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1. INTRODUCTION

Suppose that X1, X2, ..., Xn be a set of continuous random variables with unknown cu-
mulative distribution function F (x) which we wish to estimate. The Empirical distribution
function provides a uniformly consistent estimate of the cumulative distribution function.
However, estimations which are provided by the Empirical distribution are not smooth. An-
other approach for estimating the cumulative distribution function is to use Kernel-type
estimators. Kernel-type estimators for distribution estimation, based on symmetric kernels,
have been introduced by authors such as Nadaraya [14] and Watson and Leadbetter [21],
and their asymptotic properties have been investigated by Singh et al. [18]. Asymptotical
superiority of Kernel-type estimators to the empirical distribution function at a single point
in density estimation was shown by Reiss [15] and Falk [5].

Although the symmetric kernels are popular and commonly used in Kernel-type esti-
mators, they are not efficient for those distribution (density) functions which have a compact
support due to the boundary bias. This problem is known as boundary effects and several
approaches have so far been proposed to deal with it in regression and density estimation
tasks (Gasser and Muller [6], Rice [16], Gasser et al. [7] and Muller [12]). In a similar manner,
Tenreiro [19] proposed some boundary kernels for estimating a cumulative distribution func-
tion with a finite interval support. These approaches, hereafter called the Boundary kernel
methods or briefly the B-K methods, are based on symmetric kernels.

Asymmetric kernel functions were introduced by Chen [2] as an alternative approach
to the boundary correction in kernel density estimation. He proposed the beta kernel den-
sity estimator to estimate a density with support on [0, 1]. Chen [3] considered the gamma
kernel density estimator to estimate a density with support on [0,∞). In order to pro-
vide a boundary-free estimation for the density function f(x) with support on [0,∞) by the
gamma kernel density estimator, Zhang [22] has shown that having a shoulder at x = 0, whose
derivative of f(x) is zero at x = 0, is a necessary condition. For densities not satisfying this
condition, the gamma kernel density estimator suffers from severe boundary problems. This
approach was extended for estimating a density with support on [0,∞) using other asymmet-
ric kernels (Jin and Kawczak [10], Scaillet [17], Hirukawa and Sakudo [8] and Hirukawa and
Sakudo [9]).

So far, the boundary effects in density estimation have attracted the attention of many
researchers. Accordingly, several methods, using symmetric and asymmetric kernels, have
been proposed to solve the problem. However, in the cumulative distribution estimation, the
boundary effects have received little if any attention.

In this paper, we have focused on estimating those distribution functions with support
on [0,∞) and proposed a new Kernel-type estimator for the cumulative distribution function
based on asymmetric kernels. Our estimator at the design point x has the following form:

(1.1) F̂n(x) = n−1
n∑

i=1

K̄x,b(Xi) ,

where K̄x,b(t)=
∫∞
t kx,b(u) du and k(·) is an asymmetric kernel function on [0,∞) with the

smoothing parameter b. Thus, the kernel has the same support as the true distribution function.
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We introduce two estimators by considering two asymmetric kernels including the Birnbaum–
Saunders (B-S) kernel and the Weibull kernel. In the next section, we demonstrate the
asymptotic properties of our proposed estimator based on the B-S kernel, hereafter called
the B-S kernel estimator. We investigate the rate of convergence of the B-S kernel estimator
both in the interior and the boundary points. In Section 3, we have run the same study
for our second estimator which is based on the Weibull kernel, hereafter called the Weibull
kernel estimator. The rest of the paper is organised as follows. Section 4 is dedicated to
illustrating the performance of our proposed estimators. We conducted a comprehensive
numerical study and considered various cumulative distribution functions to estimate and
compare the performance of our estimators with other existing methods. In Section 5 we
have illustrated the performance of our proposed estimators on a real data set. Finally,
Section 6 is devoted to discussions and conclusions.

In this paper, we assume that the cumulative distribution function F (x) satisfies the
following assumptions:

Assumption 1. The cumulative distribution function F (x) is absolutely continuous
with respect to Lebesgue measure on (0,∞) and has two continuous
and bounded derivatives.

Assumption 2. The smoothing parameter b = bn > 0 satisfies b → 0, as n →∞.

Assumption 3. The following integrals

(1.2)
∫ ∞

0

(
x f(x)

)2
dx and

∫ ∞

0

(
x2f ′(x)

)2
dx

are finite.

Following Hirukawa and Sakudo [9] and ‘In order to describe different asymptotic properties
of an asymmetric kernel estimator across positions of the design point x > 0’, we denote by
‘interior x’ and a sequence of points converging to the boundary or ‘boundary x’ a design
point x that satisfies x/b →∞ and x/b → k for some 0 < k < ∞ as n →∞, respectively.

