 2.15
400 99.70 1.98 96.95 1.33 93.05 1.19 96.20 1.85 98.20 1.37 99.55 1.92
500 99.55 1.74 95.20 1.18 92.35 1.10 94.55 1.50 96.40 1.24 99.40 1.70

1000 99.25 1.15 94.80 0.79 94.25 0.75 94.40 0.86 94.15 0.84 99.20 1.13

π = 25%, ε1 = 0.0720, ε0 = 0.1020

50 100 2.86 100 1.57 99.80 1.41 100 3.11 100 1.40 100 2.65
100 100 2.81 100 1.37 98.90 1.26 100 2.95 100 1.22 100 2.54
200 100 2.45 100 1.14 97.75 1.07 100 1.86 100 1.04 100 2.30
300 100 2.22 99.90 1.01 97.20 0.97 99.80 1.54 100 0.93 100 2.10
400 100 1.92 96.95 0.86 96.80 0.83 98.55 1.17 99.95 0.80 100 1.85
500 100 1.69 96.55 0.74 96.45 0.72 98.15 0.94 99.90 0.71 100 1.65

1000 100 1.13 96.05 0.49 95.95 0.48 96.50 0.53 98.45 0.49 100 1.10

π = 50%, ε1 = 0.0450, ε0 = 0.0638

50 100 2.45 100 1.59 95.50 1.40 99.90 2.80 100 1.65 99.95 2.31
100 99.95 2.42 99.25 1.56 94.70 1.35 99.00 2.69 99.95 1.55 99.90 2.25
200 99.80 2.01 96.90 1.34 93.30 1.25 96.20 1.89 98.85 1.37 99.70 1.94
300 99.65 1.57 96.75 1.08 94.30 1.05 96.30 1.29 97.20 1.15 99.60 1.54
400 99.70 1.32 95.40 0.91 94.65 0.88 95.20 1.02 95.20 0.97 99.70 1.30
500 99.70 1.17 95.10 0.81 94.90 0.78 94.70 0.88 94.20 0.85 99.65 1.15

1000 99.40 0.78 95.20 0.54 94.60 0.54 95.05 0.56 94.75 0.56 99.35 0.77

π = 50%, ε1 = 0.0720, ε0 = 0.1020

50 100 2.67 99.95 1.36 99.50 1.26 99.95 2.64 100 1.30 100 2.51
100 100 2.49 100 1.16 98.45 1.09 100 1.95 100 1.09 100 2.36
200 100 1.94 99.55 0.86 97.30 0.83 99.40 1.18 100 0.81 100 1.88
300 100 1.55 98.80 0.67 97.00 0.66 98.55 0.80 99.75 0.65 100 1.51
400 100 1.30 96.95 0.56 96.90 0.55 97.80 0.63 99.60 0.55 100 1.28
500 100 1.14 96.25 0.50 96.25 0.49 96.05 0.54 98.20 0.50 100 1.13

1000 100 0.78 95.35 0.34 95.10 0.34 95.35 0.35 95.30 0.35 100 0.77
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4.3. Rules of application

Considering the asymptotic behaviour of each one of the CIs studied, it is possible to
give some general rules of application for the CIs studied. These rules of application are for
the different scenarios considered in the simulation experiments, scenarios that correspond to
realistic values of prevalence, sensitivities and specificities in clinical practice. Based on the
sample size, which in practice is the only parameter set by the researcher, the rules are the
following:

a) For the ratio ω+, use the logarithmic CI, whatever the sample size may be, although
when n ≥ 200 we can also use the Wald, the Fieller and the Bootstrap intervals.

b) For the ratio ω−, use the Wald CI, whatever the sample size may be.

