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Copiapó, Chile
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1. INTRODUCTION

The half-normal (HN) distribution is a very important model in the study of skewed
distributions. For instance, it is used in the stochastic representation of the skew-normal dis-
tribution in Azzalini [4, 5] and Henze [15]. Several papers in the literature have paid attention
to the half-normal distribution. For instance, Chou and Liu [7] studied its properties and its
uses in quality control. Pewsey [22, 23] studied asymptotic inference and maximum likelihood
estimation for the general location-scale half-normal distribution. For analysis and applica-
tions from a Bayesian point of view, the reader is referred to Wiper et al. [32] and Khan and
Islam [17]. Also, the hnp R package [20], generates half-normal plots with simulated envelopes
using different diagnostics tools from a range of different fitted models. Even though the HN
distribution accommodates only decreasing hazard rates, this distribution has been used to
model positive data and is becoming an important model in reliability theory,. Some of the
generalizations of this distribution can be found in Cooray and Ananda [8], Cordeiro et al. [9],
Olmos et al. [21], Gómez and Bolfarine [13], Bourguignon et al. [6] and Asgharzadeh et al. [1],
among others. Particularly, we focus on the extension proposed in Olmos et al. [21], named
slash half-normal (SHN) distribution, where the goal is to increase the kurtosis with respect
to its parent half-normal distribution, and hence be more useful for modeling positive datasets
that may have a heavy right tail. In this work, we propose a reparameterization for this model
based on the mean. We use this parameterization because it is convenient for proposing a
regression model.

The article is organized as follows. In Section 2, we describe the reparametrized SHN
regression model and compare it with some existing models. In Section 3, we describe param-
eter estimation by the maximum likelihood (ML) method using the expectation-maximization
(EM) algorithm. Goodness of fit through residuals is discussed in Section 4. In Section 5, we
carry out two simulation studies to assess the performance of the proposed estimators and
the two kinds of residuals. In Section 6, we apply the proposed model to analyze two datasets
on the diet of the hunter-gatherer and concentration of minerals in soil samples. Concluding
remarks are given in Section 7.

2. THE PROPOSAL

In this section, we present the proposed reparameterization for the SHN model in terms
of the mean. We also present three common distributions to accommodate positive data that
also are reparametrized in terms of the mean: the gamma, Weibull and Birnbaum–Saunders
models.

2.1. Reparametrized slashed half-normal model

The SHN model (Olmos et al. (2012) [21]) is built in the following way. If X ∼ HN(σ)
(σ > 0) and Z ∼ Beta(α, 1) are independent random variables, then

(2.1) Y =
X

Z
∼ SHN(σ, α) ,
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where α > 0 is a shape parameter that mainly controls the right tail of the distribution.
Lower values of α (0 < α < 1) lead to a heavier tail (see Figure 1 in Olmos et al. [21]).
However, in practice we have found estimates for α greater than 1 (see the two examples
in Olmos et al. [21] and our applications). For this reason, the potential advantages of the
parameterization of the model in terms of the mean (mainly related to the interpretation of the
coefficients in a regression model) justify the restriction α > 1. Such kind of restriction is not
uncommon in the literature. Without going further, the popular Student’s t distribution has
a finite mean if the degrees of freedom are greater than 1. We propose a reparameterization
of the SHN model based on µ =

√
2/π ασ/(α−1). The probability density function of the

reparametrized SHN, henceforth RSHN(µ, α), is given by

fRSHN(y;µ, α) = α

√
2α

π

[√
π

2
µ(α−1)

α

]α
Γ
(

α+1
2

)
y−(α+1) G

[
α2y2

πµ2 (α−1)2
,
α+1

2

]
,(2.2)

for y > 0, where Γ(·) denotes the gamma function and G(y, a) =
∫ y
0 ua−1e−udu/Γ(a) is the

cumulative distribution function (cdf) of the gamma distribution with rate parameter equal
to 1. Based on results in Olmos et al. [21], we have E(Y ) = µ, for α > 1,

Var(Y ) =
µ2

2

[
π − 2 +

π

α(α−2)

]
, for α > 2 ,

√
ν3 =

π
√

2(α−2)
[

4
π α2 (α−2) (α−3)− (α−1)2 (α−4) (α+1)

]
√

α (α−3)
[
(π−2) α (α−2) + π

]3/2
, for α > 3 ,

and

ν4 =
3α(α−2)2 (α−3)

[
π2 (α−1)4 − 4α3(α−4)

]
− 4πα2 (α−1)2 (α−2)(α−4)(α2−3α+8)

α2 (α−3)(α−4)
[
(π−2)α(α−2) + π

]2 ,

for α > 4, where
√

ν3 and ν4 denote the skewness and kurtosis coefficients, respectively. Note
that this parameterization is very convenient because the parameter µ is related only to the
mean and the variance of the distribution.

2.2. Reparametrized gamma distribution

For Y ∼ RG(µ, φ) (the gamma model parametrized in terms of the mean), we have

E(Y ) = µ , Var(Y ) =
µ2

φ
,

√
ν3 =

2√
φ

and ν4 = 3 +
6
φ

.

The RSHN model is a competing distribution for the gamma distribution because the coeffi-
cient of variation (cv), skewness and kurtosis coefficients do not depend on µ in both models.
Figure 1(a) shows the values of φ in the RG(µ, φ) model and α in the RSHN(µ, α) model
that lead to the same values of cv. Figure 1(b) displays the kurtosis coefficient for those
pairs (φ, α) corresponding to the same value of cv. It is clear that the gamma model is more
flexible in the sense that it allows to obtain any positive value for the cv, whereas the RSHN
distribution only supports values for cv greater than

[
(π−2)/2

]1/2 ≈ 0.756, i.e., greater than
the cv of the half-normal distribution. However, there is a range of values of α such that,
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for the same value of the cv, the RSHN distribution has a greater kurtosis coefficient than
the gamma distribution. In short, in the RSHN model the variance is proportional to the
square of the mean (similar to the gamma model), but the RSHN model has a greater kurtosis
coefficient for a certain range of values of α.
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Figure 1: (a) Values for φ and α in the RG(µ, φ) and RSHN(µ, α) distributions that produce
the same coefficient of variation and (b) their respective kurtosis coefficients.