2. ASYMMETRIC CUMULATIVE DISTRIBUTION FUNCTION ESTIMA-
TION USING B-S KERNEL

In this section, we aim at demonstrating the asymptotic convergence of our first pro-
posed estimator: Equation (1.1) based on the B-S kernel, i.e. the B-S kernel estimator.
To forward this end we will show that the B-S kernel estimator is asymptotically unbiased
and consistent. We will obtain an appropriate smoothing parameter for our estimator through
minimizing the mean integrated square error. In addition, we will discuss the convergence
rate of the B-S kernel estimator in the boundary points.
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2.1. Asymptotic properties of the B-S kernel estimator

Consider the Birnbaum–Saunders kernel given by

(2.1) K̄B-S(t;β, α) = 1− Φ


(√

t
β −

√
β
t

)
α

 , t > 0, α > 0, β > 0 ,

where Φ(·) is the Standard Normal distribution function. Let α =
√

b and β = x, where x

and b denote the design point and the smoothing parameters, respectively. The B-S kernel
estimator for the cumulative distribution function is defined as:

(2.2) F̂1(x) = n−1
n∑

i=1

K̄B-S

(
Xi;x,

√
b
)
.

In what follows we will obtain two approximate expressions for the bias and variance for
F̂1(x) in Lemma 2.1 and Lemma 2.2, respectively. First consider that for the two continuous
distribution functions F and G and their corresponding density function f and g, it is easy
to show that:

(2.3) Eg

(
F (X)

)
= 1− Ef

(
G(X)

)
,

where Eg(F (X)) is the expectation of F (X), when X is a random variable following the
distribution G.

Lemma 2.1. Suppose that Assumptions 1–3 hold. Then we have:

(2.4) E
(
F̂1(x)

)
= F (x) +

b

2

(
xf(x) + x2f ′(x)

)
+ O

(
b2
)
.

Proof: Since Xi’s are identical, we have

(2.5) Ef

(
F̂1(x)

)
= Ef

(
K̄B-S

(
T ;x,

√
b
))

,

where T is a random variable following the distribution F . Using equation (2.3) and Taylor
expansion, we have:

(2.6)

Ef

(
K̄B-S

(
T ;x,

√
b
))

= Ef

(
1−KB-S

(
T ;x,

√
b
))

= Ek

(
F (T )

)
= F (x) + f(x)E(T − x) +

∞∑
i=1

f (j)(x)
j!

E(T − x)j+1 ,

where f (j)(·) is the j-th derivative of f(x) and now T ∼ kx,
√

b(t), where

(2.7) kx,
√

b(t) =
t−

3
2 (t + x)√
2π bx

exp

{
− 1

2b

(
t

x
+

x

t
− 2
)}

, t > 0 , x > 0 , b > 0 .
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Using the results of Johnson et al. [11], we have:

(2.8)

E(T − x) = b
x

2
,

E(T − x)2 =
bx2

2
(2 + 3b) ,

E(T − x)3 =
9b2x3

2
(3 + 5b) ,

=⇒ E
(
F1(x)

)
= F (x) + f(x)

(
b

x

2

)
+

f ′(x)
2

(
bx2

2
(2 + 3b)

)
+

f (2)(x)
6

(
9b2x3

2
(3 + 5b)

)
+ ···

= F (x) +
b

2

(
xf(x) + x2f ′(x)

)
+ O

(
b2
)
,

where f ′(·) is the first derivative of f(x).

So, for the interior points, the bias of the B-S kernel estimator is of order O(b). Although
this rate of convergence to zero seems disappointing, one should be aware that the smoothing
parameter is a function of n. In the remainder of this section, we will show that by taking
this relation into account and considering the rate of convergence based on n, the bias of
the B-S kernel estimator is normal (not too bad). We defer a detailed discussion of this
matter until later in Section 3 where we provide a comparison between the bias of the B-S
kernel estimator and the Weibull kernel estimator. In addition, in the numerical study, we
will see that the overall performance of the B-S kernel estimator is not only satisfactory but
also better than the other competitors. This achievement is the result of a reduction in the
variance of the B-S kernel estimator, as we will see in Lemma 2.2, and what is the so-called
trade-off between the variance and the bias.

Now we turn to the variance of the B-S kernel estimator. The following lemma shows
that the variance of F̂1(x) resembles the variance of the Empirical distribution function to
some extent but it involves a negative term which can lead to its superiority over the Empirical
distribution function since it has a smaller variance.

Lemma 2.2. Suppose that Assumptions 1–3 hold. Then variance of the B-S kernel

estimator can be obtained as:

(2.9) Var
(
F̂1(x)

)
= n−1F (x)

(
1− F (x)

)
− n−1 b

1
2 π−

1
2 xf(x) + O

(
n−1b

)
.