5. SAMPLE SIZE

An important question when comparing two parameters is the calculation of the sample
size necessary to compare the parameters with a determined error and power. In the context
of the comparison of the LRs, Roldán-Nofuentes and Luna [12] proposed a method to calculate
the sample size to solve the hypothesis test H0: ln (ω) = 0 vs H1: ln (ω) 6= 0. We then study
the same problem but from the perspective of the CIs. Therefore, we study the problem
of calculating the sample size necessary to estimate the ratio between the two LRs with a
precision δ and a confidence 100 (1− α) %. As in the previous sections, we consider that ω is
ω+ or ω−. Let us first consider the Wald CI, which can be applied both to estimate ω+ (with
n ≥ 200) and ω− (for any sample size). Based on the asymptotic normality of the estimator
of ω, it is verified that

ω̂ ∈ ω ± z1−α/2

√
Var(ω̂) ,

i.e. the probability of obtaining an estimator ω̂ is in this interval with a probability 100(1−α)%.
Let us consider that LR2 > LR1 and, therefore, that ω < 1 (the Wald interval will be lower
than one) and let δ be the precision set by the researcher. As it has been assumed that ω < 1,
then δ must be lower than one, and if we want to have a high level of precision then δ must be
a small value. The sample size n is calculated from the expression

(5.1) δ = z1−α/2 ω

√
Var
(
L̂R1

)
LR2

1

+
Var
(
L̂R2

)
LR2

2

−
2 Cov

(
L̂R1, L̂R2

)
LR1LR2

.

This equation is obtained from the Wald CI (equation (3.10)). Substituting the variances
and the covariance with their respective expressions given in equations (3.4) and clearing n

we obtain the expression of the sample size to estimate ω with a precision δ and a confidence
100 (1− α) %. For ω+ the equation of the sample size is

(5.2) n =
(

z1−α/2 ω+

δ

)2 [ 2∑
h=1

(
1−Seh

π Seh
+

Sph

π̄ (1−Sph)

)
− 2 ε1

π Se1Se2
− 2 ε0

π̄ (1−Sp1)(1−Sp2)

]
,

and for ω− is

(5.3) n =
(

z1−α/2 ω−

δ

)2 [ 2∑
h=1

(
Seh

π (1−Seh)
+

1−Sph

π̄ Sph

)
− 2 ε1

π (1−Se1)(1−Se2)
− 2 ε0

π̄ Sp1Sp2

]
.
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If it is considered that ω > 1 (and consequently the Wald CI is higher than one) the
BDTs can always be permuted and ω will then be lower than one. Another alternative
consists of setting a value for a precision δ′, in a similar way to the previous situation when
ω < 1, and then apply equation (5.2) or (5.3) considering δ = ω̂2δ′. As is explained at the
end of Section 3, this is due to the fact that if (Lω, Uω) is the Wald CI for ω = LR1/LR2 < 1
then the Wald CI for ω′ = 1/ω = LR2/LR1 is

(
Lω
bω2 , Uω

bω2

)
. It is easy to check that the calculated

value of the sample size n is the same both if ω < 1 (with precision δ) and if ω > 1 (with
precision δ = ω̂2δ′).

In order to be able to apply the previous equations, it is necessary to know the sensitivi-
ties, the specificities (and therefore the LRs, ω+ and ω−), the dependence factors between the
two BDTs (εi) and the prevalence (π). In practice, these values can be estimated from a pilot
sample or can be obtained from another similar study. Therefore, the method to calculate
the sample size requires us to know some estimations of the accuracy (Se and Sp) of each
BDT, of the dependence factors between the BDTs and of the disease prevalence, obtained
for example from a pilot study or from other previous studies. The method to calculate the
size of the sample consists of the following steps:

Step 1. Take a pilot sample sized n0 (in general terms, n0 ≥ 200 if ω+ is estimated to
then be able to calculate the Wald CI), and with this sample we calculate Ŝeh,
Ŝph (and therefore L̂Rh, ω̂+ and ω̂−), ε̂i and π̂. The Wald CI for ω is then

calculated, and if this interval has a precision δ, i.e. z1−α/2

√
V̂ar (ω̂) ≤ δ,

then the required precision has been reached; if not, go to the following step.

Step 2. Based on the estimations obtained in Step 1, calculate the sample size n

applying equation (5.2) or (5.3).

Step 3. Take the sample of n individuals (add n− n0 individuals to the initial pilot
sample), and from this new sample we calculate Ŝeh, Ŝph, ε̂i, π̂ and the Wald
CI. If the Wald CI has a precision δ, then the set precision has been achieved;
if not, consider the new sample to be a pilot sample (n0 = n) and go back to
Step 1.