2.3. Reparametrized Weibull and Birnbaum–Saunders distributions

The reparametrized form of the Weibull distribution with parameters µ > 0 and δ > 0
has probability density function

fRW(y;µ, δ) =
φ

γ

(
y

γ

)δ−1

exp

[
−
(

y

γ

)δ]
, for y > 0 ,

where γ = µ
/
Γ(1/δ + 1), so that

E(Y ) = µ and Var(Y ) = µ2

{
Γ(2/δ + 1)[
Γ(1/δ + 1)

]2 − 1

}
.

We denote as Y ∼ RW(µ, δ).

In the same way, Santos-Neto et al. [31] also reparametrized the Birnbaum–Saunders
distribution in terms of the mean. With parameters µ > 0 and ξ > 0, the probability density
function is given by

fRBS(y;µ, ξ) =
exp(ξ/2)

√
ξ +1

4
√

πµ y3/2

(
y +

ξµ

ξ + µ

)
exp

{
−ξ

4

[
y(ξ +1)

ξµ
+

ξµ

y(ξ +1)

]}
,

for y > 0, so that E(Y ) = µ and Var(Y ) = µ2(2 ξ+5)/(ξ+1)2. We use the notation Y ∼RBS(µ, ξ).
The RW and RG (Section 2.2) will be compared with the RSHN model fitted to real datasets
in Section 6.
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Remark 2.1. The RG and RW models are more flexible than the RBS and RSHN
models in the sense that, for a given value of µ, they allow to obtain any positive value for the
variance, whereas the RBS and RSHN models have some restrictions. However, even when
all the models produce the same mean and variance, the skewness and kurtosis are not the
same. Moreover, such terms do not depend on µ. Table 1 shows four models with the same
mean and variance. However, the skewness and kurtosis coefficients are different.

Table 1: Examples of models with the same mean and variance.

Moment or Model

coefficient RG(µ, 1.333) RW(µ, 1.158) RBS(µ, 3.692) RSHN(µ, 4.125)

Mean µ µ µ µ

Variance 0.75 µ2 0.75 µ2 0.75 µ2 0.75 µ2

Skewness 1.732 1.390 12.662 1.791

Kurtosis 7.500 6.868 59.641 120.807

Remark 2.2. The mean and the variance of the RG, RW, RBS and RSHN models
are µ and µ2w2(η), where η represents φ, δ, ξ or α in each model, respectively, and w(·)
is a positive function representing the coefficient of variation. This function is presented
in Table 2. The computational implementation to model mean and dispersion parameters
with a set of covariates linked to both components in RG and RW models is implemented in
the gamlss.dist package in R (see Rigby and Stasinopoulos [28, 29]), while the RBS model is
discussed in Santos-Neto et al. [30]. A similar scheme to model mean and dispersion might
be considered for the RSHN distribution. However, we only consider a model for the mean
parameter in this work.

Table 2: Summary for some models with quadratic variance function.

Model RG(µ, φ) RW(µ, δ) RBS(µ, ξ) RSHN(µ, α)

w(η)
1√
φ

s
Γ(2/δ + 1)�
Γ(1/δ + 1)

�2 − 1

p
(2ξ + 5)

ξ + 1

s
1

2

�
π − 2 +

π

α(α− 2)

�

3. ESTIMATION

In this section, we discuss some details about the estimation procedure based on the
ML method. We also consider an EM type algorithm to obtain a more stable estimation
procedure. Henceforth, we consider a set of p observed covariates for each individual, say
xi = (xi1, ..., xip)>. Since µ = E(Y ) is a positive parameter, we adopt the logarithmic link
function log(µi) = x>i β, i = 1, ..., n, where β is a p×1 vector of regression coefficients.
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3.1. General context

In Olmos et al. [21], parameter estimation (without covariates) was carried out based
on the direct maximization of the log-likelihood function using as initial values the method
of moments estimates of the parameters. In our model, assuming the intercept is included,
naive estimators for β0 and α can be obtained ignoring the covariates, i.e., β1 = ··· = βp = 0.
In this case, such estimators are given by

(3.1) β̂0M = log
(
Y
)

and α̂M =
1
2

+
1
2

√
1 +

π

2Ay − 2 + π
, if Y 2 >

π

2
Y

2
,

where Ay = Y 2/Y
2 and Y 2 is the sample mean of the squared observations.

The log-likelihood function of ψ = (β>, α)> in a random sample with observations
y1, ..., yn is given by

(3.2) `(ψ) = c(α) + α log(µ)− (α +1)
n∑

i=1

log(yi) +
n∑

i=1

log

{
G

[
α2y2

πµ2(α−1)2
,
α +1

2

]}
,

where c(α) =−n(α−1) log(α)−nα log(2)/2+(α−1/2) log(π)+α log(α−1)+n log
[
Γ(α/2+1/2)

]
.

However, direct maximization of (3.2) is not simple and may suffer from numerical instabilities.
In Section 3.2, we propose a stable estimation procedure for this model based on the stochastic
representation in (2.1). We develop in the sequel an EM algorithm (Dempster et al. [10]) for
parameter estimation.

3.2. ECM and ECME algorithms

To facilitate the estimation process, we include latent variables Z1, ..., Zn through the
following hierarchical representation of the RSHN model:

Yi |Zi = zi , µi ∼ HN

[√
π

2
µi(α−1)

αzi

]
and Zi ∼ Beta(α, 1) .

Thus, the complete likelihood function for ψ is given by

Lc(ψ) =

(√
2
π

α2

α−1

)n

exp

{
−

n∑
i=1

[
log(µi)−α log(zi)

]
− α2

π(α−1)2

n∑
i=1

y2
i Z2

i

µ2
i

}
.

Consequently, up to a constant, the complete log-likelihood function for ψ is

`c(ψ) = − α2

π(α−1)2

n∑
i=1

y2
i z2

i

µ2
i

−
n∑

i=1

[
log(µi)−α log(zi)

]
+ n

[
2 log(α)− log(α−1)

]
.

Let ẑ2
i = E

(
Z2

i |ψ= ψ̂
)
, ̂log(zi) = E

(
log(Zi) |ψ= ψ̂

)
and Q

(
ψ | ψ̂

)
= E

(
`c(ψ) |ψ= ψ̂

)
.