Proof: First consider that

(2.10)

E
(
K̄2

B-S

(
T ;x,

√
b
))

=
∫ ∞

0
K̄2

B-S

(
t;x,

√
b
)
f(t) dt

=
∫ ∞

0
F (t)

(
2 kB-S

(
t;x,

√
b
)
K̄B-S

(
t;x,

√
b
))

dt (using integral by part)

= F (x) + f(x) E(Z − x) +
1
2

f ′(x) E(Z − x)2 + ··· ,

where Z ∼ 2 kB-S

(
z;x,

√
b
)
K̄B-S

(
z;x,

√
b
)

(a skew probability density function) and

(2.11) kB-S

(
z;x,

√
b
)

=
z−

3
2 (z + x)√
2π bx

exp

{
− 1

2b

(
z

x
+

x

z
− 2
)}

, z > 0, x > 0, b > 0 .
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By extending the results of Vilca and Leiva [20], we have:

(2.12)
E(Z − x) =

b
1
2 x

2

(
ω1 + b

1
2 γ2

)
,

E(Z − x)2 =
b x2

2

(
2 γ2 + γ4 + b

1
2 xω3

)
,

where γr = E(W r) and ωr = E
(
W r
√

b W 2 + 4
)
. In addition, W is a random variable with a

Skewed Normal distribution, i.e. W ∼ SN(0, 1,−1).
Using the Taylor expansion for W

√
b W 2 + 4 and W 3

√
b W 2 + 4 , we obtain

W
√

b W 2 + 4 = 2W +
1
4

b W 3 − 1
64

b2 W 5 + O
(
b3
)
,

and

W 3
√

b W 2 + 4 = 2W 3 +
1
4

b W 5 − 1
64

b2 W 7 + O
(
b3
)
.

Nadarajah and Kotz [13] show that E(W ) = − 1√
π
, E(W 3) = −

√
5
4π , thus we can deduce that

(2.13) γ2 = 1 , γ4 = 3 , ω1 ≈ −
2√
π

, ω3 ≈ −
√

5
π

.

By substituting γ2, γ4, ω1 and ω3 in (2.12) and then substituting (2.12) in (2.10), we obtain

E
(
K̄2

B-S

(
T ;x,

√
b
))

= F (x)−
√

b

π
xf(x) + O(b) .

Using this result and the result of Lemma 2.1, we have:

(2.14)

Var
(
F̂1(x)

)
= Var

(
n−1

n∑
i=1

K̄B-S

(
Xi;x,

√
b
))

= n−1 Var
(
K̄B-S

(
T ;x,

√
b
))

= n−1

{
E
(
K̄2

B-S

(
T ;x,

√
b
))
− E2

(
K̄B-S

(
T ;x,

√
b
))}

= n−1

{
F (x)− b

1
2 π−

1
2 x f(x) + O(b)

}
− n−1

{(
F (x) +

b

2

(
xf(x) + x2f ′(x)

)
+ O

(
b2
))2}

= n−1F (x)
(
1− F (x)

)
− n−1

(
b

1
2 π−

1
2 xf(x)

)
+ O

(
n−1b

)
.

Using Lemma 2.1 and Lemma 2.2, we can derive an estimate of the mean integrated
square error (MISE) for the B-S kernel estimator as follows:

(2.15)

MISEB-S

(
F̂1(x)

)
=
∫ ∞

0
MSE

(
F̂1(x)

)
dx

≈ n−1

∫ ∞

0
F (x)

(
1− F (x)

)
dx − n−1 b

1
2 π−

1
2

∫ ∞

0
xf(x) dx

+
b2

4

∫ ∞

0

(
xf(x) + x2f ′(x)

)2
dx .

This result gives rise to the following proposition.
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Proposition 2.1. The optimal smoothing parameter for the B-S kernel estimator

based on minimizing the MISE is

(2.16)

bMISE
B-S = arg min︸ ︷︷ ︸

b>0

(
MISEB-S

(
F̂1(x)

))

≈
{∫ ∞

0
xf(x) dx

}2
3
{

π
1
2

∫ ∞

0

(
xf(x) + x2f ′(x)

)2
dx

}− 2
3

n−
2
3 .

This indicates that the optimal smoothing parameter is of order O
(
n−2/3

)
. By substi-

tuting bMISE
B-S in (2.15), we have:

MISEB-S

(
F̂1(x)

)
= n−1

∫ ∞

0
F (x)

(
1− F (x)

)
dx

− 3
4

n−
4
3 π−

2
3

{∫ ∞

0
xf(x) dx

}4
3
{∫ ∞

0

(
xf(x) + x2f ′(x)

)2
dx

}− 1
3

+ O
(
n−

5
3
)

=⇒ MISEB-S

(
F̂1(x)

)
= n−1

∫ ∞

0
F (x)

(
1− F (x)

)
dx − O

(
n−

4
3
)
.

2.2. The performance of the B-S kernel estimator at near boundary points

In order to delve in asymptotic properties of the B-S kernel estimator at the boundary
points and compare the rate of its convergence at the boundary points and the interior points,
we consider two specific cases for the design point x:

a) In the case where x = 0, the B-S kernel is zero, i.e. K̄B-S

(
t;x,

√
b
)

= 0 and, there-
fore, in this case F̂1(0) = 0 which is remarkable because the ordinary kernel esti-
mator does not satisfy this property.

b) For the case where x = cb, where 0 < c < 1, we have:

(2.17) E
(
F̂1(x)

)
= F (x) +

cb2

2
f(x) + O

(
b3
)
,

and

(2.18) Var
(
F̂1(x)

)
= n−1F (x)

(
1− F (x)

)
− n−1 b

3
2 π−

1
2 f(x) + O

(
n−1 b2

)
.