This proposed procedure to calculate the sample size is iterative, and therefore it does
not guarantee that with the sample size calculated we can then estimate the parameter ω

with the required precision. Moreover, if the researcher sets a precision δ+ to estimate ω+ and
also sets a precision δ− to estimate ω−, once both sample sizes have been calculated through
the previous method, the researcher must take a sample size of at least the maximum of
the two sample sizes, to thus guarantee the precision in both estimations. In general, the
calculation of the sample size makes sense when the confidence interval for ω does not contain
the value one, since in this situation (the interval contains the value one) the equality of
both LRs is not rejected and it does not make sense to determine how much larger one LR is
compared to the other. Nevertheless, if the pilot sample is small (for example to estimate ω−)
and the Wald CI for ω− contains the value 1, it may be useful to calculate the sample size to
estimate the ω−. In this situation, the Wald CI for ω− will be very wide (as the pilot sample
is small) and may contain the value 1 even if LR−1 and LR−2 are different.

The calculation of the sample size depends on the estimations obtained from an initial pi-
lot sample. In order to study the effect that this sample has on the calculation of the sample size,
simulation experiments were carried out which were similar to those carried out in Section 4.
From the values of the parameters, we calculated the sample size n applying equation (5.2)
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or (5.3) depending on the case, taking a precision equal to 0.10, and we then generated N =
10,000 random samples of multinomial distributions sized n. In each one of the N random sam-
ples, we calculated the sample size n′i from the estimators calculated with the random sample,
and then calculated the average sample size n̄ =

∑
n′i
/
N and the relative bias RB(n′) =

(n̄−n)/n. Table 6 shows the results obtained for the scenarios considered in Tables 2 and 4
(ω 6= 1). From the results, it holds that the dependence factors εi have an important effect on the
calculation of the sample size, the sample size is smaller when the dependence factors are larger.
Moreover, the increase in the prevalence means an increase (decrease) in the sample size to
estimate ω+ (ω−). The relative biases obtained are very small, and therefore the sample sizes
calculated from equations (5.2) and (5.3) are robust. Consequently, the initial pilot sample
does not have an important effect on the determination of the sample size to estimate ω.

Table 6: Sample size to estimate ω.

LR+
1 = 9.5, LR+

2 = 4.5, LR−1 = 0.056, LR−2 = 0.125,

ω+ = 2.111, ω− = 0.444,

Se1 = 0.95, Sp1 = 0.90, Se2 = 0.90, Sp2 = 0.80

Sample size for ω+

π =10% π =25% π =50%

ε1 = 0.0225, ε0 = 0.0400

Sample size 958 1073 1571
Average sample size 981 1084 1597
Relative bias (%) 2.40 1.03 1.66

ε1 = 0.0360, ε0 = 0.0640

Sample size 701 786 1152
Average sample size 734 796 1160
Relative bias (%) 4.71 1.27 0.69

Sample size for ω−

π =10% π =25% π =50%

ε1 = 0.0225, ε0 = 0.0400

Sample size 14439 5793 2922
Average sample size 14715 5896 2966
Relative bias (%) 1.91 1.78 1.51

ε1 = 0.0360, ε0 = 0.0640

Sample size 10336 4147 2092
Average sample size 10482 4186 2118
Relative bias (%) 1.41 0.94 1.24

If the initial pilot sample has a small or moderate size, then in order to estimate ω+

we use the logarithmic CI. In this situation, the process is similar to the previous one,
and the sample size is calculated from the equation ln(δ) = z1−α/2

√
Var
[
ln(ω̂+)

]
, where the

expression of Var
[
ln(ω̂+)

]
is given in equation (3.8). Following a similar process to the

previous one, it holds that

(5.4) n =
(

z1−α/2

ln(δ)

)2 [ 2∑
h=1

(
1−Seh

πSeh
+

Sph

π̄ (1−Sph)

)
− 2 ε1

π Se1Se2
− 2 ε0

π̄ (1−Sp1)(1−Sp2)

]
.
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6. APPLICATIONS

The results obtained were applied to two real examples: a study of the diagnosis of
coronary disease and another study of the diagnosis of colorectal cancer.