With these definitions,

Q
(
ψ | ψ̂

)
= − α2

π(α−1)2

n∑
i=1

y2
i ẑ2

i

µ2
i

−
n∑

i=1

[
log(µi)−α ̂log(zi)

]
+ n

[
2 log(α)− log(α−1)

]
.
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In addition,

f
(
zi | Yi = yi

)
∝ (z2

i )(
α
2
+1)−1 exp

[
− α2y2

i z2
i

πµ2
i (α−1)2

]
I(0,1)(zi) ,

where IA(a) = 1 if a ∈ A and 0 otherwise. Define Wi = Z2
i , i = 1, ..., n. It is straightforward

to show that

f
(
wi | Yi = yi) ∝ w

α+1
2
−1

i exp
[
−πµ2

i (α−1) y2
i wi

α

]
I(0,1)(wi) ,

so that

Wi |Yi = yi ∼ Gamma
[
α +1

2
,
πµ2

i (α−1) y2
i

α

]
I(0,1) ,

i.e., the truncated gamma distribution on the (0, 1) interval. Thus,

ẑ2
i =

πµi(α +1) (α−1)2 G

[
α2y2

i

πµ2
i (α−1)2

,
α +3

2

]
y2

i G

[
α2y2

i

πµ2
i (α−1)2

,
α +1

2

] .

However, a closed form expression for ̂log(zi) is not available, but it can be computed numer-
ically noticing that E

[
log(Zi)

]
= E

[
log(Wi)

]
/2 = Ci1(ψ)/

[
2 Ci0(ψ)

]
, where

(3.3) Cij(ψ) =
∫ 1

0

[
log(w)

]j
w

α+1
2
−1 exp

[
−πµ2

i (α−1) y2
i w

α

]
dw ,

for α > 1 and j = 0, 1. Note that if W ∗
i ∼ Gamma(ai, bi), ai, bi > 0, then E

[
log(W ∗

i )
]

=
η(ai)− log(bi), with η(·) denoting the digamma function. For this reason, the convergence
of Ci1(ψ) is guaranteed because Ci1(ψ) < E

[
log(W ∗

i )
]

< ∞, taking ai and bi conveniently.
Therefore, the k-th iteration of the ECM algorithm takes the form:

• E step. For i = 1, ..., n, use ψ̂
(k−1)

, the estimate of ψ at the (k−1)-th iteration of
the algorithm, to compute

ẑ
2(k)

i =

πµ̂i
(k−1)

(
α̂(k−1) +1

)(
α̂(k−1)−1

)2
G

[
α̂2(k−1)y2

i

πµ̂i
2(k−1)

(
α̂(k−1)−1

)2 ,
α̂(k−1) +3

2

]

y2
i G

[
α̂2(k−1)y2

i

πµ̂i
2(k−1)

(
α̂(k−1)−1

)2 ,
α̂(k−1) +1

2

]

and l̂og(zi)
(k)

= Ci1

(
ψ̂

(k))/[
2 Ci0

(
ψ̂

(k))]
, where µ̂i

(k−1) = exp
(
x>i β̂

(k−1))
and Cij(ψ),

for j = 0,1, is given in (3.3).

• CM step I. Given α̂(k−1) and ẑ 2(k) =
(
ẑ

2(k)
1 , ..., ẑ

2(k)
n

)>, maximize the expression

− α̂2(k−1)

π
(
α̂(k−1)−1

)2 n∑
i=1

y2
i ẑi

2(k)

exp
(
2x>i β

) − n∑
i=1

x>i β

with respect to β to obtain β̂
(k)

.

• CM step II. Given β̂
(k)

and l̂og(z)
(k)

=
(

̂log(z1)
(k)
, ..., ̂log(zn)

(k))>
, maximize the

expression

− α2

π(α−1)2

n∑
i=1

y2
i ẑi

2(k)

µ̂i
2(k)

+ α
n∑

i=1

̂log(zi)
(k)

+ n
[
2 log(α)− log(α−1)

]
with respect to α, subject to α > 1, to obtain α̂(k).
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The maximization procedures in the CM steps can be performed using extant software, e.g.,
with the optim function in the R language [24]. The E and CM steps are repeatedly cycled
until a suitable convergence rule is satisfied, e.g., the difference in successive values of the
estimates given by the Euclidean norm

∥∥ψ(k+1) −ψ(k)
∥∥ is less than a tolerance value.

In practice, the implementation of the ECM algorithm in this form can be compu-
tationally expensive, mainly due to the computation of ̂log(zi), i = 1, ..., n, in the E step.
To avoid this problem and following the same idea used in [19], we can replace the CM step II
by the following step:

• CME step II. Given β = β̂
(k)

, update the estimate of α by maximizing the expres-
sion

∑n
i=1 log

[
fRSHN

(
yi; µ̂i

(k), α
)]

with respect to α, subject to α > 1, where fRSHN

is presented in (2.2). In other words, α is updated based on the maximization of

the observed log-likelihood function with β = β̂
(k)

. This step involves a unidimen-
sional maximization, which can be performed using, for instance, the Brent method
available in the optim function in R.

Finally, the covariance matrix of ψ̂ can be estimated based on the Hessian matrix of the ob-
served log-likelihood function. The numDeriv R package [12] provides an accurate numerical
approximation for this matrix. In Sections 5 and 6, this estimate of the covariance ma-
trix of ψ̂ is used to build approximate confidence intervals and to compute standard errors.
Computational codes are available in supplementary material.

Remark 3.1. For the case without covariates, the CM step I is reduced to

CM step I. Update µ as follows: µ̂(k) =
α̂(k)

α̂(k)−1

(
2

nπ

n∑
i=1

z2
i ŷi

2(k)

)1/2

.

Remark 3.2. In the RSHN regression model, when the intercept term is included in
the model, an initial value to ψ can be obtained based on the moment estimators presented

in (3.1). Such initial value can be considered as ψ̂
(0)

=
(
β̂0M, 0, ..., 0, α̂M).

4. RESIDUAL DIAGNOSTICS FOR THE RSHN MODEL

In this section, we discuss some aspects related to the deviance and quantile residuals
for the RSHN model.