Therefore, we can compute the mean square error (MSE) for the B-S kernel esti-
mator at the boundary points as follows:

(2.19) MSEB-S

(
F̂1(x)

)
≈ n−1F (x)

(
1− F (x)

)
− n−1 b

3
2 π−

1
2 f(x) +

c2 b4

4
f2(x) .

Comparing the bias and variance terms of the B-S kernel estimator at the near bound-
ary and interior points (in equations (2.19) and (2.15), respectively) shows that the bias
term is smaller at the near boundary points at the expense of increasing the variance term.



470 H.A. Mombeni, B. Mansouri and M.R. Akhoond

Because at the near boundary points, the rate of convergence to zero of the negative portion
of variance, which is the gain of smoothing technique over the empirical distribution function,
is smaller than that of interior points.

Now it is easy to show that the optimal smoothing parameter which minimizes the
MSE is

(2.20) bMSE
B-S = O

(
n−

2
5
)
.

By substituting (2.20) in (2.19), we have:

(2.21) MSEB-S

(
F̂1(x)

)
= n−1F (x)

(
1− F (x)

)
+ O

(
n−

8
5
)
.

3. ASYMMETRIC CUMULATIVE DISTRIBUTION FUNCTION ESTIMA-
TION USING WEIBULL KERNEL

In the previous section, we introduced the B-S kernel estimator and demonstrated its
asymptotic consistency. In this section, we will run a similar study and introduce another
cumulative distribution function estimator based on the Weibull kernel, i.e. the Weibull kernel
estimator.

3.1. Asymptotic properties of the Weibull kernel estimator

Consider the Weibull kernel given by

(3.1) K̄wbl(t;α, β) = exp

{
−
(

t

β

)α
}

, t ≥ 0 , α > 0 , β > 0 .

Since T ∼ Weibull(α, β) then we have:

(3.2) E(T k) = βk Γ
(

1 +
k

α

)
, k = 1, 2, ... ,

where Γ
(
1 + k

α

)
= 1− kγ

α + k2

12α2

(
π2 + 6γ2

)
+ O

(
α3
)

and γ = 0.57721 is the Euler’s constant.
Hirukawa and Sakudo [9] proposed an expansion for Γ

(
1 + 2

α

)
Γ−2

(
1 + 1

α

)
as follows:

(3.3) Γ
(

1 +
2
α

)
Γ−2

(
1 +

1
α

)
= 1 +

π2

6α2
+

γπ2 − 3γ3

2α3
+ O

(
α−4

)
.

Similarly, it is easy to show that

(3.4) Γ
(

1 +
3
α

)
Γ−3

(
1 +

1
α

)
= 1 +

π2

2α2
+ 2

γπ2 − 3γ3

α3
+ O

(
α−4

)
.

Let (α, β) =
(
1/b, x/Γ(1+ α−1)

)
where x and b denote the design point and the smoothing

parameters, respectively. Our second asymmetric Kernel-type estimator, i.e. the Weibull
kernel estimator, is defined as follows:

(3.5) F̂2(x) = n−1
n∑

i=1

K̄wbl

(
Xi; 1/b, x/Γ(1 + b)

)
.
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The Weibull kernel estimator F̂2(x) is nonnegative and appropriate to estimate cumulative
distribution functions with support on [0,∞). In what follows, we present the theoretical
properties of F̂2(x) and we will obtain an appropriate smoothing parameter for this estimator
through minimizing the mean integrated square error. We will obtain approximate expressions
for the bias and variance for F̂2(x) in Lemma 3.1 and Lemma 3.2, respectively. In addition,
we will discuss the convergence rate of the Weibull kernel estimator in the boundary points.

Lemma 3.1. Suppose that Assumptions 1–3 hold. Then the expectation value of F̂2(x)
can be obtained as:

(3.6) E
(
F̂2(x)

)
= F (x) + b2 π2 x2f ′(x)

12
+ O

(
b3
)
.

Proof: The proof is analogous with the proof of Lemma 2.1. Using equation (2.3) and
Taylor expansion, we have:

E
(
F̂2(x)

)
= E

(
K̄wbl

(
T ; 1/b, x/Γ(1+ b)

))
= Ek

(
F (T )

)
= F (x) + f(x) E(T − x) +

∞∑
j=1

f (j)(x)
j!

E(T − x)j+1 ,

where T is a random variable with Weibull
(
1/b, x/Γ(1 + b)

)
probability density function.

Using equations (3.3) and (3.4), we have:

E(T − x) = 0 ,

E(T − x)2 =
(xb π)2

6
+ x2 b3

(
γπ2

2
− 3γ3

)
+ O(b4) ,

E(T − x)3 = (xb)3
(

γπ2

2
+ 3γ3

)
+ O

(
b4
)
.

Now we can conclude that

E
(
F̂2(x)

)
= F (x) +

1
2

f ′(x)

(
(xb π2)

6
+ x2 b3

(
γπ2

2
− 3γ3

))

+
f (2)(x)

6

(
(xb)3

(
γπ2

2
+ 3γ3

))
+ ···

= F (x) + b2 π2 x2f ′(x)
12

+ O
(
b3
)
.