6.1. Diagnosis of coronary disease

The results obtained were applied to the study of Weiner et al. [16] on the diagnosis
of coronary disease, which is a widely used study to illustrate statistical methods for the
estimation and comparison of parameters of BDTs. Weiner et al. studied the diagnosis of
coronary artery disease using as diagnostic tests the exercise test and the resting EKG, and
the coronary arteriography as a GS. Table 7 shows the frequencies obtained by applying the
three medical tests to a sample of 1,465 males, where T1 models the result of the exercise
test, T2 models the result of the resting EKG and D the result of the GS. Table 7 also shows
the estimations of the LRs (ω) and their standard errors (SE), as well as the CIs for ω+ and
ω−.

Table 7: Diagnosis of coronary disease.

Frequencies

T1 = 1 T1 = 0

T2 = 1 T2 = 0 T2 = 1 T2 = 0
Total

D = 1 224 591 32 176 1023
D = 0 35 80 41 286 442

Total 259 671 73 462 1465

Results

cSe ± SE cSp ± SE cLR
+
± SE cLR

−
± SE

Exercise test 0.797± 0.013 0.740± 0.021 3.065± 0.250 0.274± 0.019
Resting EKG 0.250± 0.014 0.828± 0.018 1.453± 0.171 0.906± 0.026

bp bε1 bε0 bω+ ± SE bω− ± SE

0.698 0.020 0.034 2.109± 0.273 0.302± 0.021

CIs for ω+

Regression CI Logarithmic CI Wald CI

(1.589, 2.786) (1.632, 2.713) (1.569, 2.639)

Fieller CI Bootstrap CI Bayesian CI

(1.647, 2.765) (1.501, 2.612) (1.668, 2.567)

CIs for ω−

Regression CI Logarithmic CI Wald CI

(0.263, 0.351) (0.265, 0.348) (0.262, 0.345)

Fieller CI Bootstrap CI Bayesian CI

(0.262, 0.346) (0.280, 0.348) (0.264, 0.343)
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For ω+, from any of the six CIs (all of them are greater than one) it holds that the
positive LR of the exercise test is significantly larger than the positive LR of the resting EKG,
i.e. a positive result in the exercise test is more indicative of the presence of the disease than a
positive result in the resting EKG. Interpreting the results of the logarithmic CI, the positive
LR of the exercise test is (with a confidence of 95%) a value between 1.632 and 2.713 times
larger than the positive LR of the resting EKG.

Regarding ω−, all of the CIs intervals (all are less than one) we reject the equality of the
two negative LRs, and it holds that a negative result for the resting EKG is more indicative
of the absence of the disease than a negative result of the exercise test. Interpreting the
Wald CI, the negative LR of the resting EKG is (with a confidence of 95%) a value between
2.872

(
= 0.262/0.3022

)
and 3.783

(
= 0.345/0.3022

)
times larger than the negative LR of the

exercise test.

Moreover, in order to illustrate the method to calculate the sample size, we are going
to consider that the researcher wants to estimate ω+ with a precision equal to 0.10, which
can be considered to be a high precision. The Wald CI for ω+ is (1.569, 2.639), and therefore
multiplying this interval by 1/(ω̂+)2 = 1/2.1092 it holds that the 95% Wald CI for ω′+ =
LR+

2 /LR+
1 is (0.353, 0.593), and the precision is 0.12. As 0.12 is higher than 0.10, it is

necessary to increase the sample size to estimate ω+ with the required precision. Setting the
confidence at 95% and taking δ = (ω̂+)2 δ′ = 2.1092×0.10 ≈ 0.445, applying equation (5.2) it
holds that n = 2, 146. Consequently, it is necessary to add 681 new individuals to the initial
sample of 1,465 individuals, and once the data are obtained it is necessary to check that the
required precision has been achieved.