4.1. Deviance residuals

Residual diagnostics for the RSHN model can be carried out using the deviance residuals
defined as rDi = sign(Yi− µ̂i)

√
2
[
`(µ̃i, α̂)− `(µ̂i, α̂)

]1/2, where `(·) denotes the log-likelihood
function, µ̃i is the ML estimator of µi = exp

(
x>i β

)
under the saturated model and µ̂i is

the ML estimator of µi under the working model (with p < n regression coefficients).
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For the RSHN regression model, with µ̃i = Yi and `(·) coming from (3.2), these residuals
are given by

rDi = sign(Yi− µ̂i)
√

2

α̂ log(Yi/µ̂i) + log

{
G

[
α̂2

π(α̂−1)
,
α̂ +1

2

]}

− log

{
G

[
Y 2

i α̂2

πµ̂2
i (α̂−1)

,
α̂ +1

2

]}1/2

, for i = 1, ..., n ,

where G(·) is given in (2.2). If the model is correct, the approximate distribution of rDi ,
i = 1, ..., n, is the standard normal. The normality of the residuals can be tested based on
different tests such as the Shapiro–Wilk (SW), Anderson–Darling (AD) and Cramér–von
Mises (CVM) tests [33]. Moreover, simulated envelopes (Atkinson [3]) are also useful to
assess the fitting of the models.

4.2. Quantile residuals

A second alternative for residual analysis can be based on the normalized quantile
residuals (Dunn and Smyth [11]). These residuals are defined as

rQi = Φ−1
[
F (Yi; ψ̂)

]
, i = 1, ..., n ,

where F ( · ;ψ) is the cdf of the response variable and Φ−1(·) denotes the quantile function
of the standard normal distribution. Except for the uncertainty due to estimation of the
parameters, if the model is correct, rQi , i = 1, ..., n, constitute a random sample from the
standard normal distribution. For the RSHN model, we have

rQi = α̂

√
2bα

π

[√
π

2
µ̂i (α̂−1)

α̂

]
bα

Γ
(

α̂ +1
2

) ∫ Yi

0
u
−(bα+1)
i G

[
α̂2 u2

i

πµ̂2
i (α̂−1)2

,
α̂ +1

2

]
dui ,

where the integral can be computed numerically using, for instance, the integrate function in R.

5. SIMULATION STUDIES

In this section, we present two simulation studies. The first is devoted to assess the
performance of the ML estimator for the RSHN model in finite samples when the model is
well specified. The main goal of the second study is similar to the one in Leiva et al. [18],
with the aim of assess the behavior of the deviance and normalized quantile residuals when
the model is either well or misspecified.

5.1. Parameters recovery

We stress that in Olmos et al. [21], the authors did not carry out a simulation study,
so that it is of interest to address this issue. To draw synthetic datasets from the RSHN
model, we fix β = (β0, β1, β2)> (two covariates) and α at the true values in Table 3.
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Table 3: Bias, average of the asymptotic standard error (SE), square root of
the simulated mean squared error (RMSE) and coverage probability
of the 95% asymptotic confidence intervals (CP) of the estimators
under the RSHN regression model with 1,000 replications.

True n = 50 n = 100 n = 200
Parameter

value Bias SE RMSE CP Bias SE RMSE CP Bias SE RMSE CP

α 2.5 1.962 1.987 1.659 0.906 1.655 1.311 1.178 0.913 1.001 0.926 0.879 0.931
β0 0.5 −0.039 0.352 0.304 0.924 −0.028 0.287 0.231 0.928 −0.011 0.171 0.159 0.955
β1 0.5 −0.001 0.272 0.245 0.933 −0.001 0.192 0.151 0.936 −0.001 0.125 0.111 0.947
β2 0.05 −0.001 0.009 0.005 0.934 0.000 0.007 0.003 0.939 0.000 0.003 0.002 0.947

α 2.5 2.139 2.152 1.993 0.912 1.683 1.559 1.313 0.921 1.149 1.082 1.032 0.932
β0 1.0 0.041 0.281 0.265 0.935 0.031 0.256 0.225 0.937 0.010 0.181 0.169 0.945
β1 0.5 −0.031 0.223 0.201 0.936 −0.029 0.169 0.147 0.941 −0.024 0.127 0.119 0.941
β2 0.05 −0.005 0.010 0.006 0.931 −0.004 0.007 0.004 0.937 −0.004 0.005 0.004 0.942

α 2.5 2.389 1.559 1.379 0.918 1.446 1.333 1.052 0.922 0.982 0.790 0.754 0.935
β0 0.5 −0.089 0.369 0.311 0.912 −0.045 0.246 0.201 0.934 −0.021 0.171 0.152 0.952
β1 0.5 0.031 0.249 0.219 0.924 0.005 0.178 0.152 0.931 0.003 0.130 0.111 0.947
β2 0.025 0.001 0.010 0.005 0.926 0.000 0.008 0.003 0.931 0.000 0.003 0.002 0.939

α 2.5 2.424 1.587 1.401 0.914 1.452 1.156 1.038 0.921 0.951 0.891 0.858 0.941
β0 1.0 −0.079 0.402 0.351 0.924 −0.059 0.271 0.217 0.943 −0.013 0.178 0.156 0.953
β1 0.5 0.012 0.251 0.210 0.931 0.009 0.180 0.154 0.933 0.002 0.135 0.112 0.941
β2 0.025 0.000 0.009 0.005 0.924 0.000 0.007 0.003 0.931 0.000 0.003 0.002 0.941

α 3.0 2.094 1.852 1.650 0.918 1.912 1.210 1.003 0.919 0.929 0.974 0.936 0.937
β0 0.5 0.049 0.336 0.281 0.944 0.043 0.251 0.202 0.945 0.038 0.161 0.143 0.949
β1 0.5 −0.005 0.242 0.200 0.942 −0.002 0.186 0.142 0.943 0.000 0.125 0.101 0.947
β2 0.05 −0.001 0.009 0.004 0.922 −0.001 0.007 0.003 0.939 0.000 0.003 0.002 0.942

α 3.0 2.150 2.014 1.833 0.908 1.850 1.319 1.142 0.923 0.839 0.981 0.954 0.931
β0 1.0 0.090 0.369 0.316 0.914 0.050 0.299 0.245 0.929 0.040 0.214 0.190 0.943
β1 0.5 −0.049 0.241 0.206 0.932 −0.046 0.187 0.143 0.933 −0.038 0.111 0.097 0.944
β2 0.05 −0.006 0.009 0.006 0.917 −0.005 0.008 0.005 0.933 −0.004 0.005 0.004 0.941