Note that, for the interior points, the bias of the Weibull kernel estimator is of order
O(b2). However, by considering the smoothing parameter as a function of n in Remark 3.1,
we will see that in the sense of convergence rate of bias, the Weibull kernel estimator is the
same as the B-S kernel estimator. The following lemma provides an approximation for the
variance of the Weibull kernel estimator.

Lemma 3.2. Suppose that Assumptions 1–3 hold. Then the variance of F̂2(x) can

be obtained as:

(3.7) Var
(
F̂2(x)

)
= n−1F (x)

(
1− F (x)

)
− n−1 b ln(2) x f(x) + O

(
n−1b2

)
.

where ln(·) is the natural logarithm.
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Proof: First note that

(3.8)

E
(
K̄2

wbl

(
T ; 1/b, x/Γ(1+ b)

))
=
∫ ∞

0
K̄2

wbl

(
t; 1/b, x/Γ(1+ b)

)
f(t) dt

=
∫ ∞

0
F(t)

{
2 kwbl

(
t; 1/b, x/Γ(1+ b)

)
K̄wbl

(
t; 1/b, x/Γ(1+ b)

)}
dt

= F (x) + f(x) E(Z − x) +
1
2

f ′(x) E(Z − x)2 + ··· ,

where Z ∼ 2 kwbl

(
z; 1/b, x/Γ(1+ b)

)
K̄wbl

(
z; 1/b, x/Γ(1+ b)

)
, z > 0, b > 0, x > 0. It is easy

to show that Z is random variable with Weibull
(
α, β

2
1
α

)
density function.

Since 2−
1
α = 1− ln(2)

α + ln2(2)
2α2 + O(α−3), we have:

(3.9)
E(Z − x) = −bx ln(2) +

(
bx ln(2)

)2
6

+ O
(
b3
)
,

E(Z − x)2 = (xb)2
(

ln(2)2 +
π2

6

)
+ O

(
b3
)
.

By substituting (3.9) in (3.8), we obtain

(3.10) E
(
K̄2

wbl

(
T ; 1/b, x/Γ(1+ b)

))
= F (x)− bx ln(2)f(x) + O

(
b2
)
.

Using (3.10) and Lemma 3.1, we can deduce that:

(3.11)

Var
(
F̂2(x)

)
= Var

(
n−1

n∑
i=1

K̄wbl

(
Xi; 1/b, x/Γ(1+ b)

))
= n−1 Var

(
K̄wbl

(
T ; 1/b, x/Γ(1+ b)

))
= n−1

{
E
(
K̄2

wbl

(
T ; 1/b, x/Γ(1+ b)

))
− E2

(
K̄wbl

(
T ; 1/b, x/Γ(1+ b)

))}
= n−1

{
F (x)− bx ln(2) f(x) + O

(
b2
)
−
(

F (x) + b2 π2x2f ′(x)
12

+ O
(
b3
))2}

= n−1F (x)
(
1− F (x)

)
− n−1 b ln(2) xf(x) + O

(
n−1b2

)
.

Using Lemma 3.1 and Lemma 3.2, we can derive an estimate of the MISE for the
Weibull kernel estimator as follows:

(3.12)
MISEwbl

(
F̂2(x)

)
≈ n−1

∫ ∞

0
F (x)

(
1− F (x)

)
dx − n−1b ln(2)

∫ ∞

0
xf(x) dx

+ b4 π4

144

∫ ∞

0

(
x2f ′(x)

)2
dx .

Now we can select the optimal smoothing parameter based on minimizing the MISE.

Proposition 3.1. The optimal smoothing parameter for the Weibull kernel estimator

based on minimizing the MISE of F̂2(x) in (3.12) is

(3.13)

bMISE
wbl = arg min︸ ︷︷ ︸

b>0

(
MISEwbl

(
F̂2(x)

))

=
{

36 ln(2)
∫ ∞

0
xf(x) dx

}1
3
{

π4

∫ ∞

0

(
x2f ′(x)

)2
dx

}− 1
3

n−
1
3 .
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Note that the optimal smoothing parameter is of order O(n−1/3). By substituting bMISE
wbl

in (3.12), we have:

(3.14)

MISEwbl

(
F̂2(x)

)
= n−1

∫ ∞

0
F (x)

(
1− F (x)

)
dx

− 2.4764 (nπ)−
4
3
(
ln(2)

)4
3

{∫ ∞

0
xf(x) dx

}4
3
{∫ ∞

0

(
x2f ′(x)

)2
dx

}− 1
3

+ O
(
n−

5
3
)

=⇒ MISEwbl

(
F̂2(x)

)
= n−1

∫ ∞

0
F (x)

(
1− F (x)

)
dx − O

(
n−

4
3
)
.

Remark 3.1. From the two equations (2.16) and (3.13), the optimal smoothing pa-
rameter of the B-S kernel estimator and the Weibull kernel estimator are of order O(n−2/3)
and O(n−1/3), respectively. Therefore, in terms of the rate of convergence to zero, we have
bMISE

B-S ≈
(
bMISE

wbl

)2. Thus from (2.4) and (3.6), we can conclude that for the interior points,
the bias of the B-S kernel estimator has the same rate of convergence to zero as the bias of
the Weibull kernel estimator.