6.2. Diagnosis of colorectal cancer

The results obtained were applied to a study of the diagnosis of colorectal cancer,
using as diagnostic tests Fecal Occult Blood Testing (FOBT) and Fecal Immunochemical
Testing (FIT), and the biopsy as the GS. Table 8 shows the results obtained by apply-
ing the three tests to a sample of 168 adult men with suspicious symptoms of the disease,
where the variable T1 models the result of the FOBT, T2 models the result of the FIT and
D models the result of the biopsy. This data came from a study carried out at the University
Hospital of Granada (Spain). Table 8 also shows the estimations of the LRs, their standard
errors and the confidence intervals for ω+ and ω−. Applying the rule given in Section 4.3, as
n = 168 < 200 the logarithmic CI for ω+ must be used in addition to the Wald CI for ω−.
For ω+, the logarithmic CI contains the value one, and therefore we do not reject the equal-
ity of both positive LRs. Regarding ω−, the Wald CI does not contain the value one, and
therefore we reject the equality of both negative LRs. Thus, a negative result for the FOBT
is more indicative of the presence of colorectal cancer than a negative result for the FIT.
The negative LR of the FOBT is (with a confidence of 95%) a value between 1.321 and
3.183 times larger than the negative LR of the FIT. The Wald CI for 1/ω− is (0.260, 0.628),
calculated as

(
1.321/2.2522, 3.183/2.2522

)
.
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In order to illustrate in this example the method of sample size calculation, let us
suppose that the researchers want to estimate 1/ω− with a precision equal to 0.10, or in
other words, to estimate ω− with a precision of 0.10× (ω̂−)2 = 0.10× 2.2522 ≈ 0.50. As with
the sample of 168 individuals the precision obtained with the Wald CI for ω− is 0.931 > 0.50,
or rather a precision equal to 0.184 (> 0.10) with the Wald CI for 1/ω−, then it is necessary
to calculate the sample size. Considering the sample of 168 individuals to be a pilot sample,
applying equation (5.3) it holds that n = 561. Therefore, 561 individuals are needed (we have
to add 393 to the sample of 168) in order to estimate ω− (1/ω−) with a precision equal to
0.50 (0.10) with a confidence of 95%.

Table 8: Diagnosis of colorectal cancer.

Frequencies

T1 = 1 T1 = 0

T2 = 1 T2 = 0 T2 = 1 T2 = 0
Total

D = 1 68 1 18 13 100
D = 0 4 2 1 61 68

Total 72 3 19 74 168

Results

cSe ± SE cSp ± SE cLR
+
± SE cLR

−
± SE

FOBT 0.690± 0.046 0.912± 0.034 7.841± 3.093 0.340± 0.052
FIT 0.860± 0.035 0.926± 0.032 11.622± 5.057 0.151± 0.038

bp bε1 bε0 bω+ ± SE bω− ± SE

0.595 0.087 0.052 0.675± 0.215 2.252± 0.475

CIs for ω+

Regression CI Logarithmic CI Wald CI

(0.212, 2.108) (0.356, 1.255) (0.254, 1.096)

Fieller CI Bootstrap CI Bayesian CI

(0.278, 2.277) (0.281, 1.283) (0.222, 2.057)

CIs for ω−

Regression CI Logarithmic CI Wald CI

(1.265, 4.001) (1.488, 3.403) (1.321, 3.183)

Fieller CI Bootstrap CI Bayesian CI

(1.556, 3.894) (1.553, 3.778) (1.281, 4.006)
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7. DISCUSSION

The LRs are parameters that are used to assess and compare the effectiveness of BDTs,
and only depend on the accuracy (sensitivity and specificity) of the BDT. The comparison
of the positive (negative) LRs of two BDTs subject to a paired design is a topic which has
not been widely studied in Statistical literature and consists of the comparison of two relative
risks subject to the same type of design. The previous studies ([10, 6, 12, 3]) focused mainly
on the study of hypothesis tests to compare the positive (negative) LRs of the two BDTs.
The comparison of the positive (negative) LRs through CIs has been the object of the very
little research, and the studies that have been published by Pepe [10] and Roldán-Nofuentes
and Luna [12] have focused on proposing CIs without dealing with this question in more depth.
In this article, we extend the scope of these previous studies, proposing four new intervals:
three of which are frequentist (Wald, Fieller and Bootstrap) and one which is Bayesian.
The Wald and Fieller intervals are based on the asymptotic normality of the ratio of the
LRs, and the Bootstrap interval is based on the fact that the bootstrap estimator of the ratio
of the LRs can be transformed to a normal distribution. Regarding the Bayesian interval,
this was obtained by applying the Monte Carlo method considering a priori non-informative
distributions. The importance of the study of the CIs for the ratio of the positive (negative)
LRs does not only lie in the fact that these CIs allow us to compare the two positive (negative)
LRs, but also that it allows us to determine (when the equality of both CIs is rejected) how
much bigger one CI than the other, which means an advantage over the hypothesis tests.