α 3.0 2.202 1.263 1.029 0.902 1.456 1.099 0.878 0.914 1.141 0.725 0.697 0.935
β0 0.5 0.057 0.349 0.277 0.930 0.036 0.243 0.192 0.944 0.028 0.151 0.136 0.949
β1 0.5 0.037 0.271 0.203 0.929 0.019 0.160 0.135 0.935 0.013 0.123 0.101 0.943
β2 0.025 0.000 0.009 0.004 0.957 0.000 0.007 0.003 0.952 0.000 0.003 0.002 0.950

α 3.0 2.378 1.295 1.075 0.912 1.670 1.091 0.914 0.925 0.947 0.619 0.600 0.941
β0 1.0 0.035 0.356 0.287 0.948 0.031 0.251 0.193 0.949 0.022 0.178 0.152 0.950
β1 0.5 0.011 0.261 0.198 0.930 0.005 0.184 0.139 0.932 0.001 0.119 0.097 0.943
β2 0.025 0.000 0.008 0.004 0.939 0.000 0.007 0.003 0.946 0.000 0.003 0.002 0.949

α 5.0 2.419 2.514 2.297 0.902 1.926 1.894 1.640 0.930 1.503 1.212 1.199 0.937
β0 0.5 0.060 0.351 0.274 0.962 0.043 0.231 0.187 0.958 0.030 0.134 0.117 0.952
β1 0.5 −0.007 0.246 0.177 0.959 −0.002 0.157 0.116 0.957 −0.001 0.099 0.086 0.956
β2 0.05 −0.001 0.008 0.004 0.961 −0.001 0.007 0.003 0.960 0.000 0.003 0.002 0.957

α 5.0 2.134 2.152 1.958 0.904 1.069 1.419 1.275 0.912 0.825 0.974 0.951 0.939
β0 1.0 0.082 0.362 0.270 0.910 0.078 0.266 0.213 0.934 0.044 0.200 0.181 0.947
β1 0.5 −0.019 0.253 0.183 0.957 −0.015 0.184 0.136 0.954 −0.005 0.119 0.092 0.952
β2 0.050 −0.005 0.009 0.005 0.902 −0.005 0.008 0.005 0.922 −0.004 0.005 0.004 0.939

α 5.0 1.354 2.055 1.728 0.902 1.029 1.462 1.284 0.919 0.899 1.034 0.995 0.932
β0 0.5 0.025 0.314 0.246 0.959 0.018 0.233 0.179 0.954 0.013 0.145 0.126 0.953
β1 0.5 0.014 0.256 0.186 0.958 0.008 0.176 0.128 0.957 0.008 0.099 0.084 0.944
β2 0.025 0.000 0.008 0.004 0.958 0.000 0.007 0.003 0.956 0.000 0.003 0.002 0.952

α 5.0 1.768 2.263 1.928 0.922 1.483 1.500 1.396 0.930 1.156 1.127 1.091 0.938
β0 1.0 −0.007 0.325 0.257 0.962 −0.005 0.221 0.177 0.955 −0.003 0.152 0.131 0.952
β1 0.5 0.006 0.254 0.186 0.960 0.002 0.187 0.136 0.956 0.000 0.100 0.084 0.954
β2 0.025 0.000 0.009 0.004 0.939 0.000 0.007 0.002 0.940 0.000 0.003 0.002 0.942
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In practice, covariates may have any kind of association. Therefore, we assume that the
values of one covariate depends on the other. In short, for i = 1, ..., n, the steps to generate
datasets are the following:

• Draw x1i ∼ U(10, 90) (the uniform distribution).

• Draw x2i ∼ Bernoulli(θi), where θi = exp(2−0.025 x1i)
/[

1+exp(2−0.025 x1i)
]
, i.e.,

x2i = 1 with probability θi that varies between 0.438 and 0.852 depending on the
value of x1i.

• Compute µi = exp(x>i β) and draw Wi ∼ HN(σi) independent from Zi ∼ Beta(α,1),
where σi =

√
2 µi α

/[√
π (α−1)

]
.

• Compute Yi = Wi/Zi.

Once generated, the values of xi, i =1, ..., n, are kept fixed throughout the simulations.
For each generated sample, we apply the scheme described in Section 3.2 to estimate β
and α, while the standard errors of the estimates are computed from the Hessian matrix in
Section 3.2. We report the average bias of the estimates (Bias), the average of the asymptotic
standard error (SE), the square root of the simulated mean squared error (RMSE) and the
coverage probability of the 95% asymptotic confidence intervals (CP).

We considered four different regression coefficients β, namely, (0.5,0.5,0.05), (1.0,0.5,0.05),
(0.5, 0.5, 0.025) and (1.0, 0.5, 0.025). Such values guarantee that the drawn values of yi be-
long to the interval (1.649, 4.711) in all the cases. We also considered α ∈ {2.5, 3.0, 5.0} (that
guarantees a finite value for the variance of yi) and n ∈ {50, 100, 200}. The results presented
in Table 3 were obtained from 1000 replications. Note that in all cases, the absolute value
of bias and the RMSE decrease when n increases, suggesting that the estimators are consis-
tent, and the coverage probabilities are close to the nominal value, as expected. Except for
the estimator of α, we see that SE and RMSE get closer when the sample size increases, as
expected from the asymptotic properties of the estimators. However, even for n = 200 the
bias of α̂ is substantial. This result is in agreement with other slashed distributions in the
literature (see, for instance, Astorga [2] and Reyes et al. [27, 26, 25]). This should not be a
serious concern because in practice the most important inferences pertain to the mean of the
response variable, which depends only on the regression coefficients vector β. Additionally,
since the coverage probability of the confidence interval for α ranges from 0.902 to 0.941, we
see that the interval estimator behaves better than the point estimator.