3.2. The performance of the Weibull kernel estimator near boundary points

In this subsection, we run a similar study like what we have done in Section 2.2
in order to investigate the asymptotic properties of the Weibull kernel estimator at the bound-
ary points. This helps us to compare the rate of convergence at the boundary points and the
interior points. We consider two specific cases for the design point x:

a) In the case where x = 0, we have K̄wbl

(
T ; 1/b, x/Γ(1 + b)

)
= 0, so in this case,

unlike the ordinary kernel estimator, F̂2(0) = 0.

b) For the case where x = cb, where 0 < c < 1, we have:

(3.15) E
(
F̂2(x)

)
= F (x) +

c2b4

2
f(x) + O

(
b5
)

and

(3.16) Var
(
F̂2(x)

)
= n−1F (x)

(
1− F (x)

)
− n−1 cb2 ln(2)f(x) + O

(
n−1b3

)
.

So we can compute the MSE for the Weibull kernel estimator at the boundary
points as follows:

(3.17) MSEwbl

(
F̂2(x)

)
≈ n−1F (x)

(
1− F (x)

)
− n−1 cb2 ln(2)f(x) +

c4b8

4
f2(x) .

Comparing the two equations (3.17) and (3.14) shows a trade-off between the bias and
the variance terms for the Weibull kernel estimator. This is something like what we have
seen for the B-S kernel estimator in Section 2. The bias term is again smaller at the near
boundary points at the expense of increasing the variance term.
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Now it is easy to show that the optimal smoothing parameter which minimizes the
above-mentioned MSE is

(3.18) bMSE
wbl = O

(
n−

1
6
)
.

By substituting (3.18) in (3.17), we have:

(3.19) MSEwbl

(
F̂2(x)

)
= n−1F (x)

(
1− F (x)

)
+ O

(
n−

4
3
)
.

Remark 3.2. From the two equations (2.20) and (3.18), the optimal smoothing pa-
rameter of the B-S kernel estimator and the Weibull kernel estimator are of order O(n−2/5)
and O(n−1/6), respectively. By substituting back these values into the corresponding bias
terms of the two estimators, we can deduce that for the near boundary points, the bias of
the B-S kernel estimator is of order O(n−4/5) while the bias of the Weibull kernel estimator
is of order O(n−2/3).

4. NUMERICAL STUDY

In this section, we illustrate the performance of the proposed estimators (the B-S kernel
estimator and the Weibull kernel estimator) through a simulation study. We compare our
proposed estimators with the ordinary kernel method (O-K method), the B-K method and
the Empirical distribution method. In both the O-K method and the B-K method, we use the
Epanechnikov kernel. In order to select an appropriate bandwidth for the O-K and the B-K
methods, we use the optimal bandwidth proposed by Altman and Leger [1] and Tenreiro [19],
respectively.

We generated 1000 samples of size n = 256 and 1024 from eight various distributions in-
cluding, 1: Burr(1, 3, 1), 2: Gamma(0.6, 2), 3: Gamma(4, 2), 4: GeneralizedPareto(0.4, 1, 0),
5: Halfnormal(0, 1), 6: Lognormal(0, 0.75), 7: Weibull(1.5, 1.5) and 8: Weibull(3, 2). In or-
der to estimate the smoothing parameter for the B-S kernel estimator and the Weibull kernel

estimator, we used Gamma density f(x) =
xα−1 exp (− x

β
)

βα Γ(α) as a referenced density in equations
(2.16) and (3.13), respectively. The parameters (α, β) have been estimated by the method of
maximum likelihood estimation.

In order to evaluate the performance of our proposed estimators and compare their
functionality with other existing methods, we considered the integrated squared error ISEi =∫∞
0

(
F̂i(x)− F (x)

)2
dx as an error metrics, where F̂i(x), i = 1, 2, ..., 5, stands for the B-S

kernel estimator, the Weibull kernel estimator, the O-K method, the B-K method and the
Empirical distribution method, respectively. In our setting, we approximated the integral
with summation.

Table 1 shows the mean and standard deviation of the ISE for the eight distributions
and the two sample sizes over one thousand repetitions. In all cases, the mean and standard
deviation of the ISE decreased as the sample size increased. The simulation results show that
based on the ISE, regardless of the sample size, our proposed estimators perform better than
the other three methods. The only exception is distribution 5: Halfnormal(0, 1) with a sample
size of 256 for which the B-K method has a smaller mean of ISE than that of the Weibull
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kernel estimator. However, even for this case, when the sample size is increased to 1024, both
the B-S kernel estimator and the Weibull kernel estimator have a better performance. The
comparison between the B-S kernel estimator and the Weibull kernel estimator indicates the
superiority of the B-S kernel estimator. This is true, surprisingly, even in estimating two
distributions Weibull(1.5, 1.5) and Weibull(3, 2).

Table 1: The mean and standard deviation of the ISE in estimating eight distributions
via five methods (see the text for explanation) for n = 256 and 1024.