The comparison of the asymptotic behaviour of the six CIs was studied through sim-
ulation experiments. The results of these experiments has shown that, in the scenarios con-
sidered, in order to estimate the ratio ω+ = LR+

1 /LR+
2 , in general terms, the intervals with

the best behaviour are the logarithmic (for all the sample sizes), the Wald, Fieller and Boot-
strap intervals (these last three for large or very large samples); whereas in order to estimate
ω− = LR−1 /LR−2 the interval with the best behaviour is the Wald interval (for all of the sam-
ples sizes). The use of different CIs for ω+ and for ω− may be due to the convergence to
the normal distribution of the estimators. For an informative BDT, i.e. for a BDT whose
Youden index is higher than 0 (Y = Se + Sp − 1 > 0), it must be verified that LR+ > 1 and
that LR− < 1. Then, considering that the two BDTs are informative (as should be the case
in clinical practice), ω+ is the ratio between two values greater than 1 and ω− is the ratio
between two values lower than 1. For ω+, ln ω̂+ converges better to the normal distribution
than ω̂+ for n < 200, but when n ≥ 200 both (ω̂+ and ln ω̂+) has a good approximation to
the normal distribution. The Wald CI for ω− has a better asymptotic behaviour than the
logarithmic CI for ω−, which must be due to the fact that ω̂− converges more quickly to the
normal distribution (even with large samples) than ln ω̂−.

An important question when comparing parameters of two BDTs is the calculation of
the sample size necessary to compare the parameters based on certain specifications. When a
hypothesis test is carried out, the sample size is calculated based on an error α, a power θ and
a difference (or ratio) to be detected among the parameters. Roldán-Nofuentes and Luna [12]
proposed a method to calculate sample size to solve the hypothesis test (H0: ln ω = 0) of
equality of the positive (negative) LRs. This article proposes, as a complement to the study
of the CIs, a method to determine the sample size necessary to estimate the ratio between
the LRs with a previously set precision. This is a topic that has never been studied and,
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therefore, represents a contribution to Statistical literature on the subject analysed in this
article. The method, which is based on the Wald (logarithmic) CI, requires knowledge of the
estimations of the sensitivities, specificities, dependence factors and disease prevalence. These
estimations can be obtained from a pilot sample or another similar study and, therefore, as
it depends on the pilot sample selected. Therefore, the method does not guarantee that with
the calculated sample size the parameter ω can be estimated with the set precision, and it is
necessary to check this precision.

The intervals studied in this article can also be applied when the sample design is
case-control. In this type of design, the two BDTs are applied to all of the individuals in two
random samples, one of n1 individuals with the disease and another one of n2 individuals with-
out the disease. If this type of sampling is used, two multinomial distributions are involved,
one for the case sample, whose probabilities are pij = Sei

1(1−Se1)
1−i Sej

2(1−Se2)
1−j + δij ε1

with
∑

pij = 1, and the other for the control sample, whose probabilities are qij =
Sp1−i

1 (1−Sp1)
i Sp1−j

2 (1−Sp2)
j + δij ε0 with

∑
qij = 1. Here, the variances-covariances of

the sensitivities and specificities, obtained applying the delta method, are

Var
(
Ŝeh

)
≈ Seh(1−Seh)

n1
, Var

(
Ŝph

)
≈ Sph(1−Sph)

n2
,

Cov
(
Ŝe1, Ŝe2

)
≈ ε1

n1
, Cov

(
Ŝp1, Ŝp2

)
≈ ε0

n2
.

The equations of the estimators and of the variances-covariances given in the regression, loga-
rithmic, Wald and Fieller intervals are valid substituting s with n1 and r with n2. Regarding
the Bootstrap interval, it is necessary to generate B samples with replacement from the case
sample and another B samples with replacement from the control sample, and the process is
the same as the one described in Section 3.5. Regarding the Bayesian interval, the process is
similar substituting s with n1 and r with n2.