5.2. Deviance and quantile residuals

In order to assess the performance of the distribution of the deviance and quantile
residuals, we take samples drawn from the RG(µi, φ =1) model (which also corresponds
to the RW(µi, δ =1) model) and RSHN(µi, α =2.1) models, where µi = exp(β0 +β1xi),
and xi was drawn from the U(0, 10) distribution. For each sample, we fit the RSHN,
RG, RW and RBS regression models and present the quantile-quantile (QQ) plots with
simulated envelopes based on 1000 replicates for the deviance and quantile residuals.
We consider three sample sizes: n = 50, n = 100 and n = 200. We also present the
p-value for the SW, AD and CVM normality tests. Tables 4 and 5 show the QQ plots.
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As expected, when the true model is the RG model, the QQ plots related to the RG and RW
models present an approximately linear behavior and a good agreement with the standard
normal distribution for the three sample sizes for both, deviance and quantile residuals.

Table 4: QQ plots with simulated envelopes for the deviance and quantile residuals
when RG(µi, φ =1) is the true model.
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Residual n

RSHN RG RW RBS

50
l

l

l

l
l

l

l

l

ll

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

−2 −1 0 1 2

−4

−2

0

2

N(0,1) quantiles

D
e
v
ia

n
c
e
 r

e
s
id

u
a
ls

SW test: 0.516

AD test: 0.484

CVM test: 0.477

�
�

�

�
�

�

�

�

��

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

��

�

�

�

�
�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

−2 −1 0 1 2

−4

−2

0

2

N(0,1) quantiles

D
e
v
ia

n
c
e
 r

e
s
id

u
a
ls

SW test: 0.281

AD test: 0.317

CVM test: 0.377

l
l

l

l
l

l

l

l

ll

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l
l

l

l
l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

−2 −1 0 1 2

−4

−2

0

2

N(0,1) quantiles

D
e
v
ia

n
c
e
 r

e
s
id

u
a
ls

SW test: 0.069

AD test: 0.119

CVM test: 0.194

�

�

��

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

−2 −1 0 1 2

−4

−2

0

2

N(0,1) quantiles

D
e
v
ia

n
c
e
 r

e
s
id

u
a
ls

SW test: 0.028

AD test: 0.004

CVM test: 0.004

Deviance 100

l

l

l
l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

−2 −1 0 1 2
−4

−3

−2

−1

0

1

2

3

N(0,1) quantiles

D
e
v
ia

n
c
e
 r

e
s
id

u
a

ls

SW test: 0.093

AD test: 0.106

CVM test: 0.085

�

�

�
�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

��
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

−2 −1 0 1 2
−4

−3

−2

−1

0

1

2

3

N(0,1) quantiles

D
e
v
ia

n
c
e
 r

e
s
id

u
a
ls

SW test: 0.574

AD test: 0.802

CVM test: 0.787

l

l

l
l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

−2 −1 0 1 2
−4

−3

−2

−1

0

1

2

3

N(0,1) quantiles

D
e
v
ia

n
c
e
 r

e
s
id

u
a

ls

SW test: 0.561

AD test: 0.793

CVM test: 0.773

�

�

��

�

�

�

�

�

�

�
�

��

�

�

�

�

�

� �

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�

�

�

�

�

�

�

�
�

�

�

�

�

�
��

�

�

�

�

�

�

�
�

�

�

��

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

−2 −1 0 1 2
−4

−3

−2

−1

0

1

2

3

N(0,1) quantiles

D
e
v
ia

n
c
e
 r

e
s
id

u
a
ls

SW test: <0.001

AD test: <0.001

CVM test: <0.001

200
l

l

l

l

l

l
l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

ll

lll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

−3 −2 −1 0 1 2 3

−4

−2

0

2

N(0,1) quantiles

D
e
v
ia

n
c
e

 r
e

s
id

u
a

ls

SW test: 0.107

AD test: 0.065

CVM test: 0.038

�

�

�

�

�

�
�

�

��

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

��

���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

−3 −2 −1 0 1 2 3

−4

−2

0

2

N(0,1) quantiles

D
e
v
ia

n
c
e
 r

e
s
id

u
a
ls

SW test: 0.526

AD test: 0.704

CVM test: 0.712

l

l

l

l

l

l
l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

ll

lll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

−3 −2 −1 0 1 2 3

−4

−2

0

2

N(0,1) quantiles

D
e
v
ia

n
c
e

 r
e

s
id

u
a

ls

SW test: 0.438

AD test: 0.622

CVM test: 0.677

�

�

���� � �

��

�

�

�

�

�

�

�

�
�

�

�

�

�
�

�

�

�

�
�

�

�

�
�

�

�

�

�

�
�

�

�

�

�

�

��

�

�

� �
�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�
�

�� �� �

�

�

�

��

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

� �
�

�

�
�

�

�

�

�

�

�

�

�

�

��

�

�

�

�
�

�

��

�

�

�

�
�

���

�

�

��

� �

�

�

�
�

�

�

�

��

�

�

�
��

�

�

�

�
�

�

�

�

��

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

��
�

�

�
��

�

−3 −2 −1 0 1 2 3

−4

−2

0

2

N(0,1) quantiles

D
e
v
ia

n
c
e
 r

e
s
id

u
a
ls

SW test: <0.001

AD test: <0.001

CVM test: <0.001

50
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

ll

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

−2 −1 0 1 2

−2

0

2

4

N(0,1) quantiles

Q
u
a
n
ti
le

 r
e
s
id

u
a
ls

SW test: 0.172

AD test: 0.321

CVM test: 0.432

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

ll

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

−2 −1 0 1 2

−2

0

2

4

N(0,1) quantiles

Q
u
a
n
ti
le

 r
e
s
id

u
a
ls

SW test: 0.096

AD test: 0.195

CVM test: 0.291

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

ll

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

−2 −1 0 1 2

−2

0

2

4

N(0,1) quantiles

Q
u
a
n
ti
le

 r
e
s
id

u
a
ls

SW test: 0.060

AD test: 0.129

CVM test: 0.208

l

l

l

l

l

l

l

l
l

l

l

l l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

−2 −1 0 1 2

−2

0

2

4

N(0,1) quantiles

Q
u
a
n
ti
le

 r
e
s
id

u
a
ls

SW test: 0.498

AD test: 0.450

CVM test: 0.389

Quantile 100
l

l

l
l

l

l
l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

−2 −1 0 1 2

−4

−2

0

2

N(0,1) quantiles

Q
u
a
n
ti
le

 r
e
s
id

u
a
ls

SW test: 0.249

AD test: 0.393

CVM test: 0.367