Value (×10−4) B-S Weibull Ordinary Boundary Empirical

N Example Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

1 1.33 1.17 1.37 1.20 1.63 1.27 1.59 1.26 1.53 1.12
2 4.24 4.17 4.50 4.28 6.37 5.14 5.46 5.14 4.96 4.24
3 1.37 0.94 1.43 0.98 1.64 1.08 1.64 1.08 1.55 0.91
4 4.44 4.59 4.70 4.74 6.52 5.46 5.33 5.47 5.14 4.64

256
5 2.90 2.77 2.99 2.85 3.60 3.02 2.96 3.03 3.33 2.82
6 5.89 5.90 6.10 6.05 8.05 6.82 7.59 6.82 6.17 5.51
7 3.29 3.02 3.37 3.12 4.20 3.34 3.65 3.29 3.74 3.03
8 2.62 2.40 2.68 2.46 3.09 2.58 3.03 2.57 2.98 2.39

1 0.34 0.28 0.35 0.29 0.46 0.33 0.45 0.32 0.38 0.28
2 1.18 1.14 1.22 1.17 2.38 1.55 1.78 1.56 1.30 1.14
3 0.28 0.31 0.28 0.29 0.74 0.55 0.73 0.54 0.28 0.30
4 1.18 1.21 1.22 1.24 2.18 1.51 1.53 1.54 1.28 1.19

1024
5 0.74 0.72 0.76 0.73 1.14 0.82 0.81 0.82 0.81 0.71
6 0.63 0.56 0.64 0.58 1.04 0.70 0.91 0.69 0.67 0.52
7 0.91 0.81 0.93 0.81 1.30 0.90 1.12 0.89 1.00 0.80
8 0.69 0.62 0.70 0.62 0.87 0.68 0.86 0.68 0.75 0.62

In order to provide a better comparison between the aforementioned methods, we have
presented the boxplots of the ISE for the case n = 1024 in Figure 1. In this figure, we consider
eight boxplots for eight divers’ distributions. In the boxplots, the vertical axis shows the ISE
and the horizontal axis contains the methods. The dotted line in each of the boxplots shows
the lowest median of the ISEs. The overall superiority of the B-S kernel estimator in all
cases is obvious. The overall performance of the Weibull kernel estimator is better than
the B-K method and the Empirical distribution method. The O-K method shows the worst
performance as is expected.

In Figure 2, we provide the results on the mean squared error (MSE) at various points
of the support of the considered distributions in 1000 repetitions for the sample size (1024).
This helps one to see the performance of the compared methods depending on the point where
the distribution function is estimated. To increase the visibility and better compare other
kernel-type estimators, we have ignored the Empirical distribution in this figure. The poor
performance of the O-K method at near boundary region is obvious. At the points far from
the boundary, the O-K method and the B-K method almost match. Although the amount of
MSE is dependent on the design point and the distribution which we want to estimate, the
overall performance of the two proposed estimators are better than both the O-K and the
B-K methods. Note that, the shape of asymmetric kernels changes with the design point and
for the points, those are far enough from the boundary, they become symmetric, and finally
all the methods almost match in Figure 2.
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(a) Burr(1, 3, 1) (b) Gamma(0.6, 2)

(c) Gamma(4, 2) (d) GeneralizedPareto(0.4, 1, 0)

(e) Halfnormal(0, 1) (f) Lognormal(0, 0.75)

(g) Weibull(1.5, 1.5) (h) Weibull(3, 2)

Figure 1: The boxplots of the ISE in estimating eight distribution functions via five methods
in 1000 repetitions (n = 1024) (see text for further explanation).
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(a) Burr(1, 3, 1) (b) Gamma(0.6, 2)

(c) Gamma(4, 2) (d) GeneralizedPareto(0.4, 1, 0)

(e) Halfnormal(0, 1) (f) Lognormal(0, 0.75)

(g) Weibull(1.5, 1.5) (h) Weibull(3, 2)

Figure 2: The Plot of the MSE in estimating eight distribution functions via five methods
in 1000 repetitions (n = 1024) (see the text for further explanation).
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Figures 3 to 6 illustrate 30 estimates in blue along with the true distribution in red for
the eight different distributions (n = 256) via five methods. The density function of these
distributions is plotted as well in the top left corner of each image. The boundary bias of
the O-K method is obvious. The B-K method remedies this drawback but not completely.

(a) Burr(1, 3, 1)

(b) Gamma(0.6, 2)

Figure 3: Plots of 30 estimates (in blue) of Burr(1, 3, 1) and Gamma(0.6, 2) via five methods:
(b) B-S kernel estimator (top mid), (c) Weibull kernel estimator (top right), (d) O-K
method (Bottom left), (e) B-K method (Bottom mid) and (f) Empirical distribution
(bottom right). The true distribution is shown in red and sample size n = 256.
The top left (a) shows the density function of each distribution.
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In particular, a careful inspection of the figures, especially Gamma(4, 2) and Weibull(3, 2),
for near boundary points, shows that the B-K method suffers from over-estimation. It seems
that this problem depends on the shape of the distribution which we wish to estimate.