The methodology used in this article, both to obtain the CIs and to calculate the sample
size, can be used to compare other parameters of BDTs, e.g. the odds ratios. The odds ratio
of a BDT is defined as OR = SeSp

/[
(1−Se) (1−Sp)

]
and is a measure of the association

between the BDT and the GS. It is easy to check that the ratio of the odds ratios of two
BDTs is LR+

1 LR−2 /
(
LR−1 LR+

2

)
, and therefore from this expression it is possible to deduce

CIs similar to those given in Section 3 and can also be applied to the same procedure as in
Section 5 to determine the sample size necessary to compare the odds ratios of two BDTs
through a CI.

In this manuscript we studied the comparison of the LRs of two binary diagnostic tests.
When the diagnostic test is quantitative, its accuracy is measured by the area under the ROC
curve. The LRs are related to the equation of the ROC curve. Thus, for a single quantitative
diagnostic test, for each one of the cut off points c of the estimated ROC curve a value for Ŝe
and a value 1− Ŝp are obtained, and therefore a value for L̂R

+
(and another one for L̂R

−
).

For L̂R
+
, its numerator Ŝe is the “y” coordinate of the estimated ROC curve, and the denom-

inator 1− Ŝp is the “x” coordinate of the estimated ROC curve. The estimator of LR for an
interval (c1, c2) of test values corresponds to the slope of the line segment between c1 and c2

on the estimated ROC curve. In the case of two quantitative diagnostic test, for each cut off
point of each estimated ROC curve, we obtain a value for ω̂+ and another one for ω̂−, and
therefore it is possible to calculate the CIs studied in Section 3.
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The asymptotic variances-covariances of all of the parameters were obtained applying
the delta method. Let θ = (Se1,Sp1,Se2,Sp2)

> be a vector whose components are the sensi-
tivities and the specificities, let LR =

(
LR+

1 ,LR+
2 ,LR−1 ,LR−2

)> be a vector whose components
are the positive LRs and the negative LRs, and ω = (ω+, ω−)>. The matrix of asymptotic
variances-covariances of θ̂ is

Σ
bθ

=
(

∂ψ

∂θ

)
Σ
bψ

(
∂ψ

∂θ

)>
.

Regarding the LRs, the matrix of asymptotic variances-covariances of L̂R is

Σ
dLR

=
(

∂LR

∂θ

)
Σ
bθ

(
∂LR

∂θ

)>
.

Finally, the matrix of asymptotic variances-covariances of ω̂ is

Σ
bω =

(
∂ω

∂θ

)
Σ
bθ

(
∂ω

∂θ

)>
.

The matrix of asymptotic variances-covariances of ln (ω̂) is calculate in a similar way, i.e.

Σln(bω) =
(

∂ ln(ω)
∂θ

)
Σ
bθ

(
∂ ln(ω)

∂θ

)>
.

Performing the algebraic operations in each one of the previous expressions and substituting
each parameter with its estimator, we obtain the asymptotic variances-covariances given in
the equations (3.3), (3.4), (3.5) and (3.8) respectively.
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B. APPENDIX

The selection of the CI with the best asymptotic behaviour was made through the
following steps:

1) Choose the CIs with the least failures (CP > 93%);

2) Choose the CIs which are the most precise (lowest AL) and among those which
have a CP closest to 95%.

The first step in this method establishes that the CI does not fail when CP > 93%. The
confidence level was set at 95%, i.e. γ = 1−α = 0.95 was set as the nominal confidence and,
therefore, a nominal error α = 5%. Let γ∗ be the calculated CP, then ∆α = γ∗− γ = α−α∗,
where α∗ is the type I error. Furthermore, the hypothesis test to check the equality of the
two LRs is H0 : LR1 =LR2 vs H1 : LR1 6=LR2, which is equivalent to checking H0: ω =1 vs
H0: ω 6=1. In Step 1, a CI fails if CP ≤ 93%, i.e. if ∆α ≤ −2. In this situation, the type I error
of the hypothesis test is ≥ 7%, and therefore it is a very liberal hypothesis test and can give
false significances. If ∆α > 2%, i.e. CP > 97%, then the hypothesis test is very conservative
(its type I error is very small, < 3%), but does not give false significances. Therefore, the
choice of the CI is linked to the decisions of the hypothesis test, and it is preferable to choose
a conservative test rather than a very liberal one (as there will be no false significances due
to the fact that its type I error is lower than the nominal one).
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