l

l

l
l

l

l

l

l

l

l

ll

l
l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

−2 −1 0 1 2

−4

−2

0

2

N(0,1) quantiles

Q
u
a
n
ti
le

 r
e
s
id

u
a
ls

SW test: 0.595

AD test: 0.823

CVM test: 0.807

l

l

l
l

l

l

l

l

l

l

ll

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

−2 −1 0 1 2

−4

−2

0

2

N(0,1) quantiles

Q
u
a
n
ti
le

 r
e
s
id

u
a
ls

SW test: 0.590

AD test: 0.822

CVM test: 0.801

l

l

ll

l

l

l

l

l

l

l
l

ll

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

−2 −1 0 1 2

−4

−2

0

2

N(0,1) quantiles

Q
u
a
n
ti
le

 r
e
s
id

u
a
ls

SW test: <0.001

AD test: 0.005

CVM test: 0.011

200
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

ll

l
l

l

l

l

l

l

l

l

l

ll

l
l

l

l

l

l

l

l

ll

l

l

l

ll

l

l

l

l

l

lll

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

ll

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

−3 −2 −1 0 1 2 3
−6

−4

−2

0

2

4

N(0,1) quantiles

Q
u
a
n
ti
le

 r
e
s
id

u
a
ls

SW test: 0.044

AD test: 0.025

CVM test: 0.021

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

ll

l
l

l

l

l

l

l

l

l

l

ll

l
l

l

l

l

l

l

l

ll

l

l

l

ll
l

l

l

l

l

lll

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

ll

l

l

ll

l

l

l

l

l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

−3 −2 −1 0 1 2 3
−6

−4

−2

0

2

4

N(0,1) quantiles

Q
u
a
n
ti
le

 r
e
s
id

u
a
ls

SW test: 0.662

AD test: 0.556

CVM test: 0.471

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

ll

l
l

l

l

l

l

l

l

l

l

ll

l
l

l

l

l

l

l

l

ll

l

l

l

ll
l

l

l

l

l

lll

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

ll

l

l

ll

l

l

l

l

l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

−3 −2 −1 0 1 2 3
−6

−4

−2

0

2

4

N(0,1) quantiles

Q
u
a
n
ti
le

 r
e
s
id

u
a
ls

SW test: 0.414

AD test: 0.354

CVM test: 0.282

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

ll

l

l

l

l

l

l

l

l

ll

l
l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l

l
l

l

l

l

l

l

l

l

l

ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

−3 −2 −1 0 1 2 3
−6

−4

−2

0

2

4

N(0,1) quantiles

Q
u
a
n
ti
le

 r
e
s
id

u
a
ls

SW test: <0.001

AD test: 0.001

CVM test: 0.004



A Regression Model for Positive Data Based on the Slashed Half-Normal Distribution 565

Moreover, the three normality tests do not reject the hypothesis of normality under
the common significance levels. In counterpart, in this case the RSHN regression models
yields unsatisfactory results and the normality assumption of the residuals is questionable.

Table 5: QQ plots with simulated envelopes for the deviance and quantile residuals
when RSHN(µi, α =2.1) is the true model.

Fitted model
Residual n

RSHN RG RW RBS
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When the true model is the RSHN model, as expected, the QQ plots for the deviance and
quantile residuals of the RSHN model present a good agreement with the standard normal for
all sample sizes. In addition, the deviance residuals for the RG and RW models only provides
fair results when n = 50. This result suggest that the RG and RW regression models are
very competitive in small sample sizes, even when the true model is not the RG model or the
RW model. Finally, the deviance and quantile residuals of the RBS regression model are far
away from the identity line in all the cases, suggesting poor results when the true model is
the RG model or the RSHN model.

6. DATA ANALYSIS

In this section, the regression models formulated in Section 2 are applied in the analysis
of two datasets.

6.1. Hunter-gatherer group dataset

In this section, the regression models formulated in Section 2 are applied in the analysis
of a dataset described in Kelly [16]. The dataset is related to the macroecological relationship
between the size of the homerange (measured in km2) of a hunter-gatherer group (response
variable) and the contribution (in percentage) of hunted foods to the diet. The dataset
comprises 39 groups. The sample mean, median and standard deviation of the size of the
homerange are 4004.4, 906.0 and 10728.1 km2, respectively, while the sample skewness and
kurtosis coefficients are

√
ν̂3 = 4.46 and ν̂4 = 23.43.
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Figure 2: Scatterplot and smoothing spline of the homerange, in 1000 km2,
and the contribution of hunted foods to the diet (observation 2
was perturbed in the analysis).
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Figure 2 shows the scatterplot of the data and a smoothing spline, which indicates
that the logarithmic link function is adequate. We fit the RG, RW, RBS and RSHN models,
with results presented in Table 6. The deviance and quantile residuals plots with envelopes
are presented in the upper panels in Figures 4 and 5. The lines in these plots represent the
2.5%, 50% and 97.5% quantile values of the residuals computed from 100 bootstrap samples
generated from the models in Table 6. Note that, based on both residuals, all models seem
appropriate for this dataset. Furthermore, the Akaike information criterion (AIC) and the
Bayesian information criterion (BIC) values are similar for all models.

Table 6: Parameter estimates (standard errors) and information criteria
for the RG, RW, RBS and RSHN regression models fitted to
the hunter-gatherer group dataset.

Dataset Parameter
Model

RG RW RBS RSHN

β0 5.442 (0.504) 5.456 (0.436) 5.290 (0.478) 5.718 (0.136)
β1 0.063 (0.013) 0.062 (0.012) 0.067 (0.013) 0.059 (0.010)
α — — — 2.225 (1.541)

Unperturbed
φ 0.811 (0.159) — — —
δ — 0.845 (0.100) — —
ξ — — 0.805 (0.227) —

AIC 670.26 669.25 668.02 670.11
BIC 675.25 674.24 673.01 675.10

β0 6.588 (0.759) 6.345 (0.482) 6.407 (0.491) 6.332 (0.340)
β1 0.042 (0.020) 0.047 (0.013) 0.048 (0.014) 0.054 (0.013)
α — — — 1.517 (1.301)