(a) Gamma(4, 2)

(b) GeneralizedPareto(0.4, 1, 0)

Figure 4: Plots of 30 estimates (in blue) of Gamma(4, 2) and Generalized Pareto(0.4, 1, 0)
via five methods: (b) B-S kernel estimator (top mid), (c) Weibull kernel estimator
(top right), (d) O-K method (Bottom left), (e) B-K method (Bottom mid) and
(f) Empirical distribution (bottom right). The true distribution is shown in red
and sample size n = 256. The top left (a) shows the density function of each
distribution.
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Another striking point is that the Empirical distribution could not provide smooth estimates.
In general, the performance of our proposed estimators is satisfying.

(a) Halfnormal(0, 1)

(b) Lognormal(0, 0.75)

Figure 5: Plots of 30 estimates (in blue) of Halfnormal(0, 1) and Lognormal(0, 0.75) via five
methods: (b) B-S kernel estimator (top mid), (c) Weibull kernel estimator (top
right), (d) O-K method (Bottom left), (e) B-K method (Bottom mid) and (f) Em-
pirical distribution (bottom right). The true distribution is shown in red and sample
size n = 256. The top left (a) shows the density function of each distribution.
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(a) Weibull(1.5, 1.5)

(b) Weibull(3, 2)

Figure 6: Plots of 30 estimates (in blue) of Weibull(1.5, 1.5) and Weibull(3, 2) via five methods:
(b) B-S kernel estimator (top mid), (c) Weibull kernel estimator (top right), (d) O-K
method (Bottom left), (e) B-K method (Bottom mid) and (f) Empirical distribution
(bottom right). The true distribution is shown in red and sample size n = 256. The
top left (a) shows the density function of each distribution.
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5. ILLUSTRATION WITH A REAL DATA SET

In this section, we apply our two proposed estimators to a real dataset. The data are the
time distance between marriage to the first childbirth. This dataset is a result of a field research
performed by Choromzadeh et al. [4] to study the factors that influence childbirth behavioral
patterns of women aged 15–49 in a sample of size n=1106 in Ahwaz, Iran. Due to the traditions,
many families tend to have children immediately after marriage. Therefore, the data has a
natural peak in 9–18 months after marriage. There are rare cases of childbirth in 1–8 months,
which are probably the result of pregnancy before marriage. Figure 7 shows the histogram of
this dataset. On the other hand, due to the changes in socioeconomic and cultural statuses,
there are few families that give birth to their first child in a considerable time after their mar-
riage. Also, there are some families whose delayed first birth is due to sterility problems. Thus,
a long tail with sparse data is another considerable feature in the distribution of this dataset.

Figure 7: Histogram of the months after marriage before the first childbirth.

Figure 8 illustrates 5 estimates of the distribution of this data via five methods. The methods
of choosing the smoothing parameter for various estimators are described in Section 4. Figure
8(a) shows that estimates mainly differ at the near origin. In order to provide a better insight,
we separately illustrate the estimates in the first 9 months in Figure 8(b). In comparison with
the Empirical distribution, the estimates created by the O-K method and the B-K method
are similar. It seems they rise too early. In the simulation study, we have seen that these
two estimators suffer from over-estimating for near boundary points, especially for those
distributions that have the same shape as in Figure 7. The B-S kernel estimate and the
Weibull kernel estimate are very close, and the more consistent they are with the Empirical
distribution and for this dataset, the more realistic they seem to be.
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(a) (b)

Figure 8: Five estimates of the distribution of first childbirth via five methods:
B-S kernel estimator (solid-blue), Weibull kernel estimator (dashed-red),
O-K method (dashed-yellow), B-K method (dotted-purple) and Empir-
ical distribution (solid-green).

6. CONCLUSION AND DISCUSSION

This paper is devoted to proposing some appropriate estimators for the cumulative dis-
tribution functions with non-negative support. To achieve this goal, we proposed a general
asymmetric Kernel-type estimator and introduced two asymmetric estimators for the cumu-
lative distribution function. We demonstrated the asymptotic consistency of our proposed
estimators and we showed that they are free from boundary effects as well. Comparing our
estimators based on the rate of convergence at the boundary points, we found that the B-S
kernel estimator was better than the Weibull kernel estimator. In our setting, we estimated
the bandwidths of the two estimators based on minimizing the MISE. In order to evaluate
the performance of our estimators and compare them with other existing methods, we con-
ducted a numerical study. The results of the numerical study show that both the B-S kernel
and the Weibull kernel estimators are superior to the B-K method proposed by Tenreiro [19].
In the numerical study, the B-S kernel estimator achieved the best results and outperformed
the Weibull kernel estimator. This is consistent with the good asymptotic properties of the
B-S kernel estimator. In this research, we used the B-S kernel and the Weibull kernel as
the asymmetric kernels in our general estimator. As a path for future research, one can try
other existing asymmetric kernels. Another area for future research can be the estimation of
those cumulative distributions with a finite interval support, for instance [a, b]. In addition,
application of this type of cumulative distribution estimator in several other fields such as
the survival analysis and the copula methods is an interesting topic for future research.
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