Perturbed
φ 0.602 (0.115) — — —
δ — 0.695 (0.078) — —
ξ — — 0.587 (0.227) —

AIC 698.80 693.57 691.66 688.20
BIC 703.79 698.56 696.64 693.19

In order to illustrate the robustness of the RSHN model, we perturb the response
variable of observation 2 in Figure 2 by adding two standard deviations (originally with
an area of 4,000 km2). The lower panels in Figures 4 and 5 show the deviance and the
quantile residuals plots for the models fitted to the perturbed data. Note that for both
residuals, the SW, AD and CVM tests support that the residuals of the RSHN model
come from the standard normal distribution for datasets without and with perturbation.
This fact suggests that the RG, RW and RBS models do not yield a good fit for the per-
turbed dataset, differently from the RSHN model, which yields a good fit in both scenarios.
Information criteria for the perturbed dataset in Table 6 also suggest that the best fit is
achieved with the RSHN model. Due to the perturbation, estimates of the coefficient of the
contribution of hunted foods to the diet (β1) decrease 33.3%, 24.2% and 28.4% under the RG,
RW and RBS models, respectively, whereas for the RSHN model the reduction amounts to
8.5%. Estimated means of the homerange for unperturbed and perturbed data are displayed
in Figure 3. We stress that the ratio of the estimated area for unperturbed data to perturbed
data is much more stable for the RSHN model, especially for large values of the contribution
of hunted foods to the diet, as can be seen in Figure 3(c).
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Figure 3: Scatterplot of the homerange and the contribution of hunted foods to the diet
together with estimated means under different models for data (a) without
perturbation and (b) with perturbation, and (c) ratio of the estimated area for
unperturbed data (µ̂unpert) to perturbed data (µ̂pert).
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Figure 4: Deviance residual plots with simulated envelopes for the
(a) RG, (b) RW, (c) RBS and (d) RSHN regression models
fitted to the hunter-gatherer group dataset without pertur-
bation (upper panel) and with perturbation (lower panel).
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Figure 5: Quantile residual plots with simulated envelopes for the
(a) RG, (b) RW, (c) RBS and (d) RSHN regression models
fitted to the hunter-gatherer group dataset without pertur-
bation (upper panel) and with perturbation (lower panel).

6.2. Minerals concentration dataset

This dataset is related to the concentration of some minerals in soil samples obtained at
the Mining Department, University of Atacama, Chile. This dataset was previously analyzed
in Gómez et al. [14] and Olmos et al. [21] . The measurements are related to nickel (Ni)
and zinc (Zn) respectively. In our application, we consider to model jointly the positive
measurements related to thorium (Th, n =71), uranium (U, n =57), vanadium (V, n =86)
and zinc (Zn, n =86). The unit of measurement of the concentrations (response variable) is
parts-per million (ppm). The dataset comprises 300 observations. The sample mean, median
and standard deviation of the concentrations are 72.43, 29.00 and 110.06, respectively, while
the sample skewness and kurtosis coefficients are

√
ν̂3 = 4.37 and ν̂4 = 35.87. Note that the

kurtosis is unusually greater than the kurtosis of the normal distribution. Given the high
value of kurtosis, we consider appropriate to model this dataset with the RSHN model in
Section 2, linking the covariates to the mean as µi = exp

(
βThxiTh +βUxiU +βVxiV +βZnxiZn

)
,

i = 1, ..., 300, where xiTh, xiU, xiV and xiZn are indicator variables assuming the value 1 when
the i-th observation corresponds to the referred mineral. We also compare the results with the
RG, RW and RBS regression models. Results are presented in Table 7. Note that AIC and
BIC attain the smallest values for the RSHN model. Figure 6 shows the histogram of thorium
and zinc concentrations compared with the fitted density functions. Table 8 also presents
the p-value for the univariate Kolmogorov–Smirnov (KS) test for comparison of empirical
and fitted cdf’s from each mineral. Note that all p-values are greater than 5% for the RSHN
model, suggesting a better fit for this model over the RG, RW and RBS models.
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Table 7: Parameter estimates (standard errors) and information criteria
for the RG, RW, RBS and RSHN regression models fitted to
the minerals dataset.

Parameter
Model

RG RW RBS RSHN

βTh 2.871 (0.119) 2.866 (0.110) 3.005 (0.146) 2.989 (0.127)
βU 2.436 (0.133) 2.434 (0.123) 2.508 (0.155) 2.581 (0.136)
βV 4.896 (0.108) 4.892 (0.100) 4.646 (0.107) 5.071 (0.124)
βZn 4.572 (0.108) 4.589 (0.101) 4.555 (0.122) 4.458 (0.114)
α — — — 2.871 (2.541)
φ 1.206 (0.088) — — —
δ — 1.080 (0.046) — —
ξ — — 1.147 (0.082) —

AIC 2917.55 2920.67 2980.57 2906.97
BIC 2936.07 2939.18 2999.09 2925.49
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Figure 6: Histogram and fitted density functions for RSHN, RG, RW and
RBS models in minerals dataset: (a) thorium and (b) zinc.

Table 8: p-values for the Kolmogorov–Smirnov goodness-of-fit test.

Mineral RG RW RBS RSHN

Th 0.269 0.195 0.009 0.580
U 0.947 0.955 0.119 0.535
V 0.105 0.112 <0.001 0.348
Zn 0.003 0.002 0.040 0.065
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Besides the information criteria in Table 7, Figures 7 and 8 show the deviance and the
quantile residuals plots for the fitted models. Note that for both residuals, the SW, AD and
CVM tests support (at a 5% significance level) that only the residuals of the RSHN model
come from the standard normal distribution. This fact suggests that the RG, RW and RBS
models do not yield a good fit for this dataset.
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(d)

Figure 7: Deviance residual plots with simulated envelopes for the
(a) RG, (b) RW, (c) RBS and (d) RSHN regression models
fitted to the minerals dataset.
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(d)

Figure 8: Quantile residual plots with simulated envelopes for the
(a) RG, (b) RW, (c) RBS and (d) RSHN regression models
fitted to the minerals dataset.

7. CONCLUSION

In this work, a reparameterization of the distribution proposed by Olmos et al. [21]
based on the mean motivated us to propose a regression model for positive data. The proposed
model is an alternative to some well-known models for positive response variables. Maximum
likelihood estimates are computed with the EM algorithm. A simulation study was carried out
to assess some properties of the proposed estimator. The analysis of two datasets illustrates
the robustness of the model. Extensions of this work might include Bayesian inference,
influence assessment and mixed models.
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